
Graph Algorithms

TD2 : Graph colouring

1 Some properties of colouring

1. What is the chromatic number of an even cycle C2n ? Of an odd cycle C2n+1?

Let G = Cn = v1, . . . , vn be an even cycle. Then χ(G) ≥ ω(G) = 2. On the other hand, let
c(vi) := i mod 2 for every i ∈ [n]; c is a proper 2-colouring of G and hence χ(G) = 2.

Let G = Cn = V1, . . . , vn be an odd cycle. Let c(vn) := 2, and c(vi) := i mod 2 for i ∈ [n − 1].
Then c is a proper 3-colouring of G, hence χ(G) ≤ 3. In order to prove that χ(G) = 3, we need the
following intermediate result.

Claim 1 Let H = Pn = x1, . . . , xn be a path on n vertices, and c a proper 2-colouring of H . Then
c(vi) = c(vj) iff i ≡ j mod 2 (this is proved easily by induction on |i− j|).
Let us assume for the sake of contradiction that there exists a proper 2-colouring c of G. In particular,
it induces a proper 2-colouring of the path G \ vn. By Claim 1, c(v1) 6= c(vn−1) since n is odd.
The two neighbours of vn in G have different colours, hence there is no available colour for vn, a
contradiction.

2. Show that a graph is bipartite if and only if it contains no odd cycle.

If a graph G contains an odd cycle C, then χ(G) ≥ χ(C) = 3, so G is not bipartite.

Reciprocally, let G be a graph that contains no odd cycle, and let T be a spanning tree of G. We
can find a proper 2-colouring c of T by rooting T in an arbitrary vertex r ∈ V (G), and letting
c(v) = distT (v, r) mod 2 for every v ∈ V (G). We now argue that c is a proper colouring of H .
Assume otherwise that there exists an edge e = uv ∈ E(H) such that c(u) = c(v). Since c is a proper
colouring of T , e /∈ E(T ). Let P be the path from u to v in T , of length at least 2. Then P is properly
2-coloured by c, and since c(u) = c(v), Claim 1 implies that it contains on odd number of vertices.
Then P + uv is an odd cycle in G, a contradiction.

3. Show that for every graph G, there exists an order on the vertices such that the greedy algorithm
applied in this order returns a colouring with χ(G) colours.

Let c be a proper k-colouring of G, with k = χ(G). Let v1, . . . , vn be an ordering of V (G) such that
c(vi) ≤ c(vj) whenever i ≤ j. Let us consider a run of the greedy colouring with that order on the
vertices, and let c∗ be the returned colouring. Let us prove by induction on i that for each vertex vi,
c∗(vi) ≤ c(vi). When i = 1, this is obvious since v1 is the first coloured vertex, with colour 1. When
i ≥ 2, observe that for every neighbour vj of vi such that j < i, it holds that c(vj) < c(vi) (since
c(vj) 6= c(vi), and so by the induction hypothesis c∗(vj) < c(vi). So the colour c(vi) is available for
vi when the greedy algorithm assigns the colour c∗(vi), and hence c∗(vi) ≤ c(vi).

4. Prove that χ(G) ≥ |V (G)|/α(G), for every graph G.

Let c be a proper k-colouring of G, with k = χ(G), and let V1, . . . , Vk be its colour classes. Each Vi
is an independent set, hence |Vi| ≤ α(G). On the other hand, the sets (Vi)i∈[k] partition V (G), hence
n := |V (G)| =

∑k
i=1 |Vi| ≤ k · α(G). We conclude that χ(G) = k ≥ n/α(G).
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2 Interval graphs

Given a set of intervals I = {I1, . . . , In} where Ii = [ai, bi] for every 1 ≤ i ≤ n, the interval graph
associated with I is the graph G = (V,E) where V = {1, . . . , n} and ij ∈ E iff Ii and Ij intersect, i.e.
ai ≤ bj and aj ≤ bi, for every 1 ≤ i, j ≤ n.

1. Show that in an interval graph, there exists a simplicial vertex, i.e. a vertex v such that N [v] induces
a clique.

Let i0 be such that bi0 is minimal; we show that i0 is a simplicial vertex. Let i1, i2 be two neighbours
of i. By definition, and since bi0 is minimal, we have ai1 ≤ bi0 ≤ bi2 and ai2 ≤ bi0 ≤ bi1 . So
i1i2 ∈ E, whence G[N(v)] is complete.

2. Write an algorithm that computes an optimal proper colouring of an interval graph G. You may
assume that we know the intervals. The goal complexity is O(n lnn+m).

Let v1, . . . , vn be an order obtained by successively extracting simplicial vertices from G. If we know
the intervals, we can simply order the vertices i increasingly with respect to bi, in time O(n lnn)
(where n = |V (G)|). Otherwise, finding a simplicial vertex in G can be done in time O(m) (where
m = |E(G)|), so construct that ordering can be done in time O(nm).

Run the greedy colouring algorithm on G with the reverse order. When v is coloured, its coloured
neighbours form a clique (of size k ≤ ω(G) − 1), and so its colour is at most k + 1 ≤ ω(G). In
the end, the number of colours introduced is at most ω(G) ≤ χ(G). The complexity of the greedy
colouring algorithm is O(m), so the final complexity is either O(n lnn+m) or O(nm).

3. We now want to write an algorithm which computes a proper colouring of any graphG, and uses χ(G)
colours if G is an interval graph (so in particular we don’t know the intervals if this is the case). Show
that this can be done with the greedy colouring algorithm applied with a reverse degeneracy ordering.

We argue that in an interval graph G, δ∗(G) + 1 ≤ ω(G), which means that we can instead use a
degeneracy ordering, which can be computed in time O(m). Let H be a subgraph of G of such that
δ(H) = δ∗(G). SinceH contains a simplicial vertex v, ω(H) ≥ deg(v)+1 ≥ δ(H)+1 ≥ δ∗(G)+1.
The conclusion follows since ω(G) ≥ ω(H).

3 Mycielski graphs

Given the graph Mi, we decompose V (Mi) into Vi = V (Mi−1), V ′i the set of copies, and wi the vertex
linked to V ′k.

1. Let G be a k-chromatic graph, and c a proper k-colouring of G. Show that for every colour i, there
exists a vertex v ∈ V (G) such that c(v) = i and all the other colours appear in its neighbourhood.

Let G be a graph of chromatic number k, and let c be a proper k-colouring of G. Let us assume for
the sake of contradiction that, for some colour i, every vertex v such that c(v) = i misses a colour
av ∈ [k] − i in its neighbourhood. Let us recolour every such vertex v with colour av, thus creating
some colouring c′ of G. Since the recoloured vertices where the ones coloured with i by c, they form
an independent set, and so after the recolouring process the colours in their neighbourhood remain
unchanged. So c′ is a proper colouring of G, and c′ uses colours only from [k]− i, so k − 1 different
ones. This contradicts the fact that χ(G) = k.

2. Show that for all i ≥ 2, the graph Mi contains no triangle (i.e. a copy of the complete graph K3).
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We prove the result by induction on i. The base case i = 2 is trivial. Assume for the sake of
contradiction that Mi contains a triangle T = (u1, u2, u3) for some i ≥ 3. Since the neighbourhood
of wi is an independent set, wi is contained in no triangle, hence wi /∈ T . Since V ′i is an independent
set, |T ∩ V ′i | ≤ 1. By the induction hypothesis, Mi−1 contains no triangle, hence T is not entirely
contained in Vi = V (Mi−1). We infer that T ∩ V ′i contains exactly one vertex, say u1. Let u′1 ∈ Vi be
the vertex of which u1 is a copy, then u2, u3 ∈ N(u′1). So (u′1, u2, u3) is a triangle entirely contained
in Vi, a contradiction.

3. Show by induction that χ(Mi) ≤ i, for all i ≥ 2.

We know already that χ(M2) = χ(K2) = 2. Let i ≥ 3, and let c be a proper (i − 1)-colouring
of Mi−1 obtained by induction. We let ci(v) := ci−1(v) for every v ∈ Vi = V (Mi−1), and we let
ci(v

′) := ci(v) for the copy v′ ∈ V ′i of v. Finally, we let ci(wi) := i. It is straightforward that ci is a
proper i-colouring of Mi.

4. Show that χ(Mi) ≥ i, for all i ≥ 2.

Assume for the sake of contradiction that there exists a proper (i− 1)-colouring c of Mi. In particular,
c induces a proper (i − 1)-colouring of Mi−1 on Vi. By the result of Question 3.1, for every colour
j ∈ [i − 1], there exists some vertex vj ∈ Vi such that c(vj) = j and c(NMi−1(vj)) = [i − 1] \ {j}.
Let v′j ∈ V ′i be the copy of vj . Then the colour of v′j is forced to be j, since NMi−1(vj) ⊂ NMi(v

′
j).

We conclude that c(V ′i ) = [i− 1], so there remains no colour available for wi, a contradiction.
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