
Graph Algorithms

TD : Introduction

1 To begin

1. Show that a graph always has an even number of odd degree vertices.

Let G be a graph. We have ∑
v∈V (G)

deg(v) = 2|E(G)|.

Therefore
∑

v∈V (G) deg(v) is an even number. The parity of that sum is given by the number of odd
operands, that is the number of odd degree vertices in G. We infer that the number of odd degree vertices in
G is even.

2. Show that a graph with at least 2 vertices contains 2 vertices of equal degree.

Let n := |V (G)|. First assume that G contains no isolated vertices. Since G has no loop, one has 1 ≤
deg(v) ≤ n− 1 for every vertex v ∈ V (G). Since G contains n vertices, by the pigeonhole principle, there
exists two vertices in G with the same degree.

If G contains two isolated vertices, those vertices have the same degree.

We can now assume that G contains exactly one isolated vertex v0. Let G′ := G − v0, and observe that
degG′(v) = degG(v) for every vertex v ∈ V (G′). Since G′ has no isolated vertex, we have already showed
that it must contain two vertices with the same degree, which also have the same degree in G.

3. Let G be a graph of minimum degree δ(G) ≥ 2. Show that G contains a cycle.

Let P = v0, . . . , vℓ be a path of maximal length in G (or any maximal path, i.e. a path that cannot be further
extended). Let v ∈ N(vℓ) \ {vℓ−1} (this is non empty since deg(vℓ) ≥ 2). Since P is maximal, we have
v ∈ V (P ), so there exists 0 ≤ i ≤ ℓ− 2 such that v = vi. We conclude that vi, . . . , vℓ is a cycle in G.

4. Let G be a graph of minimum degree d, and of girth 2t+1. Given any vertex v ∈ V (G), show that there are
at least d(d − 1)i−1 vertices at distance exactly i from v in G, for every 1 ≤ i ≤ t. Deduce a lower bound
on the number of vertices of G.

Let Xi be the set of vertices at distance i from v. Let us first prove the following claim.

Claim For every 0 ≤ i ≤ t− 1, every set Xi is an independent set, and every vertex in Xi+1 has at most 1
neighbour in Xi.

Proof. Let y, z ∈ Xi, and let Py and Pz be paths of length i from y to v and from z to v, respectively (they
exist by definition of Xi−1. These path are not disjoint since they both contain v; let v0 be the first vertex in
which they intersect, and so there is a path Pyz of length at most 2i ≤ 2t − 2 from y to z. If yz is an edge,
then together with Pyz this forms a cycle of length at most 2t− 1, a contradiction. If y and z have a common
neighbour v ∈ Xi+1, then the union of the path y— v— z together with Pyz forms a cycle of length at most
2t, again a contradiction.

Note that from the Claim, we can deduce that G[
⋃

i≤tXi] is a tree. The result follows from the well-known
lower bound on the size of a layer in a tree of given minimum degree. Let us repeat the proof of that lower
bound, that is done by induction on i.
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For i = 1, we have |X1| = |N(v)| = deg(v) ≥ d, as desired. Let us assume that induction hypothesis holds
from some 1 ≤ i < t, i.e. we have |Xi−1| ≥ d(d − 1)i−2. By the Claim, every vertex x ∈ Xi has all but
one of his neighbours in Xi+1, so at least d − 1. Moreover, again by the Claim, the neighbourhoods of the
vertices in Xi are disjoint, so we have |Xi+1| ≥ (d− 1)|Xi| ≥ d(d− 1)i−1, as desired.

2 Dense subgraphs

1. Show that every graph of average degree d contains a subgraph of minimum degree at least d
2 .

Let H be a subgraph of G such that ad(H) = mad(G) ≥ d. Assume for the sake of contradiction that there
exists a vertex v of degree less than d/2 in H . Then

ad(H \ v) = 2|E(H)| − 2 degH(v)

|V (H)| − 1
>

2|E(H)| − d

|V (H)| − 1
≥ 2|E(H)| − 2|E(H)|/|V (H)|

|V (H)| − 1

>
2|E(H)| × |V (H)| − 2|E(H)|

(|V (H)| − 1)× |V (H)|
=

2|E(H)|
|V (H)|

= d

The average degree of H \ v is more than mad(G), a contradiciton.

2. Can you find a similar relation between the maximum degree and the minimum degree? And between the
maximum degree and the average degree?

No, for instance the star K1,n has maximum degree n (unbounded as n → ∞), minimum degree 1, and
average degree less than 2.

3. Show that every graph of average degree d contains a bipartite subgraph of average degree at least d
2 .

Let H = (X,Y,E) be a bipartite subgraph of G given by a maximal cut. Assume for the sake of contradiction
and without loss of generality that there exists a vertex v ∈ X such that degH(v) = degY (v) < degG(v)/2.
Observe that degG(v) = degX(v) + degY (v), so degX(v) > degG(v)/2 > degY (v). Let H ′ be given by
the cut (X \ {v}, Y ∪ {v}). Then |E(H ′)| = |E(H)| − degY (v) + degX(v) > E(H); this contradicts the
maximality of the cut (X,Y ).

3 Cuts and trees

1. If G is connected, and e = uv is a bridge in G, how many connected components does G \ e contain? Show
that u and v are cut-vertices, unless they have degree 1.

By assumption, G \ e contains at least two connected components. Every connected component in G \ e
contains either u or v, otherwise it would be a connected component in G disjoint from that which contains
u; this contradicts the fact that G is connected. We conclude that G \ e contains exactly two connected
components, the one that contains u, Cu, and the one that contains v, Cv. If |Cu| > 1, then the connected
components of G \ u are Cv and the connected components of G[Cu \ {u}]; in particular G is disconnected
and hence u is a cut-vertex. The same holds for v, by symmetry.

2. Show that a graph G is a tree if and only if there exists a unique path from u to v in G, for every pair of
vertices u, v ∈ G.

We first show the implication, by proving the converse. Assume that there are two vertices u and v that are
linked by two different paths in G. Let P0 and P1 be two different paths from u to v. Let x be the last vertex
in which the beginning of the paths P0 and P1 coincide, and let y be the next common vertex between P0

and P1. Then the union of the two subpaths P0[x, y] and P1[x, y] is a cycle, so G is not a tree.

We now show the reverse implication, again by proving the converse. Assume that G is connected and not a
tree, so G contains a cycle C. Let x, y be two consecutive vertices on C; there are two differents paths from
u to v in G, namely the path u— v, and the path C \ uv.
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3. Let T a BFS tree of a graph G. Show that every edge of G is contained either within a layer of T , or between
two consecutive layers of T .

Let (Ti)i be the layers of T , and let v0 be the root vertex. Assume for the sake of contradiction that there is
an edge uv ∈ E(G) such that u ∈ Xi, v ∈ Xj , and j ≥ i+2. Then by definition there is a path Pu of length
i from v0 to u. Together with the edge uv, this forms a path of length i + 1 from v0 to v, which contradicts
the fact that dist(v0, v) = j > i+ 1 (by definition of the layers).

4. Let T be a DFS tree of a graph G. Show that, for every edge e ∈ E(G), there is a branch of T that contains
both extremities of e.

Assume for the sake of contradiction that there is an edge uv ∈ E(G) such that u and v and unrelated in T ,
and let us assume without loss of generality that u has been added to T before v during the DFS. Let w be
the last common ancestor of u and v in T , and let w′ be the child of w in T in the same branch as that of v
(we could have w′ = v). Let i be the step at which w′ has been added to the tree Ti in order to obtain the
tree Ti+1. It holds that v /∈ V (Ti), so N(u) \ V (Ti) is non-empty; hence the DFS should consider adding
the edge uv before adding the edge ww′, a contradiction.
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