Graph Algorithms

TD4 : Matchings

1 Consequences of Hall's Theorem

Let H = (U, V, E) be a *d*-regular bipartite graph (all degrees in *G* equal *d*), for some $d \ge 1$.

1. Show that G contains a perfect matching.

We first show that |U| = |V|. Indeed, each edge e has an extremity in U, and the other in V. Hence $d|U| = \sum_{u \in U} \deg(u)$ counts each edge $e \in E$ exactly once; likewise for V. So we have d|U| = |E| = d|V|, which implies that |U| = |V|.

We now show that H satisfies Hall's condition. Let $X \subseteq U$, and let Y = N(X). Let E_X and E_Y be the sets of edges incident to X and Y respectively. Note that every edge $e \in E_X$ is incident to Y, hence $E_X \subseteq E_Y$. Then, we have $d|X| = |E_X| \le |E_Y| = d|Y|$, which implies that $|X| \le |Y| = |N(X)|$.

By Hall's theorem, there exists a matching M that saturates U, and since |U| = |V|, M also saturates V; this is a perfect matching of H.

2. Show that $\chi'(H) = d$.

We show this by induction on d. If d = 1, then H is a matching and so $\chi(H) = 1$. Assume now that $d \ge 2$. We have seen that H contains a perfect matching M; let $H' := H \setminus M$. Then H' is (d-1)-regular, so by the induction hypothesis there exists a proper (d-1)-edge-colouring c of H'. Set c(e) := d for every $e \in M$; this extends c into a proper d-edge-colouring of H.

2 Vertex Cover

Let G be a graph. We denote $\nu(G)$ the size of a maximum matching in G, and $\tau(G)$ the size of a minimum vertex cover of G.

1. Show that $\nu(G) \leq \tau(G) \leq 2\nu(G)$.

Let M be a maximum matching of G, and let X be a minimum vertex cover of G. Since the edges in M share no end-points, each of them is covered by a distinct vertex in X, hence $\tau(G) = |X| \ge |M| = \nu(G)$. Since M is maximum, every edge $e \in E(G)$ is incident to at least one edge $e' \in M$, hence to one extremity of e'. So V(M) is a vertex cover of G, of size $2|M| = 2\nu(G)$.

2. Write a polynomial algorithm that returns a 2-approximation of a minimal vertex cover of G.

Algorithm 1: VertexCover2Approx Data: G: graph on n vertices

 $M \leftarrow$ maximum matching of G (cost $O(n^{2.5})$ return V(M)

This algorithm returns a vertex cover of G, of size $2\nu(G) \leq 2\tau(G)$, so at most twice the size of an optimal solution.

3 More on Kőnig's Theorem

1. Prove that the following is an equivalent statement of Kőnig's Theorem. For every bipartite graph H on n vertices, $\alpha(H) = n - \nu(H)$.

In order to show that both statements of Kőnig's Theorem are equivelent, let us show that $\alpha(H) = n - \tau(H)$.

Let I be a maximum independent set of H, we first prove that \overline{I} is a vertex cover of H, of size $n - \alpha(H)$, which implies that $\tau(H) \leq n - \alpha(H)$. Assume otherwise that some edge $e \in E(H)$ is not covered by \overline{I} . So both its extremities are in I, which contradicts that I is an independent set.

Let now X be a minimum vertex cover of H, we prove that \overline{X} is an independent set of H, of size $n - \tau(H)$, which implies that $\alpha(H) \ge n - \tau(H)$ and so that $\tau(H) \ge n - \alpha(H)$. Assume otherwise that there is an edge e induced by \overline{X} ; this means that no extremity of e is in X, hence e is not covered by X, a contradiction.

2. Write an algorithm that returns a maximum independent set of any given bipartite graph. We suppose that we have access to an algorithm maxMatching that returns a maximum matching of any (bipartite) input graph on n vertices in time $O(n^{2.5})$.

We follow the procedure described in the proof of Kőnig's Theorem in order to construct a minimum vertex cover of H, given a maximum matching M.

Algorithm 2: MaxIndependentSet

Data: H = (X, Y, E): bipartite graph $M \leftarrow$ maximum matching of H $U \leftarrow X \setminus V(M)$ $R \leftarrow U$ **while** $N(R) \neq \emptyset$ **do** $\begin{vmatrix} A \leftarrow N(R) & \text{(by construction, } A \subseteq Y) \\ B \leftarrow N_M(A) & \text{(by construction, } B \subseteq X) \\ R \leftarrow R \cup A \cup B \end{vmatrix}$ **end** $S \leftarrow (X \setminus R) \cup (Y \cap R)$ (*S* is a minimum vertex cover of *H*) **return** $V(H) \setminus S$

The total complexity of the while loop is that of an exploration of the graph (through alternating paths), so O(|E(H)|). The complexity of the algorithm is therefore dominated by that of finding a maximum matching, hence $O(n^{2.5})$.