
Deep Learning Winter School
for Computer Vision

Srijan Das

PhD Scholar

INRIA Sophia Antipolis

Outline: Video Classification

• Introduction to videos

• Traditional video processing using CNNS

• RNNs (specifically LSTMs)

• Implementing LSTMs

Why video analysis?

~5K image uploads
every min. >34K hours of video upload

every day

TV-channels recorded
since 60’s

~30M surveillance cameras in US
=> ~700K video hours/day

~2.5 Billion new images /
month

And even more with future
wearable devices

Data:

Why video analysis?
Applications:

First appearance of N.
Sarkozy on TV

Predicting crowd behavior
Counting people

Sociology research:
Influence of character
smoking in movies

Where is my cat? Motion capture and animation

Education: How do I
make a pizza?

Why video analysis?
Applications:

Unconstrained video search

Why video analysis?

Amazon go Assistive Robot

Waiter Robot!

Introduction to videos

• A video is a sequence of frames captured over
time

• Now our image data is a function of space
(x, y) and time (t)

Challenge is how to model time?

Image Vs Video Classification Networks

R
e

p
re

se
n

tatio
n

Image data

n-D data (e.g., n =
320*240)

Semantic
labels

Classifier
Feature

extraction

k-D
vector
(e.g.,
1000)

s labels (e.g., s = 2)

Human 0.9

Not-human 0.1

R
e

p
re

se
n

tatio
n

Video data

n*m-D data (e.g., n = 320*240, m =
1000 frames)

Semantic
labels

Classifier
Feature

extraction

k-D vector
(e.g.,
1000)

s labels (e.g., s = 6)

Video Classification Techniques

• Frame-level aggregation
• Aggregating the frame-level information using pooling
• Temporal information is lost

• Recurrent Neural Networks
• Model the temporal evolution of the frames using gating functions
• Does not handle space-time simultaneously

• 3D Convolutional Networks
• Perform convolution across space-time simultaneously
• Too rigid to capture subtle information

For handling time

Frame-level Aggregation

Max Pooling
𝐹 = max(𝑓𝑖)

Min Pooling
𝐹 = min(𝑓𝑖)

Mean Pooling

𝐹 =
 𝑖=1
𝑡 𝑓𝑖
𝑡

Max - Min Pooling
𝐹 = concat(max(𝑓𝑖)(min 𝑓𝑖)

Image Classifier

t

Video

Images

𝐼1

𝐼2

𝐼𝑡

𝑓1

𝑓2

𝑓𝑡

Frame-level Features
Video-level features (F)

Feature Extraction

Feature-Aggregation

2D CNNs – VGG,
ResNet, Inception

Frame-level Aggregation

• These frame-level pooling mechanisms provide a video descriptor
which focuses on the salient instances in the video.

• The video descriptors for each videos are treated as data samples for
a classifier (like SVM) for classifying the videos.

Frame-level Aggregation

How do you extract the frame-level features?

Image Classifier

Extract feature from
Fully-connected layer
(FC-2)

Pre-trained on ImageNet

Implementation

All the practicals will be in Keras with Tensorflow
in the back-end.

Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or Theano.
It was developed with a focus on enabling fast experimentation.

Keras Applications are deep learning models
that are made available alongside pre-trained

weights. These models can be used for prediction,
feature extraction, and fine-tuning.

https://keras.io/applications/

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://keras.io/applications/

Implementation

from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np

model = VGG16(weights='imagenet', include_top=True)
model = Model(inputs=model.input, outputs=model.get_layer('fc2').output)

def feature_extraction(img_path):
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x

Extracting 2D CNN features from a pre-trained model

video_path = ‘path to the video’
image_files = os.listdir(video_path)
features = []
for image in image_files:

features.append(feature_extraction
(os.path.join(video_path, image)))

Processing a video

Implementation

import numpy as np
import os
path = "../results/frame_features/"

def max_min_conv(video):
frame_features = np.loadtxt(video, delimiter=',')
max_features = np.amax(frame_features, axis=0)
min_features = np.amin(frame_features, axis=0)
final_t1 = np.hstack([max_features, min_features])
return final_t1

for video in os.listdir(path):
desc = []
video_descriptor = max_min_conv(os.path.join(path, video))
desc = np.hstack([desc, video_descriptor.ravel()])
np.savetxt('../results/video_descriptors/'+video, desc, delimiter=',')

Perform max-min pooling on the frame-level features

Full code is available at ->
https://github.com/srijandas07/video_convolution

Let’s try on Google CoLab!!!
https://colab.research.google.com/drive/1dw1lV19INti_x
eE_B15HK_hKfVA5VyDw#scrollTo=AbpsgVVABuTY

https://github.com/srijandas07/video_convolution
https://colab.research.google.com/drive/1dw1lV19INti_xeE_B15HK_hKfVA5VyDw#scrollTo=AbpsgVVABuTY

Disadvantages

• These video descriptors do not model temporal information and only
relies on the salient frame-level features.

• Then how should we model temporal information???

Time for a short break may be …….

Recurrent Neural Networks (RNNs)

• Humans don’t start their thinking from scratch every second. As you
read this essay, you understand each word based on your
understanding of previous words. You don’t throw everything away
and start thinking from scratch again.

• Traditional neural networks can’t do this, and it seems like a major
shortcoming. For example, imagine you want to classify what kind of
event is happening at every point in a movie. It’s unclear how a
traditional neural network could use its reasoning about previous
events in the film to inform later ones.

Recurrent Neural Networks (RNNs)

Recurrent neural networks address this issue. They are
networks with loops in them, allowing information to persist.

Outputs a value at time t

Input at time t

Neural Network

A recurrent neural network
can be thought of as
multiple copies of the
same network, each
passing a message to a
successor.

Recurrent Neural Networks (RNNs)

ℎ𝑡 = 𝑓𝑊(ℎ𝑡−1, 𝑥𝑡)

Some function with parameter W

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎℎ𝑡−1,𝑊ℎ𝑥𝑥𝑡)
A typical example

Recurrent Neural Networks (RNNs)

𝑊ℎ𝑥

𝑊ℎℎ

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎℎ𝑡−1,𝑊ℎ𝑥𝑥𝑡)

Concatenate

Recurrent Neural Networks (RNNs)

The clouds are in the

clouds are in the sky

Task: Predict the next word

The clouds are in the sky

Recurrent Neural Networks (RNNs)
Task: Predict the next word

I grew up in France… I speak fluent french

Not capable of learning
long-term dependencies
because of gradient
vanishing factor.

Recurrent Neural Networks (RNNs)

Long Short term Memory (LSTM)

Long Short term Memory (LSTM)

Key idea – The horizontal line
The cell state is kind of like a conveyor
belt. It runs straight down the entire
chain, with only some minor linear
interactions. It’s very easy for
information to just flow along it
unchanged.

Gates are a way to optionally let information
through. They are composed out of a sigmoid neural
net layer and a pointwise multiplication operation.

cell state

LSTM – How does it work?

Forget gate
The first step in our LSTM is to decide what
information we’re going to throw away from the
cell state.

LSTM – How does it work?

Input gate
The next step is to decide what new information
we’re going to store in the cell state.

Candidate vector which can be
added to the cell state

LSTM – How does it work?

Cell state
It’s now time to update the old cell

state, 𝐶𝑡−1, into the new cell state 𝐶𝑡.

LSTM – How does it work?

Output gate
Finally, we need to decide what we’re going to
output. This output will be based on our cell
state, but will be a filtered version.

RNN vs LSTM

𝑓𝑊 𝑓𝑊 𝑓𝑊
𝑓𝑊 𝑓𝑊 𝑓𝑊

RNN LSTM

Adding the
updates instead of
multiplying

At backprop, if we inject some gradients at the last time step, these + interaction are just gradient highways.
They will flow till the first time step.

For RNN, there is the problem of vanishing gradients, where the gradients die off while backpropagating through.

RNNs or LSTMs

Depth

time

Number of neurons (n) =2

Number of time steps = T

1 Layer RNN or LSTM
Size -> 2 x T

Input dimension – batch_size x T x #feature

Output dimension of last time step – batch_size x n

Types (Structural) of RNN

Vanilla mode of
processing without RNN,
from fixed-sized input to
fixed-sized output (e.g.
image classification)

Sequence output (e.g.
image captioning takes
an image and outputs
a sentence of words).

Sequence input (e.g.
sentiment analysis where a
given sentence is classified
as expressing positive or
negative sentiment).

Synced sequence input
and output (e.g. video
classification where we
wish to label each frame
of the video).

Implementing LSTMs

https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-lDpvxBeW

X, y
10, 20, 30 40
20, 30, 40 50
30, 40, 50 60

Let’s implement a single layer LSTM of 3 time steps for time forecasting problem.

Data Predict

X, y
70, 80, 90 ??

Time for a short break may be …….

https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-lDpvxBeW

Types (mechanism) of LSTMs

• Stacked LSTM – Stacking LSTMs layers

• Bi-directional LSTM – To model temporal information both forward and backward.

• CNN LSTM – To model temporal information on high level spatial features extracted from CNN

• ConvLSTM – The convolutional operation is embedded in each LSTM cell.

Stacked LSTM

Multiple hidden LSTM layers can be stacked
one on top of another in what is referred to
as a Stacked LSTM model.

Implementation
An LSTM layer requires a three-dimensional
input and LSTMs by default will produce a two-
dimensional output as an interpretation from
the end of the sequence.

We can address this by having the LSTM output
a value for each time step in the input data by
setting the return_sequences=True argument
on the layer. This allows us to have 3D output
from hidden LSTM layer as input to the next.

Let’s try it!
https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-
lDpvxBeW

https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-lDpvxBeW

Bi-directional LSTM

On some sequence prediction problems, it
can be beneficial to allow the LSTM model
to learn the input sequence both forward
and backwards and concatenate both
interpretations.

This is called a Bidirectional LSTM.

Implementation
We can implement a Bidirectional LSTM for
univariate time series forecasting by wrapping
the first hidden layer in a wrapper layer called
Bidirectional. Let’s try it!

https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-
lDpvxBeW

https://colab.research.google.com/drive/1vZ8jaj5pMlHNnjF4KkBWf_7-lDpvxBeW

CNN LSTM
A CNN model can be used in a
hybrid model with an LSTM backend
where the CNN is used to interpret
subsequences of input that together
are provided as a sequence to an
LSTM model to interpret. This hybrid
model is called a CNN-LSTM.

Let’s try it!
https://colab.research.google.com/drive/1HYChmw4fUfFSGXhNw2H_0INJOb
TAf3iy

X, y
10, 20, 30, 40 50
20, 30, 40, 50 60
30, 40, 50, 60 70
40, 50, 60, 70 80
50, 60, 70, 80 90

Data

Predict

X, y
60, 70, 80, 90 ??

https://colab.research.google.com/drive/1HYChmw4fUfFSGXhNw2H_0INJObTAf3iy

ConvLSTM
A type of LSTM related to the CNN-
LSTM is the ConvLSTM, where the
convolutional reading of input is
built directly into each LSTM unit.
The ConvLSTM was developed for
reading two-dimensional spatial-
temporal data.

Let’s try it!
https://colab.research.google.com/drive/1HYChmw4fUfFSGXhNw2H_0INJOb
TAf3iy

X, y
10, 20, 30, 40 50
20, 30, 40, 50 60
30, 40, 50, 60 70
40, 50, 60, 70 80
50, 60, 70, 80 90

Data

Predict

X, y
60, 70, 80, 90 ??

https://colab.research.google.com/drive/1HYChmw4fUfFSGXhNw2H_0INJObTAf3iy

Disadvantages

• RNNs operate on spatial vectors fed to it. Hence, they do not capture
spatio-temporal information. (will be discussed in detail later)

• Not much efficient on small datasets (pre-training LSTMs is not a
good idea as they change the statistics learned by the gates).

• Works only when the data is highly informative in terms of temporal
variation. (For example- fails to recognize low motion actions in a
video)

• Don’t Forget to submit your
Assignment before 2/Feb/2020,
23:55 PM. (Assignment 1)

• The link for the assignment is
https://drive.google.com/file/d/1c4
z9lAXdkqf1Ak7SHPtAWYwpg0hiVCQ
8/view?usp=sharing

Assignment Pending !!!

https://drive.google.com/file/d/1c4z9lAXdkqf1Ak7SHPtAWYwpg0hiVCQ8/view?usp=sharing

References

• https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• https://machinelearningmastery.com/how-to-develop-lstm-models-
for-time-series-forecasting/

• B457/I400: Intro to Computer Vision (Spring 2018) (Michael Ryoo)

• CS231n Winter 2016: Lecture 10: Recurrent Neural Networks, Image
Captioning, LSTM (Andrej Karpathy)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
http://homes.soic.indiana.edu/classes/spring2018/csci/b457-mryoo/

Next Week ….

• Introduction to Action Recognition in videos

• 3D Convolutional Networks

• Small Project on Action Recognition
To compare frame-level aggregation techniques, different LSTM structures and
3D convolutional networks on a publicly available human action dataset.

e-mail: srijan.das@inria.fr

