Graph Algorithms : Home Assignment

Rules Every result from the course and the exercise sessions may be used by making an explicit referrence
to it (e.g. “Every graph G is (A(G) + 1)-colourable [course, Chapter 2].”). Brainstorming between students is
allowed, but the redaction in each assignment must be distinct.

For information, I have already graded 2 assignments:

* ChatGPT 3.5 scored 2/20.
 ChatGPT 4 scored 7/20.

Your goal is to perform strictly better than these Al. Only grades above 10/20 will be taken into consideration
for the final grade.

Exact exponential algorithms for the Graph Colouring Problem

The goal of this exercise is to solve the colouring problem exactly for any graph, with an algorithm of exponential
complexity as small as possible. For an exponential complexity, we rely on the notation O*(-), that satisfies
nPM e = O*(¢™) (we ignore any polynomial factor).

Given an integer k£ > 3, to solve the problem k£-COLOUR on an n-vertex graph (G, we can enumerate all
mappings ¢: V(G) — [k], and test if any of them is a proper k-colouring of G. This yields an algorithm of
complexity O* (k™). We will see that it is possible to do (much) better.

1. To begin, let us find a first non-trivial algorithm for 3-COLOUR.

(a) Let T be an n-vertex tree. Show that the number of proper 3-colourings of T is 3 x 2"~ 1.

(b) Use the previous fact to derive an algorithm that solves 3-COLOUR in time O*(2").
Hint: Every connected graph has a spanning tree.

2. Let us now find an even better algorithm to solve 3-COLOUR. Given a graph G, a dominating set of G is a
set of vertices X C V(@) such that Ng[X] = V(G) (every vertex v € V(G) \ X has a neighbour in X).

(a) Let X be a dominating set of G, and ¢: X — [3] a proper 3-coloring of G[X]. Show that it is
possible to test in polynomial time whether ¢ extends to a proper 3-colouring ¢ of G (we must have
c(z) = ¢(x) for every x € X).

Hint: You may find a polynomial reduction to 2-S AT, which is known to be in P.

(b) Assume that GG is connected and that n > 2. Let T" be a BFS-tree of G. Show that the layers of T’
may be distributed into 2 disjoint dominating sets of (G. Deduce an upper bound (as a function of n)
for the size of a smallest dominating set of G.

(¢) Derive from the above an algorithm that solves 3-COLOUR in time O*((+/3)").
3. Let us now attack the general £-COLOUR problem. We will use a dynamic programming approach.

(a) Given a graph G, assume that you have already computed all subsets of vertices X C V(G) such
that x(G[X]) < j, for some integer 1 < j < k. Show that you can compute all subsets of vertices
Y C V(G) such that x(G[Y]) < j + 1 in time

zn: (7;) 0*(2Y) = O*(3").

t=0

(b) Derive an algorithm that solves k-COLOUR in time O*(3™). What is its space complexity?

2 pts
2 pts

4 pts

3 pts

2 pts

4 pts

3 pts



