People Detection and Video Understanding Francois BREMOND

INRIA Sophia Antipolis – **STARS** team

Institut National Recherche Informatique et Automatisme

Francois.Bremond@inria.fr

http://www-sop.inria.fr/members/Francois.Bremond/

CoBTeK,

Nice University Hospital

Video Understanding

Objective: Designing systems for Real time recognition of human activities observed by various sensors (especially video cameras).

Challenge: Bridging the gap between numerical sensors and semantic events.

Approach: Spatio-temporal reasoning and knowledge management.

Examples of human activities:

for individuals (vandalism, bank attack, cooking, washing dishes, falling)
for small groups (fighting)
for crowd (overcrowding)
for interactions of people and vehicles (aircraft refueling)

Generic Platform for activity understanding

People detection and tracking

People detection : faster R-CNN on ETHZ

informatics mathematics

Motivation - Action Recognition Hollywood dataset

Motivation - Action Recognition UCF Sports dataset

Motivation - Action Recognition Daily Living datasets (Rochester Univ.)

ADL Dataset

Action Recognition using Bag of Words M. Koperski

Codeword defined as a Descriptor cluster

Violence Recognition Framework, P. Bilinski

Input Video

Feature Detection (Improved Dense Trajectories)

Feature Description (TS, HOG, HOF, MBH)

Video Representation (Improved Fisher Vectors)

Classification (SVM)

Violence

Street

Movies Analysis

Non-violence

Football Stadium

Football Stadium

Steet

School

Gender recognition using smile: A. Dantcheva

Spatio-temporal features based on dense trajectories represented by a set of descriptors encoded by Fisher Vectors.

Toyota Smart-Home Large scale daily living dataset

Toyota Smart-Home Large scale daily living dataset

Action classes distribution

Class name

Issues in Action Recognition using Deep CNNs

Deep Convolutional Neural Networks (CNN)

Images

- Large Annotated data (Imagenet)
- Architecture Suitable for Images with good resolution

Videos: How to capture motion information in CNN ?

• Stacking of frames

- Capture motion independently or not: several stream CNNs
 - One ConvNet to capture static (frame based) visual information.
 - Another ConvNet to capture motion information (like Optical Flow, but expensive)
 - Other Nets to capture motion on longer scales or together (Siamese)
 - Other Nets to capture object-ness.

C. Roberto de Souza, A. Gaidon, E. Vig, and A. Lopez. Sympathy for the Details: Dense Trajectories and Hybrid Classification Architectures for Action Recognition, ECCV 2016

Convolutional Pose Machines for Action Recognition

- Proposed a representation derived from human pose using Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
- The descriptor aggregates motion and appearance information along tracks of human body parts using *P-CNN* : Pose-based CNN Features for Action Recognition

Toyota Smart-Home Large scale daily living dataset

Pour water for tea

Prepare tea

Activity monitoring in Greece Hospital with AD patients

Visualization of older adult performance while accomplishing the semi-guided tasks.

Conclusion - video understanding

A global framework for building real-time video understanding systems:

Perspectives:

- Generate totally unsupervised models
- Use finer features as input for the algorithm (head, posture, facial gesture...)
- Generating language description for the activity models
- Generic activity models (cross scenes), Adaptive learning
- More semantics, emotion, mental states.

4 PhD open topics:

- Kontron: People Tracking using Deep Learning algorithms on embedded hardware
- ESI: People Re-Identification using Deep Learning
- Wildmoka: Video based Action Recognition using Deep Learning
- Nice Hospital: Uncertainty Management and Activity Recognition

