UNIVERSITÉ : Corá

VIDEO Classification

Snehashis MAJHI

Email: snehashis.majhi@inria.fr

Ph.D. Candidate @STARS Team INRIA

Collaboration with TOYOTA Motor Europe

TABLE OF CONTENT

- **Introduction to Video**
- **Real-World Applications of Video Analysis**
- **Image Vs. Video Classification**
- **Classical Video Classification Techniques**
 - Classical Image Models (With 2D CNN)
 - **Classical Image Models With Temporal Models (Like RNN, LSTM, TCN)**
 - Classical Video Models (With 3DCNN)

Video ::

- Formally, a **video is a 3D signal** with:
 - Spatial Coordinates: x, y
 - Temporal Coordinates: t

If we fix 't', we obtain an image (a.k.a frame). So video can be seen as a sequence of Images/Frames.

Real-world Applications ::

Data:

flick^{~5K} image uploads every min.

since 60's

every day Broadcast Yoursel

~30M surveillance cameras in US => ~700K video hours/day

And even more with future wearable devices

TV-channels recorded

>34K hours of video upload

Real-world Applications ::

Applications:

First appearance of N. Sarkozy on TV

Sociology research: Influence of character smoking in movies

Where is my cat?

Predicting crowd behavior Counting people

Education: How do I make a pizza?

Motion capture and animation

Real-world Applications ::

Amazon go

Assistive Robot

Image Vs. Video Classification ::

Video Classification Techniques :

Frame-level aggregation of 2D Convolutional Networks

a. Aggregating the frame-level information using pooling b. Temporal information is lost

2. Two-Stream 2D Convolutional Networks

- a. Perform convolution separately on both spatial and temporal modalities
- b. Complexity involved in obtaining multiple modalities

3. Recurrent Neural Networks and Temporal Convolution Networks

a. Model the temporal evolution of the frames using gating functions and 1D convolutional kernels respectively

b. Do not handle space-time simultaneously

4. 3D Convolutional Networks

ution of Research

a. Perform convolution across space-time simultaneously

b. Too rigid to capture subtle information

1. Frame-Level Aggregation of 2D CNN ::

How to Extract Frame-Level Features?

Types of Frame-level Feature Aggregation

Slow Fusion Early Fusion

Observation:

• These frame-level pooling mechanisms provide a video descriptor which encourages the salient frames in the video.

• The video descriptors for each videos are treated as data samples for a classifier (like SVM) for classifying the videos.

 These video descriptors do not model temporal information and only relies on the salient frame-level features.

<u>Then how should we model temporal information???</u>

2. Two Stream 2D CNN ::

- Idea: To combine both Appearance and motion representations.
- **Previous work:** Failed because of the difficulty in learning implicite motion.

	Spatial stream ConvNe						
single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	
	Temporal stream Conv						
multi-frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	
		The second sec	Image: Single frameImage: Single frameImage: Single frameImage: Single frameImage: Single frameSingle frame	Image: State of the state of	Conv1 Tx7x96 stride 2 norm. pool 2x2Conv2 Stride 2 norm. pool 2x2Conv2 Stride 2 norm. pool 2x2Conv3 Stride 2 norm. pool 2x2Conv3 Stride 2 norm. pool 2x2Conv3 Stride 1Conv4 Stride 1Image: Stride 1Image: Stride 2 norm. pool 2x2Image: Stride 2 norm. norm 2Image: Stride 2 norm.Image: Stride 2 norm. norm 2Image: Stride 2 norm. norm 2Image: Stride 2 norm.Image: Stride 2 norm.Image	Conv1 Tx7x96 stride 2 norm. pol 2x2Conv2 Stride 2 norm. pol 2x2Conv2 Stride 2 norm. pol 2x2Conv3 Stride 2 norm. pol 2x2Conv3 Stride 1Conv4 Stride 1Conv5 Stride 1single frameImage: Conv1 Dol 2x2Conv2 Stride 1Image: Conv3 Stride 1Conv4 Stride 1Image: Conv5 Stride 1Stride 1Temporal Stride 2 Norm. Pool 2x2Image: Conv2 Stride 2 Norm. Pool 2x2Image: Conv3 Stride 2 Stride 2Conv4 Stride 1Image: Conv5 Stride 2 Stride 2Image: Conv1 Norm. Pool 2x2Conv2 Stride 2 Pool 2x2Image: Conv3 Stride 2 Stride 2Conv3 Stride 1Image: Conv5 Stride 1Image: Conv2 Norm. Pool 2x2Conv2 Stride 2 Pool 2x2Image: Conv3 Stride 2 Stride 1Image: Conv4 Stride 1Image: Conv5 Stride 1Image: Conv3 Stride 2 Pool 2x2Conv3 Stride 1Image: Conv4 Stride 1Image: Conv5 Stride 1Image: Conv3 Stride 1Conv4 Stride 1Image: Conv3 Stride 1Image: Conv5 Stride 1Image: Conv3 Stride 1Conv4 Stride 1Image: Conv3 Stride 1Image: Conv3 Stride 1Image:	Conv1 Tx7x96 single frameConv2 Tx7x96 stride 2 norm. pol 2x2Conv2 Stx5256 norm. pol 2x2Conv3 Stx526 stride 2 norm. pol 2x2Conv3 Stx526 stride 1Conv5 Stx3x512 stride 1full6 4096 dropoutsingle frameConv1 Tx7x96 stride 2 norm. pol 2x2Conv3 Stride 2 norm. pol 2x2Conv3 Stride 1Conv4 Stride 1Sconv5 Stride 1full6 4096 dropoutTemporal stream Conv1 Tx7x96 stride 2 norm. pol 2x2Conv2 Stride 2 pol 2x2Conv3 Stride 2 Stride 1Conv4 Stride 1Conv5 Stride 1full6 4096 dropout

- Separate the *Motion (multi-frame)* from *static appearance (single frame)*.
- The appearance and motion stream are not aligned.
- **Optical flow can only capture shirt tern temporal dynamics**

3. Recurrent Neural Network::

- RNNs address the issue of temporal dependency modeling in videos.
- They are networks with loops in them, allowing information to persist.
- A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.

Outputs a value at time t

Outputs a value at time t

3. Recurrent Neural Network::

Some function with parameter W

3. Single RNN Unit::

3. Single RNN Unit::

3. Limitation of RNN ::

Not capable of learning long-term dependencies because of gradient vanishing factor.

3. Long-short Term Memory (LSTM)::

Two major characteristics of LSTM:

• **Information Persistence :** Done using Cell States. These are like conveyor belts that runs across time through which information flows.

• **Prioritizing Information :** This means which deciding information is useful for future and which are useless and can be erased. Done using gates similar to digital logic, but are controlled by neural networks.

3. Long-short Term Memory (LSTM)::

3. Different Modules of LSTM:

Four Major modules

1.Cell State

2. Forget Gate

4.Output Gate

3.Input Gate

3. Working of LSTM::

Input Gate : This gate selects which of the new information is useful.

$$(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\operatorname{anh}(W_C \cdot [h_{t-1}, x_t] + b_C)$$

3. Working of LSTM::

Forget Gate :

 Gates are a way to optionally let information through. They are composed out of a sigmoid neural net layer and a pointwise multiplication operation.

 The first step in the LSTM is to decide what information we're going to throw away from the cell state.

$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

3. Working of LSTM::

Cell State :

• It's now time to update the old cell state, C_{t-1}, into the new cell state C_t

 The horizontal line, the cell state is kind of like a conveyor belt. It runs straight down the entire chain, with only some minor linear interactions. It's very easy for information to just flow along it unchanged.

3. Working of LSTM:

Output Gate :

• Finally, we need to decide what we're going to output. This output will be based on our cell state, but will be a filtered version.

$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $h_t = o_t * \tanh(C_t)$

3. Types of LSTM::

one to one

Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g. image classification)

one to many

From fixed-sized input to Sequence output (e.g. image captioning: takes an image as input and outputs a sentence of words)

many to one

From Sequence input to fixed-sized output (e.g. Video Classification: takes sequence of frames/images as input and outputs a class label)

many to many

From Sequence input to Sequence output (e.g. Video Event Detection: takes sequence of frames/images as input and outputs a sequence event labels for each frame)

3. Temporal Dependency modeling with LSTM::

Action Class

3. Drawback of RNN/LSTM:

• RNN/LSTM are sequential and can not be parallelized.

 RNNs/LSTMs can only capture strong temporal change of the image level features and the subtle features are ignored.

• Vanishing gradient issue (Can not remember long term temporal) information).

• Not much efficient on small datasets (pre-training is not a good idea as they change the statistics learned by the gates).

3. Temporal Convolution Network (TCN)::

- TCN encodes temporal dependencies by learning 1D convolution filters across temporal dimension.
- Inputs and outputs a 3-dimensional tensors.
 - Input shape: (Batch_size, Temporal_length, Feature_size) and
 - output shape: (Batch_size, Temporal_length, Output_size).
- TCN can be causal (no information leakage from the future to the past)
- TCN can use a very-deep network with the help of residual connections, and it can look very far into the past to predict with the help of dilated convolutions

3. Temporal Convolution Network (TCN)::

 TCN can follow Encoder-Decoder design to model the dependency among temporally neighbour and distant feature maps.

(TCN):: **Action Class**

3. TCN Vs. LSTM:

• Parallelism

• Flexible Receptive Field Size

• Stable Gradient

• Low Memory Requirement

• Knowledge Transfer between Domain can be possible

• NO Parallelism

• Fixed Receptive Field Size

• Vanishing Gradient Problem

 High Memory Requirement as it maintain Hidden State

Not Possible to Knowledge Transfer between
 Domain(Pre-training LSTM is not a good Idea)

4.3D Convolutional Neural **Networks:**

• 3DCNN uses three dimensional convolution filters to capture spatio-temporal features in a short-snippet of video.

4.3D Convolutional Neural **Networks:**

Input clip & 3D filters

Architecture is a temporally extended version of ImageNet-design (e.g, VGG16, ResNet, Inception, ShuffleNet, MobileNet ...)

4. C3D Architecture::

Η

′d<L

W

- C3D contains 3 x 3 x 3 convolutional kernels followed by 2 x 2 x 2 pooling at each layer.
- The network architecture contains 8 convolutional, 5 pooling layers and 2 fully connected layers.
- It considers 16-frames snippets to extract spatio temporal feature representation.

C3D is Temporally extended version of VGG16

output

4. I3D Architecture::

- I3D is designed by replacing the 2D kernels of GoogleNet by 3D kernels.
- It is extended by inflation from the spatial domain.
- Unlike C3D it allows branching in the network architecture.
- Two major component of I3D:
 - **Bottleneck Block** Ο
 - **Inception Block** Ο
- It considers 16/64-frames clip for spatio-temporal feature extraction.

I3D is a 3DCNN version of GoogleNet (InceptionV1)

4. Bottleneck Block ::

4. Inception Block ::

(a) Inception module, naïve version

4. I3D Network ::

Inflated Inception-V1

Inception Module (Inc.)

4. I3D Network ::

Limitations of 3DCNN

- Rigid spatio-temporal Kernels limiting them to capture subtle motion.
- No specific operation for discriminative feature representations.

Inception Module (Inc.)

subtle motion. ntations.

4. R(2+1)D Architecture::

R(2+1)D factorizes the 3D
 convolutional filters into separate 2D
 spatial and 1D temporal convolution.

- It has almond double additional nonlinearity compared to standard 3D blocks with same parameters
 - Thus renders the model capable
 of representing more complex
 representation

• Easier to optimize.

a)

Summary ::

Classical Image Models with Temporal Models

Upcoming Agenda

- **Introduction to HAR: Human Action Recognition**
- **Multiple Modalities in HAR**
- **Attentions in HAR (Spatial, Temporal, Self Attention)**
- **Recent Popular Techniques**
 - Transformer Models (ViT, ViviT, Swin, VideoSwin)
 - Self-supervised Models (MAE, VideoMAE, DiT)
 - Vision and Language Models (CLIP)

Thank you for your attention!

