Graph Algorithms

TD4 : Matchings

1 Consequences of Hall's Theorem

Let $H=(U, V, E)$ be a d-regular bipartite graph (all degrees in G equal d), for some $d \geq 1$.

1. Show that G contains a perfect matching.

We first show that $|U|=|V|$. Indeed, each edge e has an extremity in U, and the other in V. Hence $d|U|=\sum_{u \in U} \operatorname{deg}(u)$ counts each edge $e \in E$ exactly once; likewise for V. So we have $d|U|=$ $|E|=d|V|$, which implies that $|U|=|V|$.
We now show that H satisfies Hall's condition. Let $X \subseteq U$, and let $Y=N(X)$. Let E_{X} and E_{Y} be the sets of edges incident to X and Y respectively. Note that every edge $e \in E_{X}$ is incident to Y, hence $E_{X} \subseteq E_{Y}$. Then, we have $d|X|=\left|E_{X}\right| \leq\left|E_{Y}\right|=d|Y|$, which implies that $|X| \leq|Y|=|N(X)|$.
By Hall's theorem, there exists a matching M that saturates U, and since $|U|=|V|, M$ also saturates V; this is a perfect matching of H.
2. Show that $\chi^{\prime}(H)=d$.

We show this by induction on d. If $d=1$, then H is a matching and so $\chi(H)=1$. Assume now that $d \geq 2$. We have seen that H contains a perfect matching M; let $H^{\prime}:=H \backslash M$. Then H^{\prime} is $(d-1)$-regular, so by the induction hypothesis there exists a proper $(d-1)$-edge-colouring c of H^{\prime}. Set $c(e):=d$ for every $e \in M$; this extends c into a proper d-edge-colouring of H.

2 Vertex Cover

Let G be a graph. We denote $\nu(G)$ the size of a maximum matching in G, and $\tau(G)$ the size of a minimum vertex cover of G.

1. Show that $\nu(G) \leq \tau(G) \leq 2 \nu(G)$.

Let M be a maximum matching of G, and let X be a minimum vertex cover of G. Since the edges in M share no end-points, each of them is covered by a distinct vertex in X, hence $\tau(G)=|X| \geq$ $|M|=\nu(G)$. Since M is maximum, every edge $e \in E(G)$ is incident to at least one edge $e^{\prime} \in M$, hence to one extremity of e^{\prime}. So $V(M)$ is a vertex cover of G, of size $2|M|=2 \nu(G)$.
2. Write a polynomial algorithm that returns a 2 -approximation of a minimal vertex cover of G.

```
Algorithm 1: VertexCover2Approx
    Data: G: graph on }n\mathrm{ vertices
    M\leftarrow maximum matching of G (cost O(n 2.5)
    return V(M)
```

This algorithm returns a vertex cover of G, of size $2 \nu(G) \leq 2 \tau(G)$, so at most twice the size of an optimal solution.

3 More on Kőnig's Theorem

1. Prove that the following is an equivalent statement of König's Theorem. For every bipartite graph H on n vertices, $\alpha(H)=n-\nu(H)$.

In order to show that both statements of Kőnig's Theorem are equivelent, let us show that $\alpha(H)=$ $n-\tau(H)$.

Let I be a maximum independent set of H, we first prove that \bar{I} is a vertex cover of H, of size $n-\alpha(H)$, which implies that $\tau(H) \leq n-\alpha(H)$. Assume otherwise that some edge $e \in E(H)$ is not covered by \bar{I}. So both its extremities are in I, which contradicts that I is an independent set.

Let now X be a minimum vertex cover of H, we prove that \bar{X} is an independent set of H, of size $n-\tau(H)$, which implies that $\alpha(H) \geq n-\tau(H)$ and so that $\tau(H) \geq n-\alpha(H)$. Assume otherwise that there is an edge e induced by \bar{X}; this means that no extremity of e is in X, hence e is not covered by X, a contradiction.
2. Write an algorithm that returns a maximum independent set of any given bipartite graph. We suppose that we have access to an algorithm maxMatching that returns a maximum matching of any (bipartite) input graph on n vertices in time $O\left(n^{2.5}\right)$.

We follow the procedure described in the proof of Kőnig's Theorem in order to construct a minimum vertex cover of H, given a maximum matching M.

```
Algorithm 2: MaxIndependentSet
    Data: \(H=(X, Y, E)\) : bipartite graph
    \(M \leftarrow\) maximum matching of \(H\)
    \(U \leftarrow X \backslash V(M)\)
    \(R \leftarrow U\)
    while \(N(R) \neq \varnothing\) do
        \(A \leftarrow N(R) \quad\) (by construction, \(A \subseteq Y)\)
        \(B \leftarrow N_{M}(A) \quad\) (by construction, \(B \subseteq X\) )
        \(R \leftarrow R \cup A \cup B\)
    end
    \(S \leftarrow(X \backslash R) \cup(Y \cap R) \quad(S\) is a minimum vertex cover of \(H)\)
    return \(V(H) \backslash S\)
```

The total complexity of the while loop is that of an exploration of the graph (through alternating paths), so $O(|E(H)|)$. The complexity of the algorithm is therefore dominated by that of finding a maximum matching, hence $O\left(n^{2.5}\right)$.

