
Lecture 2: Deeper Neural Network

1

Objective

In the second lecture, you will see

● How to deepen your neural network to learn more complex functions

● Several techniques to fasten your learning process

● The most popular artificial network in computer vision community -

Convolutional neural network

2

Outline of Lecture 2

● Layers in deeper networks

● Activation functions

● Initialization

● Normalization

● Convolution

● Pooling

● Convolutional neural network

3

What is “Deep Learning”?

The term, Deep Learning, refers to training neural networks. Shallow neural

networks do not have the enough capacity to deal with high level vision problems.

Thus, people usually combine many neurons to build a deep neural network.

The more deeper you go, the more complex features are extracted.

4

Traditional machine learning

methods usually work on

hand-crafted features

(texture, geometry, intensity

features ...).

Deep learning methods

combine hand designed

feature extraction and

classification steps.

Difference between machine learning and deep learning

This is also called “end-to-end model”.

5

Deeper neural network

● Input layer: receives raw inputs and give low level features (lines, conners, ...)

● Hidden layers: transform and combine low level features into high level features

(semantic concepts)

● Output layer: use the high level features to predict results

6

Deeper neural network

x1

x2

x3

Parameters get updated layer by layer via back-propagation.
7

Activation Functions

We have seen that sigmoid function can be used as activation function.

In the practice, sigmoid function is always only used in the output layer to

transform the output into probability range 0~1.

8

Activation Functions

There are other well used activation function.

1. Tanh

Range from -1 to 1

9

Activation Functions

2. ReLU (Rectified Linear Unit)

Range from 0 to infinity, which keeps high activation.

10

Activation Functions

3. LeakyReLU

11

Parameter Initialization

If you initialize all the parameters as 0 in a neural network, it will not

work, because all the neurons in a same layer will give same outputs and

get updated in the same way. But we desire different neuron will get

different features. One solution is random initialization.

x1

x2

x3

12

Parameter Initialization

There are some popular initialization methods.

1. Normal initialization

Initialize parameters with values drawn from the normal distribution

1. Xavier normal initialization [1]

Initialize parameters with values sampled from where

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y.

(2010)

13

Parameter Initialization

3. Kaiming normal initialization[1]

Initialize parameters with values sampled from where

fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor

[1]. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K.

et al. (2015)

14

Input Normalization

Before training your neural network, conducting a normalization on your inputs will

speed up your training. Input normalization contains two steps:

1. Mean subtraction:

2. Variance normalization:

Find more details in CS231 (http://cs231n.github.io/neural-networks-2/)
15

http://cs231n.github.io/neural-networks-2/

Batch Normalization

During the training, you can also do a normalization on the activations. One of the

most used technique is Batch Normalization [1], which conducts a normalization

over channels within a mini batch.

Because it’s a differentiable operation, we usually insert the BatchNorm layer

immediately after activations, and before non-linearities.

[1]. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift -

Sergey Ioffe, Christian Szegedy 2015

16

Other types of activation normalization

1. Batch Norm

2. Layer Norm

3. Instance Norm

4. Group Norm ...

17

Convolutional Neural Network

18

Fully-connected layers

From previous slides, we can see fully-connected (FC) layers connect every neuron in one

layer to every neuron in the previous layer.

Cat

Not cat

19

Drawback of fully-connected layer

N

N
x.shape=(3N*N,1) w.shape=(3N*N,3)

● For low-quality image, e.g. N=100, w.shape=(30K,3), it’s ok.

● But for high-quality image, e.g. N=1K, w.shape=(3M,3), much more

computational resources will be needed.

20

Convolution

Instead of connecting to every neuron in the previous

layer, a neuron in the convolutional layer only

connects to neurons within a small region.

Advantages:

1. Spatial coherence is kept.

2. Lower computational complexity.

21

Convolution

We don’t have to flatten the input, so

the spatial coherence is kept.

A kernel (also called filter) slides

across the input feature map. At each

location, the product between each

element of the kernel and the input

element is computed and summed up

as the output in the current location.

Input kernel output

22

3D volumes of neurons

A convolutional layer has neurons arranged in 3 dimensions:

● Height

● Width

● Depth (also called channel)

The initial depth of a RGB image is 3. For example, in CIFAR-10, images are of

size 32*32*3 (32 wide, 32 high, 3 color channels).

In this case, the kernel has to be 3-dimensional. It will slide across the height,

width and depth of the input feature map.

23

Spatial arrangement

To properly use a convolutional layer, several hyperparameters need to be set.

1. Output depth

2. Stride

3. Padding

4. Kernel size

5. Dilation

24

Output depth = Number of kernels

Previous procedure can be repeated using

different kernels to form as many output feature

maps as desired.

Different neurons along the depth dimension

may activate in presence of various oriented

edges, or blobs of color.

The final feature map will be the stack of

outputs of different kernels.

25

Stride

Stride is the distance between two consecutive

positions of the kernel.

In the example, stride is set to 2.

Strides constitute a form of subsampling.

26

Padding

The most used padding in the neural network is

zero padding, which refers to number of zeros

concatenated at the beginning and at the end of an

axis.

Padding helps to maintain spatial size of a feature

map.

27

Kernel size

Size of the convolving kernel.

In the example, kernel size is set to 4.

28

Dilation

Dilated convolutions “inflate” the kernel by inserting

spaces between the kernel elements.

The dilation hyperparameter defines the space

between kernel elements.

29

Spatial arrangement

After setting previous hyperparameters, we will have the output dimensions:

30

Receptive field

The receptive field in Convolutional Neural Networks (CNN) is the region of the

input space that affects a particular unit of the network.

Previous hyperparameters can directly affect the receptive field in one

convolutional layer. When you stack more convolutional layers into a deep

convolutional neural network, the receptive field in last layers becomes bigger.

31

Pooling

Besides convolutional layer, pooling operation also plays an important role in

neural networks.

Pooling operations reduce the size of feature maps by using some function to

summarize subregions, such as taking the average or the maximum value.

32

Pooling

Pooling shares some same hyperparameters as

convolution.

1. Stride

2. Padding

3. Kernel size

4. Dilation

An example of average/max pooling, where

stride=2, kernel_size=2.

33

CNN example

LeNet-5 [1] is proposed by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick

Haffner in 1990’s for handwritten and machine-printed character recognition.

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings

of the IEEE, 86(11):2278-2324, November 1998.

0

1

2

3

4

5

6

7

8

9

34

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

LeNet-5

In LeNet-5, subsampling operation corresponds to an average pooling. Basically,

LeNet-5 is a combination of convolution, pooling and fully-connected layers.

35

LeNet-5

Summary of LeNet-5 Architecture

The original gaussian connection is defined as fc layer + MSE loss. Softmax has mostly replaced it

nowadays.

36

Multi-class classification

0 (not cat)

1 (cat)

sigmoid

0

1

2

3

4

5

6

7

8

9

● Binary classification

● Multi-class classification

Sigmoid is not suitable for multi-class.

37

Softmax function

When you have an n-dimensional output of your network, the Softmax function

rescales them so that the elements of the n-dimensional output lie in the range

[0,1] and sum to 1.

38

Conclusion

1. We usually need high level features extracted by deep neural networks to

solve complex computer vision tasks.

2. Parameter initialization and normalization are helpful to fasten your training.

3. Convolutions are able to extract local features from a patch and keep spatial

correspondence, which are more suitable to vision tasks.

39

Practice-2

Digit recognition with LeNet-5.

In this practice, you don’t have to worry about gradients for back-propagation. You

will need to

1. get familiar with Pytorch

2. implement LeNet-5 under pytorch

3. train your network on MNIST dataset

40

