Graph Algorithms

TD2 : Graph colouring

1 Some properties of colouring

1. What is the chromatic number of an even cycle $C_{2 n}$? Of an odd cycle $C_{2 n+1}$?

Let $G=C_{n}=v_{1}, \ldots, v_{n}$ be an even cycle. Then $\chi(G) \geq \omega(G)=2$. On the other hand, let $c\left(v_{i}\right):=i \bmod 2$ for every $i \in[n] ; c$ is a proper 2 -colouring of G and hence $\chi(G)=2$.
Let $G=C_{n}=V_{1}, \ldots, v_{n}$ be an odd cycle. Let $c\left(v_{n}\right):=2$, and $c\left(v_{i}\right):=i \bmod 2$ for $i \in[n-1]$. Then c is a proper 3 -colouring of G, hence $\chi(G) \leq 3$. In order to prove that $\chi(G)=3$, we need the following intermediate result.

Claim 1 Let $H=P_{n}=x_{1}, \ldots, x_{n}$ be a path on n vertices, and c a proper 2-colouring of H. Then $c\left(v_{i}\right)=c\left(v_{j}\right)$ iff $i \equiv j \bmod 2$ (this is proved easily by induction on $|i-j|$).
Let us assume for the sake of contradiction that there exists a proper 2 -colouring c of G. In particular, it induces a proper 2-colouring of the path $G \backslash v_{n}$. By Claim $1, c\left(v_{1}\right) \neq c\left(v_{n-1}\right)$ since n is odd. The two neighbours of v_{n} in G have different colours, hence there is no available colour for v_{n}, a contradiction.
2. Show that a graph is bipartite if and only if it contains no odd cycle.

If a graph G contains an odd cycle C, then $\chi(G) \geq \chi(C)=3$, so G is not bipartite.
Reciprocally, let G be a graph that contains no odd cycle, and let T be a spanning tree of G. We can find a proper 2-colouring c of T by rooting T in an arbitrary vertex $r \in V(G)$, and letting $c(v)=\operatorname{dist}_{T}(v, r) \bmod 2$ for every $v \in V(G)$. We now argue that c is a proper colouring of H. Assume otherwise that there exists an edge $e=u v \in E(H)$ such that $c(u)=c(v)$. Since c is a proper colouring of $T, e \notin E(T)$. Let P be the path from u to v in T, of length at least 2 . Then P is properly 2 -coloured by c, and since $c(u)=c(v)$, Claim 1 implies that it contains on odd number of vertices. Then $P+u v$ is an odd cycle in G, a contradiction.
3. Show that for every graph G, there exists an order on the vertices such that the greedy algorithm applied in this order returns a colouring with $\chi(G)$ colours.
Let c be a proper k-colouring of G, with $k=\chi(G)$. Let v_{1}, \ldots, v_{n} be an ordering of $V(G)$ such that $c\left(v_{i}\right) \leq c\left(v_{j}\right)$ whenever $i \leq j$. Let us consider a run of the greedy colouring with that order on the vertices, and let c^{*} be the returned colouring. Let us prove by induction on i that for each vertex v_{i}, $c^{*}\left(v_{i}\right) \leq c\left(v_{i}\right)$. When $i=1$, this is obvious since v_{1} is the first coloured vertex, with colour 1 . When $i \geq 2$, observe that for every neighbour v_{j} of v_{i} such that $j<i$, it holds that $c\left(v_{j}\right)<c\left(v_{i}\right)$ (since $c\left(v_{j}\right) \neq c\left(v_{i}\right)$, and so by the induction hypothesis $c^{*}\left(v_{j}\right)<c\left(v_{i}\right)$. So the colour $c\left(v_{i}\right)$ is available for v_{i} when the greedy algorithm assigns the colour $c^{*}\left(v_{i}\right)$, and hence $c^{*}\left(v_{i}\right) \leq c\left(v_{i}\right)$.
4. Prove that $\chi(G) \geq|V(G)| / \alpha(G)$, for every graph G.

Let c be a proper k-colouring of G, with $k=\chi(G)$, and let V_{1}, \ldots, V_{k} be its colour classes. Each V_{i} is an independent set, hence $\left|V_{i}\right| \leq \alpha(G)$. On the other hand, the sets $\left(V_{i}\right)_{i \in[k]}$ partition $V(G)$, hence $n:=|V(G)|=\sum_{i=1}^{k}\left|V_{i}\right| \leq k \cdot \alpha(G)$. We conclude that $\chi(G)=k \geq n / \alpha(G)$.

2 Interval graphs

Given a set of intervals $\mathcal{I}=\left\{I_{1}, \ldots, I_{n}\right\}$ where $I_{i}=\left[a_{i}, b_{i}\right]$ for every $1 \leq i \leq n$, the interval graph associated with \mathcal{I} is the graph $G=(V, E)$ where $V=\{1, \ldots, n\}$ and $i j \in E$ iff I_{i} and I_{j} intersect, i.e. $a_{i} \leq b_{j}$ and $a_{j} \leq b_{i}$, for every $1 \leq i, j \leq n$.

1. Show that in an interval graph, there exists a simplicial vertex, i.e. a vertex v such that $N[v]$ induces a clique.

Let i_{0} be such that $b_{i_{0}}$ is minimal; we show that i_{0} is a simplicial vertex. Let i_{1}, i_{2} be two neighbours of i. By definition, and since $b_{i_{0}}$ is minimal, we have $a_{i_{1}} \leq b_{i_{0}} \leq b_{i_{2}}$ and $a_{i_{2}} \leq b_{i_{0}} \leq b_{i_{1}}$. So $i_{1} i_{2} \in E$, whence $G[N(v)]$ is complete.
2. Write an algorithm that computes an optimal proper colouring of an interval graph G. You may assume that we know the intervals. The goal complexity is $O(n \ln n+m)$.

Let v_{1}, \ldots, v_{n} be an order obtained by successively extracting simplicial vertices from G. If we know the intervals, we can simply order the vertices i increasingly with respect to b_{i}, in time $O(n \ln n)$ (where $n=|V(G)|$). Otherwise, finding a simplicial vertex in G can be done in time $O(m)$ (where $m=|E(G)|)$, so construct that ordering can be done in time $O(n m)$.

Run the greedy colouring algorithm on G with the reverse order. When v is coloured, its coloured neighbours form a clique (of size $k \leq \omega(G)-1$), and so its colour is at most $k+1 \leq \omega(G)$. In the end, the number of colours introduced is at most $\omega(G) \leq \chi(G)$. The complexity of the greedy colouring algorithm is $O(m)$, so the final complexity is either $O(n \ln n+m)$ or $O(n m)$.
3. We now want to write an algorithm which computes a proper colouring of any graph G, and uses $\chi(G)$ colours if G is an interval graph (so in particular we don't know the intervals if this is the case). Show that this can be done with the greedy colouring algorithm applied with a reverse degeneracy ordering.
We argue that in an interval graph $G, \delta^{*}(G)+1 \leq \omega(G)$, which means that we can instead use a degeneracy ordering, which can be computed in time $O(m)$. Let H be a subgraph of G of such that $\delta(H)=\delta^{*}(G)$. Since H contains a simplicial vertex $v, \omega(H) \geq \operatorname{deg}(v)+1 \geq \delta(H)+1 \geq \delta^{*}(G)+1$. The conclusion follows since $\omega(G) \geq \omega(H)$.

3 Mycielski graphs

Given the graph M_{i}, we decompose $V\left(M_{i}\right)$ into $V_{i}=V\left(M_{i-1}\right), V_{i}^{\prime}$ the set of copies, and w_{i} the vertex linked to V_{k}^{\prime}.

1. Let G be a k-chromatic graph, and c a proper k-colouring of G. Show that for every colour i, there exists a vertex $v \in V(G)$ such that $c(v)=i$ and all the other colours appear in its neighbourhood.

Let G be a graph of chromatic number k, and let c be a proper k-colouring of G. Let us assume for the sake of contradiction that, for some colour i, every vertex v such that $c(v)=i$ misses a colour $a_{v} \in[k]-i$ in its neighbourhood. Let us recolour every such vertex v with colour a_{v}, thus creating some colouring c^{\prime} of G. Since the recoloured vertices where the ones coloured with i by c, they form an independent set, and so after the recolouring process the colours in their neighbourhood remain unchanged. So c^{\prime} is a proper colouring of G, and c^{\prime} uses colours only from $[k]-i$, so $k-1$ different ones. This contradicts the fact that $\chi(G)=k$.
2. Show that for all $i \geq 2$, the graph M_{i} contains no triangle (i.e. a copy of the complete graph K_{3}).

We prove the result by induction on i. The base case $i=2$ is trivial. Assume for the sake of contradiction that M_{i} contains a triangle $T=\left(u_{1}, u_{2}, u_{3}\right)$ for some $i \geq 3$. Since the neighbourhood of w_{i} is an independent set, w_{i} is contained in no triangle, hence $w_{i} \notin T$. Since V_{i}^{\prime} is an independent set, $\left|T \cap V_{i}^{\prime}\right| \leq 1$. By the induction hypothesis, M_{i-1} contains no triangle, hence T is not entirely contained in $V_{i}=V\left(M_{i-1}\right)$. We infer that $T \cap V_{i}^{\prime}$ contains exactly one vertex, say u_{1}. Let $u_{1}^{\prime} \in V_{i}$ be the vertex of which u_{1} is a copy, then $u_{2}, u_{3} \in N\left(u_{1}^{\prime}\right)$. So $\left(u_{1}^{\prime}, u_{2}, u_{3}\right)$ is a triangle entirely contained in V_{i}, a contradiction.
3. Show by induction that $\chi\left(M_{i}\right) \leq i$, for all $i \geq 2$.

We know already that $\chi\left(M_{2}\right)=\chi\left(K_{2}\right)=2$. Let $i \geq 3$, and let c be a proper $(i-1)$-colouring of M_{i-1} obtained by induction. We let $c_{i}(v):=c_{i-1}(v)$ for every $v \in V_{i}=V\left(M_{i-1}\right)$, and we let $c_{i}\left(v^{\prime}\right):=c_{i}(v)$ for the copy $v^{\prime} \in V_{i}^{\prime}$ of v. Finally, we let $c_{i}\left(w_{i}\right):=i$. It is straightforward that c_{i} is a proper i-colouring of M_{i}.
4. Show that $\chi\left(M_{i}\right) \geq i$, for all $i \geq 2$.

Assume for the sake of contradiction that there exists a proper $(i-1)$-colouring c of M_{i}. In particular, c induces a proper $(i-1)$-colouring of M_{i-1} on V_{i}. By the result of Question 3.1, for every colour $j \in[i-1]$, there exists some vertex $v_{j} \in V_{i}$ such that $c\left(v_{j}\right)=j$ and $c\left(N_{M_{i-1}}\left(v_{j}\right)\right)=[i-1] \backslash\{j\}$. Let $v_{j}^{\prime} \in V_{i}^{\prime}$ be the copy of v_{j}. Then the colour of v_{j}^{\prime} is forced to be j, since $N_{M_{i-1}}\left(v_{j}\right) \subset N_{M_{i}}\left(v_{j}^{\prime}\right)$. We conclude that $c\left(V_{i}^{\prime}\right)=[i-1]$, so there remains no colour available for w_{i}, a contradiction.

