Graph Algorithms

TD2 : Graph colouring

1 Some properties of colouring

1. What is the chromatic number of an even cycle C_{2n} ? Of an odd cycle C_{2n+1} ?

Let $G = C_n = v_1, \ldots, v_n$ be an even cycle. Then $\chi(G) \ge \omega(G) = 2$. On the other hand, let $c(v_i) := i \mod 2$ for every $i \in [n]$; c is a proper 2-colouring of G and hence $\chi(G) = 2$.

Let $G = C_n = V_1, \ldots, v_n$ be an odd cycle. Let $c(v_n) \coloneqq 2$, and $c(v_i) \coloneqq i \mod 2$ for $i \in [n-1]$. Then c is a proper 3-colouring of G, hence $\chi(G) \leq 3$. In order to prove that $\chi(G) = 3$, we need the following intermediate result.

Claim 1 Let $H = P_n = x_1, \ldots, x_n$ be a path on *n* vertices, and *c* a proper 2-colouring of *H*. Then $c(v_i) = c(v_j)$ iff $i \equiv j \mod 2$ (this is proved easily by induction on |i - j|).

Let us assume for the sake of contradiction that there exists a proper 2-colouring c of G. In particular, it induces a proper 2-colouring of the path $G \setminus v_n$. By Claim 1, $c(v_1) \neq c(v_{n-1})$ since n is odd. The two neighbours of v_n in G have different colours, hence there is no available colour for v_n , a contradiction.

2. Show that a graph is bipartite if and only if it contains no odd cycle.

If a graph G contains an odd cycle C, then $\chi(G) \ge \chi(C) = 3$, so G is not bipartite.

Reciprocally, let G be a graph that contains no odd cycle, and let T be a spanning tree of G. We can find a proper 2-colouring c of T by rooting T in an arbitrary vertex $r \in V(G)$, and letting $c(v) = \text{dist}_T(v, r) \mod 2$ for every $v \in V(G)$. We now argue that c is a proper colouring of H. Assume otherwise that there exists an edge $e = uv \in E(H)$ such that c(u) = c(v). Since c is a proper colouring of T, $e \notin E(T)$. Let P be the path from u to v in T, of length at least 2. Then P is properly 2-coloured by c, and since c(u) = c(v), Claim 1 implies that it contains on odd number of vertices. Then P + uv is an odd cycle in G, a contradiction.

3. Show that for every graph G, there exists an order on the vertices such that the greedy algorithm applied in this order returns a colouring with $\chi(G)$ colours.

Let c be a proper k-colouring of G, with $k = \chi(G)$. Let v_1, \ldots, v_n be an ordering of V(G) such that $c(v_i) \leq c(v_j)$ whenever $i \leq j$. Let us consider a run of the greedy colouring with that order on the vertices, and let c^* be the returned colouring. Let us prove by induction on i that for each vertex v_i , $c^*(v_i) \leq c(v_i)$. When i = 1, this is obvious since v_1 is the first coloured vertex, with colour 1. When $i \geq 2$, observe that for every neighbour v_j of v_i such that j < i, it holds that $c(v_j) < c(v_i)$ (since $c(v_j) \neq c(v_i)$, and so by the induction hypothesis $c^*(v_j) < c(v_i)$. So the colour $c(v_i)$ is available for v_i when the greedy algorithm assigns the colour $c^*(v_i)$, and hence $c^*(v_i) \leq c(v_i)$.

4. Prove that $\chi(G) \geq |V(G)|/\alpha(G)$, for every graph G.

Let c be a proper k-colouring of G, with $k = \chi(G)$, and let V_1, \ldots, V_k be its colour classes. Each V_i is an independent set, hence $|V_i| \le \alpha(G)$. On the other hand, the sets $(V_i)_{i \in [k]}$ partition V(G), hence $n := |V(G)| = \sum_{i=1}^k |V_i| \le k \cdot \alpha(G)$. We conclude that $\chi(G) = k \ge n/\alpha(G)$.

2 Interval graphs

Given a set of intervals $\mathcal{I} = \{I_1, \ldots, I_n\}$ where $I_i = [a_i, b_i]$ for every $1 \leq i \leq n$, the interval graph associated with \mathcal{I} is the graph G = (V, E) where $V = \{1, \ldots, n\}$ and $ij \in E$ iff I_i and I_j intersect, i.e. $a_i \leq b_j$ and $a_j \leq b_i$, for every $1 \leq i, j \leq n$.

1. Show that in an interval graph, there exists a simplicial vertex, i.e. a vertex v such that N[v] induces a clique.

Let i_0 be such that b_{i_0} is minimal; we show that i_0 is a simplicial vertex. Let i_1, i_2 be two neighbours of *i*. By definition, and since b_{i_0} is minimal, we have $a_{i_1} \leq b_{i_0} \leq b_{i_2}$ and $a_{i_2} \leq b_{i_0} \leq b_{i_1}$. So $i_1i_2 \in E$, whence G[N(v)] is complete.

2. Write an algorithm that computes an optimal proper colouring of an interval graph G. You may assume that we know the intervals. The goal complexity is $O(n \ln n + m)$.

Let v_1, \ldots, v_n be an order obtained by successively extracting simplicial vertices from G. If we know the intervals, we can simply order the vertices *i* increasingly with respect to b_i , in time $O(n \ln n)$ (where n = |V(G)|). Otherwise, finding a simplicial vertex in G can be done in time O(m) (where m = |E(G)|), so construct that ordering can be done in time O(nm).

Run the greedy colouring algorithm on G with the reverse order. When v is coloured, its coloured neighbours form a clique (of size $k \le \omega(G) - 1$), and so its colour is at most $k + 1 \le \omega(G)$. In the end, the number of colours introduced is at most $\omega(G) \le \chi(G)$. The complexity of the greedy colouring algorithm is O(m), so the final complexity is either $O(n \ln n + m)$ or O(nm).

3. We now want to write an algorithm which computes a proper colouring of any graph G, and uses $\chi(G)$ colours if G is an interval graph (so in particular we don't know the intervals if this is the case). Show that this can be done with the greedy colouring algorithm applied with a reverse degeneracy ordering.

We argue that in an interval graph G, $\delta^*(G) + 1 \le \omega(G)$, which means that we can instead use a degeneracy ordering, which can be computed in time O(m). Let H be a subgraph of G of such that $\delta(H) = \delta^*(G)$. Since H contains a simplicial vertex $v, \omega(H) \ge \deg(v) + 1 \ge \delta(H) + 1 \ge \delta^*(G) + 1$. The conclusion follows since $\omega(G) \ge \omega(H)$.

3 Mycielski graphs

Given the graph M_i , we decompose $V(M_i)$ into $V_i = V(M_{i-1})$, V'_i the set of copies, and w_i the vertex linked to V'_k .

1. Let G be a k-chromatic graph, and c a proper k-colouring of G. Show that for every colour i, there exists a vertex $v \in V(G)$ such that c(v) = i and all the other colours appear in its neighbourhood.

Let G be a graph of chromatic number k, and let c be a proper k-colouring of G. Let us assume for the sake of contradiction that, for some colour i, every vertex v such that c(v) = i misses a colour $a_v \in [k] - i$ in its neighbourhood. Let us recolour every such vertex v with colour a_v , thus creating some colouring c' of G. Since the recoloured vertices where the ones coloured with i by c, they form an independent set, and so after the recolouring process the colours in their neighbourhood remain unchanged. So c' is a proper colouring of G, and c' uses colours only from [k] - i, so k - 1 different ones. This contradicts the fact that $\chi(G) = k$.

2. Show that for all $i \ge 2$, the graph M_i contains no triangle (i.e. a copy of the complete graph K_3).

We prove the result by induction on *i*. The base case i = 2 is trivial. Assume for the sake of contradiction that M_i contains a triangle $T = (u_1, u_2, u_3)$ for some $i \ge 3$. Since the neighbourhood of w_i is an independent set, w_i is contained in no triangle, hence $w_i \notin T$. Since V'_i is an independent set, $|T \cap V'_i| \le 1$. By the induction hypothesis, M_{i-1} contains no triangle, hence T is not entirely contained in $V_i = V(M_{i-1})$. We infer that $T \cap V'_i$ contains exactly one vertex, say u_1 . Let $u'_1 \in V_i$ be the vertex of which u_1 is a copy, then $u_2, u_3 \in N(u'_1)$. So (u'_1, u_2, u_3) is a triangle entirely contained in V_i , a contradiction.

3. Show by induction that $\chi(M_i) \leq i$, for all $i \geq 2$.

We know already that $\chi(M_2) = \chi(K_2) = 2$. Let $i \ge 3$, and let c be a proper (i - 1)-colouring of M_{i-1} obtained by induction. We let $c_i(v) \coloneqq c_{i-1}(v)$ for every $v \in V_i = V(M_{i-1})$, and we let $c_i(v') \coloneqq c_i(v)$ for the copy $v' \in V'_i$ of v. Finally, we let $c_i(w_i) \coloneqq i$. It is straightforward that c_i is a proper *i*-colouring of M_i .

4. Show that $\chi(M_i) \ge i$, for all $i \ge 2$.

Assume for the sake of contradiction that there exists a proper (i-1)-colouring c of M_i . In particular, c induces a proper (i-1)-colouring of M_{i-1} on V_i . By the result of Question 3.1, for every colour $j \in [i-1]$, there exists some vertex $v_j \in V_i$ such that $c(v_j) = j$ and $c(N_{M_{i-1}}(v_j)) = [i-1] \setminus \{j\}$. Let $v'_j \in V'_i$ be the copy of v_j . Then the colour of v'_j is forced to be j, since $N_{M_{i-1}}(v_j) \subset N_{M_i}(v'_j)$. We conclude that $c(V'_i) = [i-1]$, so there remains no colour available for w_i , a contradiction.