
Lecture 2: Deeper Neural Network
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Objective 

In the second lecture, you will see 

● How to deepen your neural network to learn more complex functions

● Several techniques to fasten your learning process

● The most popular artificial network in computer vision community -

Convolutional neural network
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Outline of Lecture 2

● Layers in deeper networks

● Activation functions

● Initialization

● Normalization

● Convolution

● Pooling

● Convolutional neural network
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What is “Deep Learning”?

The term, Deep Learning, refers to training neural networks. Shallow neural 

networks do not have the enough capacity to deal with high level vision problems. 

Thus, people usually combine many neurons to build a deep neural network.

The more deeper you go, the more complex features are extracted.
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Traditional machine learning 

methods usually work on 

hand-crafted features 

(texture, geometry, intensity 

features ...).

Deep learning methods 

combine hand designed 

feature extraction and 

classification steps.

Difference between machine learning and deep learning

This is also called “end-to-end model”. 

5



Deeper neural network

● Input layer: receives raw inputs and give low level features (lines, conners, ...)

● Hidden layers: transform and combine low level features into high level features 

(semantic concepts)

● Output layer: use the high level features to predict results
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Deeper neural network

x1

x2

x3

Parameters get updated layer by layer via back-propagation.
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Activation Functions

We have seen that sigmoid function can be used as activation function.

In the practice, sigmoid function is always only used in the output layer to 

transform the output into probability range 0~1.
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Activation Functions

There are other well used activation function. 

1. Tanh

Range from -1 to 1
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Activation Functions

2. ReLU (Rectified Linear Unit)

Range from 0 to infinity, which keeps high activation.
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Activation Functions

3. LeakyReLU
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Parameter Initialization 

If you initialize all the parameters as 0 in a neural network, it will not 

work, because all the neurons in a same layer will give same outputs and 

get updated in the same way. But we desire different neuron will get 

different features. One solution is random initialization.

x1

x2

x3
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Parameter Initialization 

There are some popular initialization methods.

1. Normal initialization

Initialize parameters with values drawn from the normal distribution

1. Xavier normal initialization [1]

Initialize parameters with values sampled from                     where

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. 

(2010)
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Parameter Initialization 

3. Kaiming normal initialization[1]

Initialize parameters with values sampled from                     where

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. 

et al. (2015)
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Input Normalization

Before training your neural network, conducting a normalization on your inputs will 

speed up your training. Input normalization contains two steps:

1. Mean subtraction: 

2. Variance normalization: 

Find more details in CS231 (http://cs231n.github.io/neural-networks-2/)
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Batch Normalization

During the training, you can also do a normalization on the activations. One of the 

most used technique is Batch Normalization [1], which conducts a normalization 

over channels within a mini batch. 

Because it’s a differentiable operation, we usually insert the BatchNorm layer 

immediately after activations, and before non-linearities. 

[1]. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift -

Sergey Ioffe, Christian Szegedy 2015
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Other types of activation normalization

1. Batch Norm 

2. Layer Norm

3. Instance Norm

4. Group Norm ...
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Convolutional Neural Network
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Fully-connected layers

From previous slides, we can see fully-connected (FC) layers connect every neuron in one 

layer to every neuron in the previous layer.

Cat

Not cat
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Drawback of fully-connected layer

N

N
x.shape=(3N*N,1) w.shape=(3N*N,3)

● For low-quality image, e.g. N=100, w.shape=(30K,3), it’s ok. 

● But for high-quality image, e.g. N=1K, w.shape=(3M,3), much more 

computational resources will be needed.
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Convolution

Instead of connecting to every neuron in the previous 

layer, a neuron in the convolutional layer only 

connects to neurons within a small region.

Advantages:

1. Spatial coherence is kept.

2. Lower computational complexity.
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Convolution

We don’t have to flatten the input, so 

the spatial coherence is kept.

A kernel (also called filter) slides 

across the input feature map. At each 

location, the product between each 

element of the kernel and the input 

element is computed and summed up 

as the output in the current location.

Input kernel output

22



3D volumes of neurons

A convolutional layer has neurons arranged in 3 dimensions: 

● Height

● Width

● Depth (also called channel)

The initial depth of a RGB image is 3. For example, in CIFAR-10, images are of 

size 32*32*3 (32 wide, 32 high, 3 color channels). 

In this case, the kernel has to be 3-dimensional. It will slide across the height, 

width and depth of the input feature map.
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Spatial arrangement 

To properly use a convolutional layer, several hyperparameters need to be set.

1. Output depth

2. Stride

3. Padding

4. Kernel size

5. Dilation
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Output depth = Number of kernels

Previous procedure can be repeated using 

different kernels to form as many output feature 

maps as desired.

Different neurons along the depth dimension 

may activate in presence of various oriented 

edges, or blobs of color.

The final feature map will be the stack of 

outputs of different kernels.
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Stride

Stride is the distance between two consecutive 

positions of the kernel.

In the example, stride is set to 2. 

Strides constitute a form of subsampling. 
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Padding

The most used padding in the neural network is 

zero padding, which refers to number of zeros 

concatenated at the beginning and at the end of an 

axis.

Padding helps to maintain spatial size of a feature 

map.
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Kernel size

Size of the convolving kernel.

In the example, kernel size is set to 4.
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Dilation

Dilated convolutions “inflate” the kernel by inserting 

spaces between the kernel elements.

The dilation hyperparameter defines the space 

between kernel elements.
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Spatial arrangement

After setting previous hyperparameters, we will have the output dimensions:  
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Receptive field

The receptive field in Convolutional Neural Networks (CNN) is the region of the 

input space that affects a particular unit of the network.

Previous hyperparameters can directly affect the receptive field in one 

convolutional layer. When you stack more convolutional layers into a deep 

convolutional neural network, the receptive field in last layers becomes bigger. 
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Pooling

Besides convolutional layer, pooling operation also plays an important role in 

neural networks.

Pooling operations reduce the size of feature maps by using some function to 

summarize subregions, such as taking the average or the maximum value.
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Pooling

Pooling shares some same hyperparameters as 

convolution.

1. Stride

2. Padding

3. Kernel size

4. Dilation

An example of average/max pooling, where 

stride=2, kernel_size=2.
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CNN example

LeNet-5 [1] is proposed by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick 

Haffner in 1990’s for handwritten and machine-printed character recognition.

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings 

of the IEEE, 86(11):2278-2324, November 1998.
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LeNet-5

In LeNet-5, subsampling operation corresponds to an average pooling. Basically, 

LeNet-5 is a combination of convolution, pooling and fully-connected layers.
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LeNet-5

Summary of LeNet-5 Architecture

The original gaussian connection is defined as fc layer + MSE loss. Softmax has mostly replaced it 

nowadays.
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Multi-class classification

0 (not cat)

1 (cat)

sigmoid
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● Binary classification

● Multi-class classification

Sigmoid is not suitable for multi-class.
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Softmax function

When you have an n-dimensional output of your network, the Softmax function 

rescales them so that the elements of the n-dimensional output lie in the range 

[0,1] and sum to 1.

38



Conclusion

1. We usually need high level features extracted by deep neural networks to 

solve complex computer vision tasks.

2. Parameter initialization and normalization are helpful to fasten your training.

3. Convolutions are able to extract local features from a patch and keep spatial 

correspondence, which are more suitable to vision tasks. 
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Practice-2

Digit recognition with LeNet-5. 

In this practice, you don’t have to worry about gradients for back-propagation. You 

will need to 

1. get familiar with Pytorch

2. implement LeNet-5 under pytorch

3. train your network on MNIST dataset    
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