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Video :;

e Formally, a video is a 3D signal with:

o Spatial Coordinates: x, y

o Temporal Coordinates: t

e [fwe fix't, we obtain an image (a.k.a
frame). So video can be seen as a

sequence of Images/Frames.

e I (XSYIT)




Real-world Applications ::
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Data:
=11:1[® Motion Gallery

~2.5 Billion new images /
month

TV-channels recorded

Ry ~ since 60’s

>34K hours of video upload
every day

- + 5K image uploads ] |
fIICkr every min. You

~30M surveillance cameras in US
=> ~700K video hours/day

And even more with future
wearable devices




Real-world Applications ::

Applications:

First appearance of N. Sociology research: Education: How do |
Sarkozy on TV Influence of character make a pizza?
smoking in movies

-

Predicting crowd behavior
Counting people

Where is my cat?

Motion capture and animation



Real-world Applications ::

Waiter Robot!



Image Vs. Video
Classification :;
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Video Classification Techniques ::
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1. Frame-level aggregation of 2D Convolutional Networks
a. Aggregating the frame-level iInformation using pooling
b. Temporal information is lost
2. Two-Stream 2D Convolutional Networks
a. Perform convolution separately on both spatial and temporal
modalities
b. Complexity involved in obtaining multiple modalities
3. Recurrent Neural Networks and Temporal Convolution Networks
a. Model the temporal evolution of the frames using gating
functions and 1D convolutional kernels respectively
b. Do not handle space-time simultaneously
4. 3D Convolutional Networks
a. Perform convolution across space-time simultaneously
b. Too rigid to capture subtle information



1. Frame-Level Aggregation of 2D
CNN ::

— Feature-Aggregation

Video-level features (F)
Frame-level Features

I 2D CNNs — VGG, [ '\;ai P°°"”j§.
ResNet, Inception = max(f;)

7 Min Pooling

F = min(f;)

Image Classifier -
Mean Pooling
t
/ i=1fi

t
Feature Extraction

r. [

e —

Max - Min Pooling
F = concat(max(f;)(min(f;))




How to Extract Frame-Level
Features?

—> Pre-trained on ImageNet

224 x 224 x 3 224 x 224 x 64

J Extract feature from
12 x 128

112 x 1 Fully-connected layer
%%56"256 " 7x7x512 (FC-2)
£ ‘ 28x'28XJ'121dx14x§12

. 1x1x4096 1 x1x 1000
=

Image Classifier

— convolution+ RelU

4
“—{ max pooling
fully nected + RelU
softmax
A




Types of Frame-level Feature
Aggregation —
Single Frame Late Fusion Early Fusion  Slow Fusion
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Observation:

e These frame-level pooling mechanisms provide a video descriptor
which encourages the salient frames in the video.

e The video descriptors for each videos are treated as data samples
for a classifier (like SVM) for classitying the videos.

e These video descriptors do not model temporal information and
only relies on the salient frame-level features.

e Then how should we model temporal iInformation???




2. Two Stream 2D CNN ::

e Idea: To combine both Appearance and motion representations.

e Previous work: Failed because of the difficulty in learning implicite motion.

input
video

e Separate the Motion (multi-frame) from static appearance (single frame).

Spatial stream ConvNet

. optical flow

conv1 || conv2 || conv3 || conv4 || conv) full full7 [[softmax
7X7X96 ||5x5x256 [| 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2
Temporal stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 full6 full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

. norm. || pool 2x2 pool 2x2

multi-frame pool 2x2

e The appearance and motion stream are not aligned.

e Optical flow can only capture shirt tern temporal dynamics




3. Recurrent Neural Network::

e RNNs address the 1ssue of Outputs a
temporal dependency modeling in value at time t -

videos.
e They are networks with loops 1n I
them, allowing information to I
Neural

A

persist.

® A recurrent neural network can be Network -

thought of as multiple copies of

the same network, each passing a
Outputs a value

message to a Successor. at time 1 -




3. Recurrent Neural Network::

(h)
K=en

¢

hy = fw(ht—b Xt)

l

A typical example

el

Some function with parameter W

;
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he = tanh(Wpnhe—1, WhaXt)




3. Single RNN Unit::

hy = tanh(Whphe—1, WhxX¢)




3. Single RNN Unit::

hy = tanh(Whphe—1, WhxX¢)




3. Limitation of RNN ::

Gt ®

A A A A A A
Not capable of learning long-term dependencies because of gradient vanishing
factor.




3. Long-short Term Memory
(LSTM)::

Two major characteristics of LSTM:

e Information Persistence : Done using Cell States. These are like conveyor belts that runs
across time through which information flows.

e Prioritizing Information : This means which deciding information 1s useful for future and
which are useless and can be erased. Done using gates similar to digital logic, but are
controlled by neural networks.



3. Long-short Term Memory
(LSTM)::




3. Different Modules of LSTM::

Four Major modules

1.Cell State 2. Forget Gate 3.Input Gate

[t
hi—1
s

4.0utput Gate




3. Working of LSTM::

Input Gate : This gate selects which of the new information is useful.

| It =0 (Wz"[ht—laxt] T bl)
P@L Cy = tanh(We-[he—1, 2] + be)




3. Working of LSTM

Forget Gate : ®

e (Gates are a way to optionally let
information through. They are
composed out of a sigmoid neural
net layer and a pointwise
multiplication operation.

e The first step in the LSTM is to f fi :O(Wf.[ht_l,g;t] + bf)
decide what information we're
going to throw away from the cell
state.



3. Working of LSTM::

Cell State :

e [t’s now time to update the old cell

state, C_,, into the new cell state C,
e The horizontal line, the cell state 1s Ci-1 8 2 C't
kind of like a conveyor belt. It runs
straight down the entire chain, with ftT ztrbc§ Cy=fixCiy +i,xCy

only some minor linear interactions.
It’s very easy for information to just
flow along i1t unchanged.



3. Working of LSTM::

Output Gate :

e Finally, we need to decide what we’re going to output. This output will be based on
our cell state, but will be a filtered version.

or =0 (W, [hi—1,2¢] + bo)
hy = o % tanh (C})




3. Types of LSTM::

one to one

one to many

many to one

many to many

Vanilla mode of
processing without
RNN, from fixed-sized
input to fixed-sized
output (e.g. image
classification)

From fixed-sized input to
Sequence output (e.g.
image captioning: takes
an image as input and
outputs a sentence of
words)

From Sequence input to
fixed-sized output (e.g.
Video Classification: takes
sequence of
frames/images as input
and outputs a class label)

From Sequence input to
Sequence output (e.g. Video
Event Detection: takes
sequence of frames/images as
input and outputs a sequence
event labels for each frame)




3. Temporal Dependency modell}fg oo
with LSTM:: |

Action Class

B - -EB
Rl




Drawback of RNN/LSTM::

RNN/LSTM are sequential and can not be parallelized.

RNNs/LSTMs can only capture strong temporal change of the image level
features and the subtle features are ignored.

Vanishing gradient issue (Can not remember long term temporal
information).

Not much efficient on small datasets (pre-training is not a good idea as they
change the statistics learned by the gates).



3. Temporal Convolution Network
(TCN)::

e TCN encodes temporal dependencies by learning 1D
convolution filters across temporal dimension.

e Inputs and outputs a 3-dimensional tensors.

o Input shape: (Batch_size, Temporal_length, Feature_size) and
o output shape: (Batch_size, Temporal_length, Output_size).

e TCN can be causal (no information leakage from the future to
the past)

dot product

input tensor

e TCN can use a very-deep network with the help of residual e ———
connections, and it can look very far into the past to predict l e ,
with the help of dilated convolutions




3. Temporal Convolution Network..

(TCN)::

e TCN can follow Encoder-Decoder design
to model the dependency among
temporally neighbour and distant feature
maps.

00000000000 OGOOO




3. Temporal Convolution Network\
(TC N) Action Class

l Softmax I

T
ST
T

[ Segment max pooling I

T

G e e L




3. TCN Vs. LSTM:;

® Parallelism e NO Parallelism

e Flexible Receptive Field Size e Fixed Receptive Field Size

e Stable Gradient e Vanishing Gradient Problem

e High Memory Requirement as it maintain Hidden
State

e [Low Memory Requirement

e Knowledge Transfer between

Domain can be possible e Not Possible to Knowledge Transter between

Domain(Pre-training LSTM 1s not a good Idea)
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4. 3D Convolutional Neural
Networks::

e 3DCNN uses three dimensional convolution filters to capture

spatio-temporal features in a short-snippet of video.

3D Convolution (XYT)

Input: [,,, ]
Output: [, , , #Kernel]

2D Convolution (XY)

L]

i1t ,‘ 1
l!. i

e
gtun;%;’i'.'
Wy L

Input: [,, |

Output: [, , #Kernel]

Kernel move in H,W direction Hyy = Bottemdingdidtionenelsize DL 4y ] =] |
Striae H ” ‘d<L
_ Win+2xpadding—dilation x (kernel_size—1)—1 . output
Wout = stride +1 w
H;,+2xpadding—dilationx (kernel_size—1)—1 BT
H,,; = i el ’“tzf’; (kemel siee-1)~1 1 4 : T +2xpadding - dilation x kernel -1 -1 1
stride = . +
“ stride

Win+2xpadding—dilation x (kernel_size—1)—1

stride




4. 3D Convolutional Neural

Networks::
nput clip & 1) flters 4D tensors of shape ' x Hx W x C
HW
v,
C
z

NS

Architecture is a
version of ImageNet-design (e.g, VGG16,
ResNet, Inception, ShuffleNet, MobileNet ...)




4. C3D Architecture:: N

e (3D contains 3 x 3 x 3 convolutional kernels followed by 2 x 2 x 2 pooling at each layer.
e The network architecture contains 8 convolutional, 5 pooling layers and 2 fully connected layers.
e It considers 16-frames snippets to extract spatio temporal feature representation.

fc6 fc7
4096| 4096

Pool

Convla |[l=l| Conv2a % Conv3a Conv3b § Conv4a Conv4b Conv5a Conv5b
64 128 & 256 256 512 512 é 512 512

softmax

--------

H ':d <L
K 2
/ output /

C3D is Temporally extended version of VGG16




4. 13D Architecture::

e [3D 1s designed by replacing the 2D kernels of GoogleNet by 3D kernels.
e [t 1s extended by inflation from the spatial domain.
e Unlike C3D 1t allows branching in the network architecture.
e Two major component of I3D:
o Bottleneck Block
o Inception Block
e It considers 16/ 64-frames clip for spatio-temporal feature extraction.

13D is a 3DCNN version of GoogleNet (InceptionV1)




4. Bottleneck Block ::

“bottleneck layer”

CONV 1x1
16 filters

)

CONV 5x5

28 x 28 x 16 32 filters

(of 1x1x192)

28 x 28 x 192

\

1

Computational cost:

(28*28*16) * (1*1*192) =2.4 ml

ey,

>

(of 5x5x16)

/ Ij
28 x 28 x 32

Computational cost:

|

(28*28%*32) * (5*5*16) = 10 ml|

>

Total Computational cost: 12.4 ml|



4. Inception Block ::

Filter
concatenation

Pl e

1x1 convolutions

3x3 convolutions

5x5 convolutions

Previous layer

T —

3x3 max pooling

\/

(a) Inception module, naive version



4. 13D Network ::

Inflated Inception-V1

Rec. Field: Rec. Field:
711,11 11,27.27

Video

stride 2

Rec. Field:

23,75,75
Inc . Inc H Inc +— lnc

°—] Inc
Rec. Field: Rec. Field:
59,219,219 99,539,539

Predictions

Inc.

Inc. H Inc.




4. 13D Network ::

Inflated Inception-V1

Rec. Field: Rec. Field:
711,11 11,27.,27

Rec. Field:
23.75,75

Rec. Field: Rec. Field:
59,219,219 99,539,539

Predictions

Limitations of 3DCNN

e Rigid spatio-temporal Kernels limiting them to capture subtle motion.

e No specific operation for discriminative feature representations.



4. R(2+1)D Architecture::

e R(2+1)D factorizes the 3D s
convolutional filters into separate 2D  [spacetimepool
spatial and 1D temporal convolution. ig zz::

2D conv
2D conv

e It has almond double additional 2 .
nonlinearity compared to standard 3D Gl

(@ R2D

blocks with same parameters

o Thus renders the model capable
of representing more complex
representation

e FEasier to optimize.

fc

space-time pool

2D conv

2D conv

2D conv

clip
(b) MCx

\
N

fc

space-time pool

2D conv

2D conv

A
clip
(c) rMCx

fc

space-time pool

fc

space-time pool

(2+1)D conv

(2+1)D conv

(2+1)D conv

(2+1)D conv

(2+1)D conv

A

clip

(e) R2+1)D

A4

1xdxd

Y M

o <€

Bl xl
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Summary ::
(Y ) L
: Wrrﬂ:‘rf”" -
: ical I Model =
Classical Image Models Classical Image Models =
with Temporal Models Aole
|| ||
Classical Video Models
T Action Class Inflated Inception-V1
—— Semantic
@ Rec. Field: Rec. Field:
. =5 labels 7,11:11 11,27l,27
§ B push w,: ' LSTM H LSTM ]- 0. LSTM
Feature . ol : Inc. ‘
extraction l Classifier = point 3 i
» kick 0% ~
I . | Inc. L Inc. { { Inc. ; Inc. %~ I -'ﬁ] Inc. ]
2;3‘0'?,;’:f:s‘,e'g" R I e LA Rec. Field: Rec. Field:
59,219,219 99,539,539
k-D vector - N r ~ ~ ~ . .
(leo-(g)a) ’ Inc. | % Inc. } : Inc. ] Predictions
Action Class
Single Frame Late Fusion Early Fusion ~ Slow Fusion | Sement m:ax poonne ]
: o | | : T e —
% % % % - space-time pool space-time pool space-time pool space-time pool space-time pool
% I— — — = 2D conv 2D conv
— = = — ==} 2D conv 2D conv
% % % % 2D conv 2D conv
VASIAVARZA 2D conv _ 2D conv
’U ’ ‘ Hﬂl 2D conv 2D conv
clip clip clip clip clip
(@)R2D (b) MCx (c) rIMCx (d)R3D (e) R2+1)D




Upcoming Agenda

€ Introduction to HAR: Human Action Recognition
€9 Multiple Modalities in HAR
€ Attentions in HAR (Spatial, Temporal, Self Attention)
€ Recent Popular Techniques
e Transformer Models (ViT, ViviT, Swin, VideoSwin)
e Self-supervised Models (MAE, VideoMAE, DiT)
e Vision and Language Models (CLIP)
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