

Part C Applications to image analysis problems

Outlines

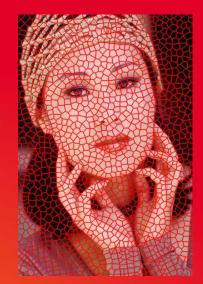
Polygonal superpixels

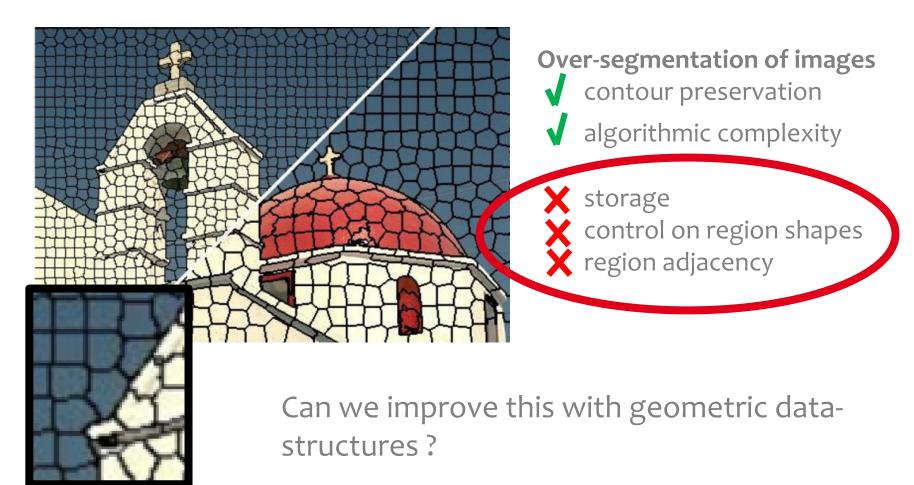
- with Voronoi diagrams
- with Kinetic data-structures
- application to object contouring

Delaunay point processes

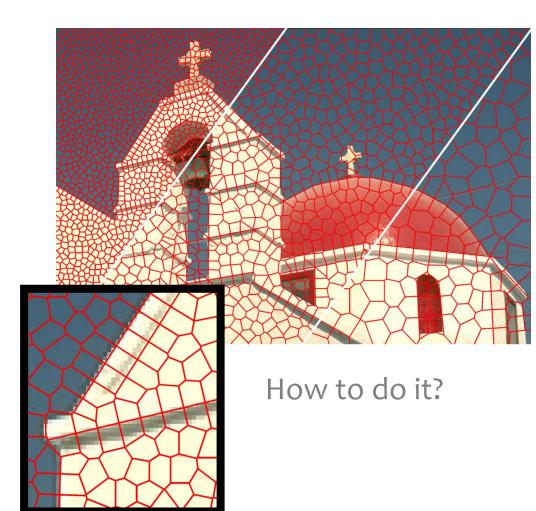
- principle
- application to object contouring
- application to line-network extraction
- application to image compression

Polygonal superpixels





Superpixels as Voronoi cells



storage(2D Delaunay triangulation)

control on region shapes
(convex polygons)

region adjacency
(uniqueness)

Superpixels as Voronoi cells

✓ storage (2D Delaunay triangulation)

control on region shapes (convex polygons)

region adjacency (uniqueness)

Guide the partition by geometric shapes

Voronoi-based Image partitioning

[Duan and Lafarge, Partitioning images into convex polygons, CVPR 2015]

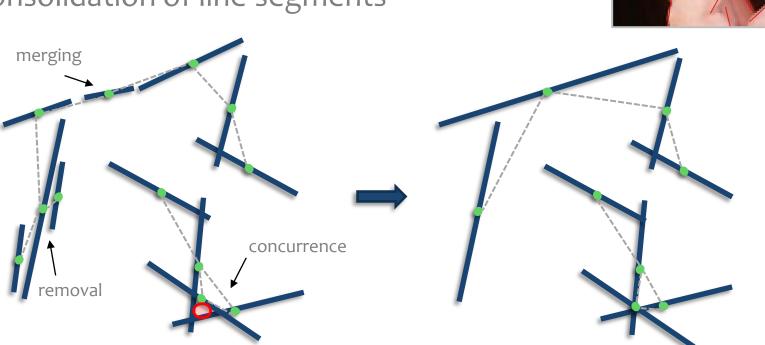
Step 1: extraction of geometric shapes

Detection of line-segments

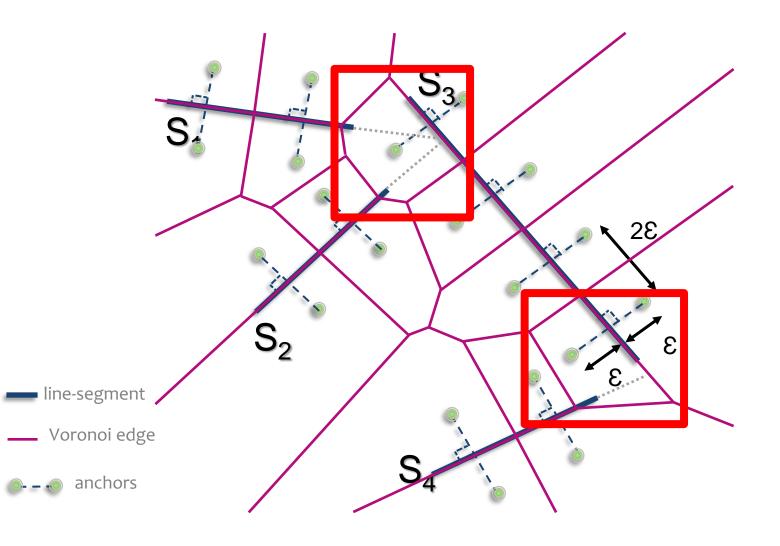
		٦	
	-	I	
	-	I	
		J	

[Von Gioi et al., Lsd: A fast line segment detector with a false detection control, PAMI 2010]

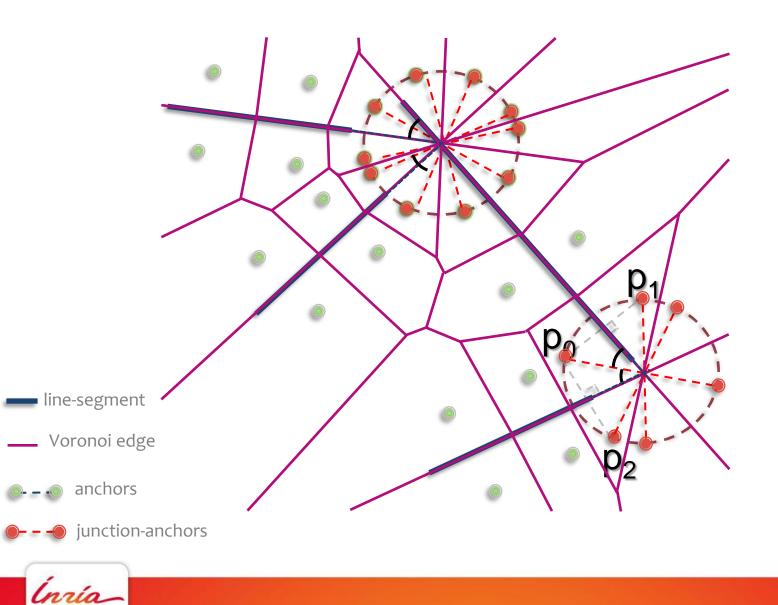
Consolidation of line-segments

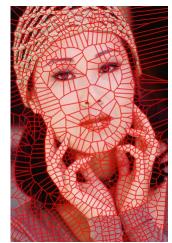


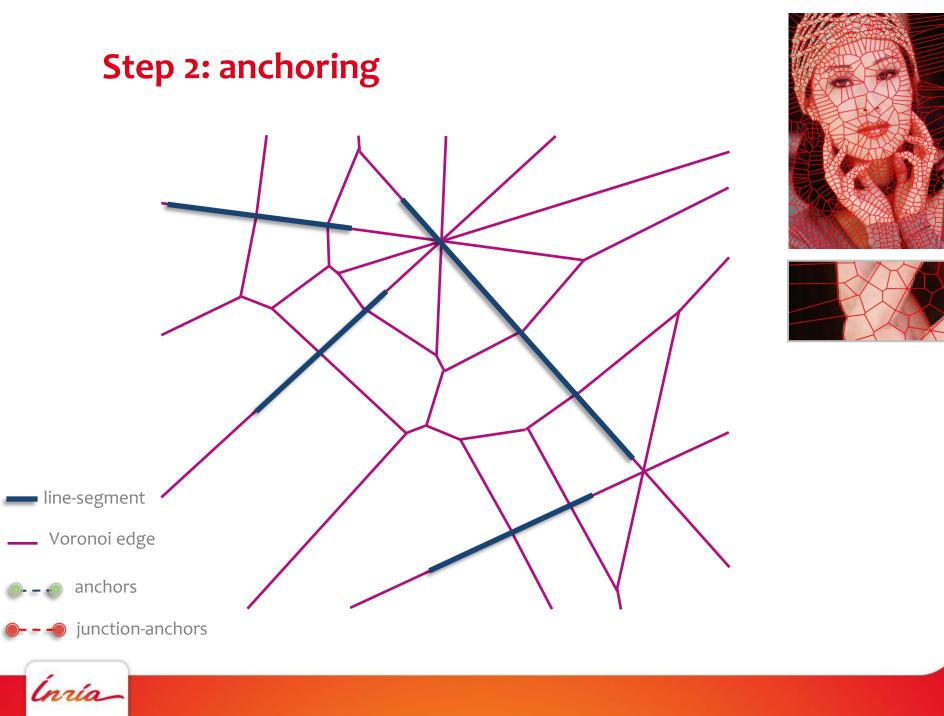
Step 2: anchoring



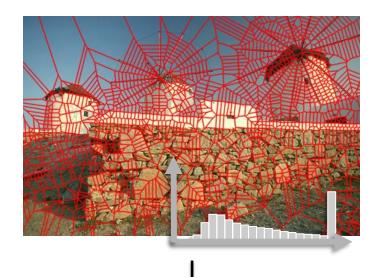
Step 2: anchoring

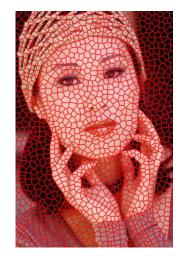




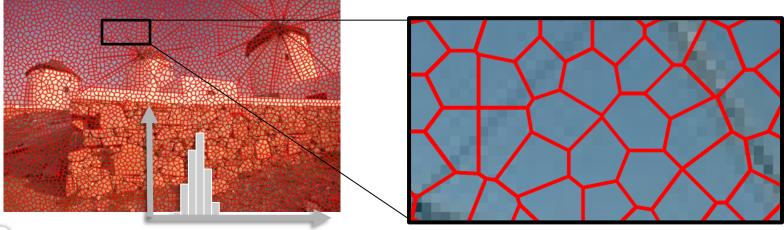


Step 3: homogeneization

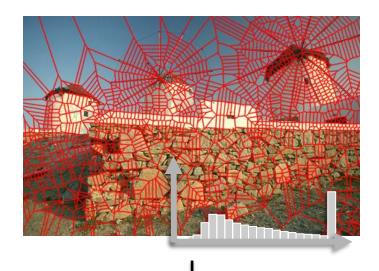




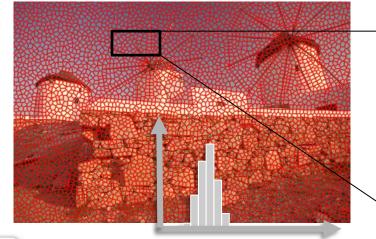
Poisson disk sampling

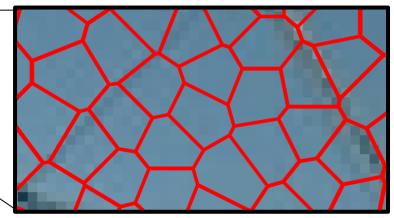


Step 3: homogeneization



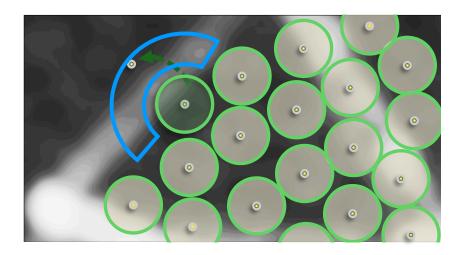
Poisson disk sampling guided by image gradient

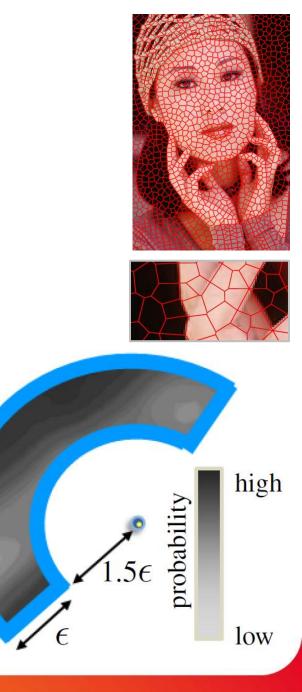




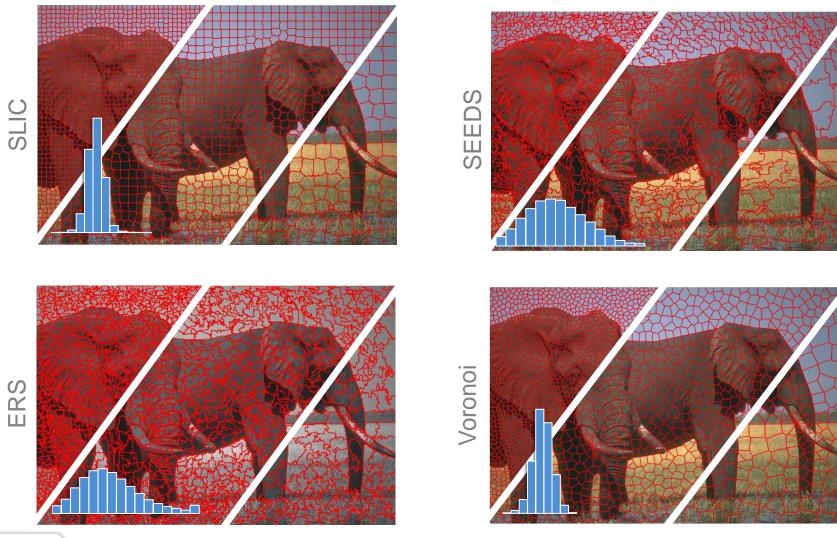
Step 3: homogeneization



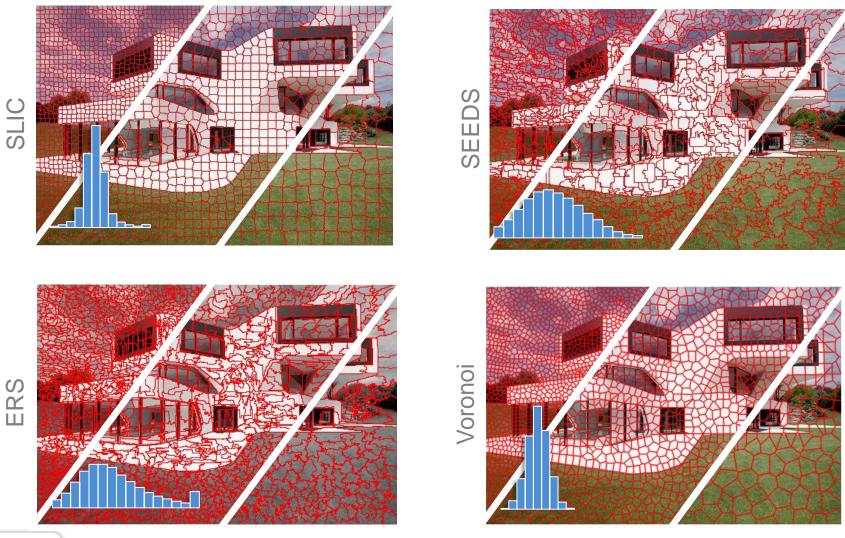




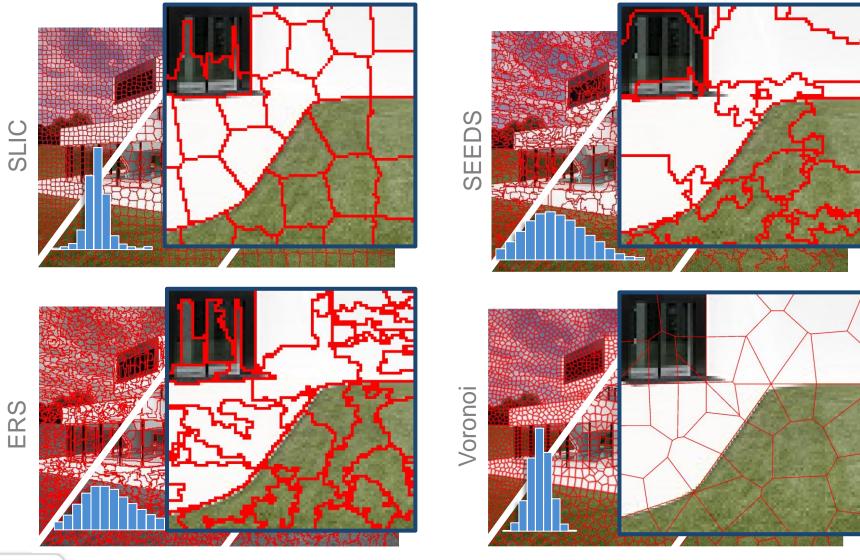
Inría



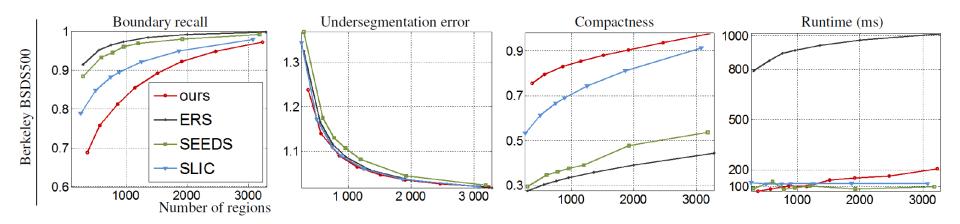
Inría



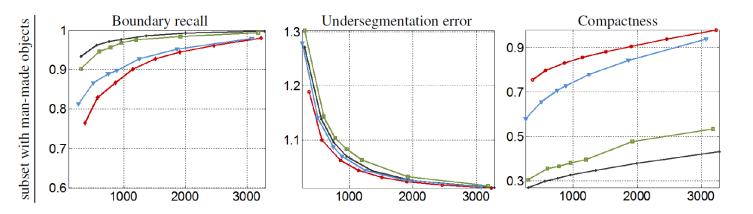
Inría



Inría



Inría



Inría

Results on very big images

Inría

Results on very big images

Demo

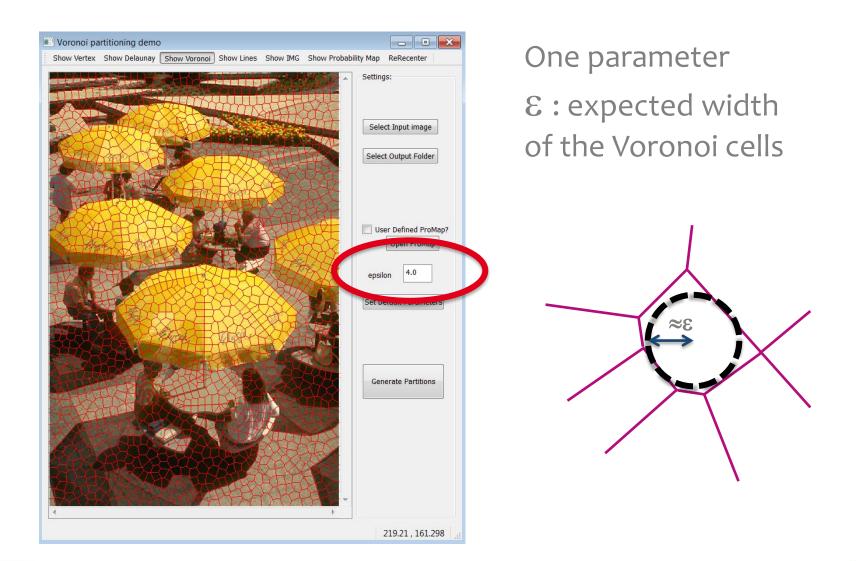
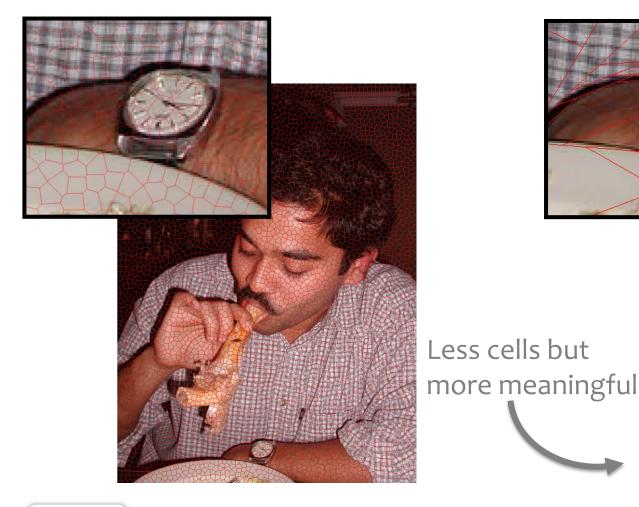


Image partitioning with a kinetic data-structure

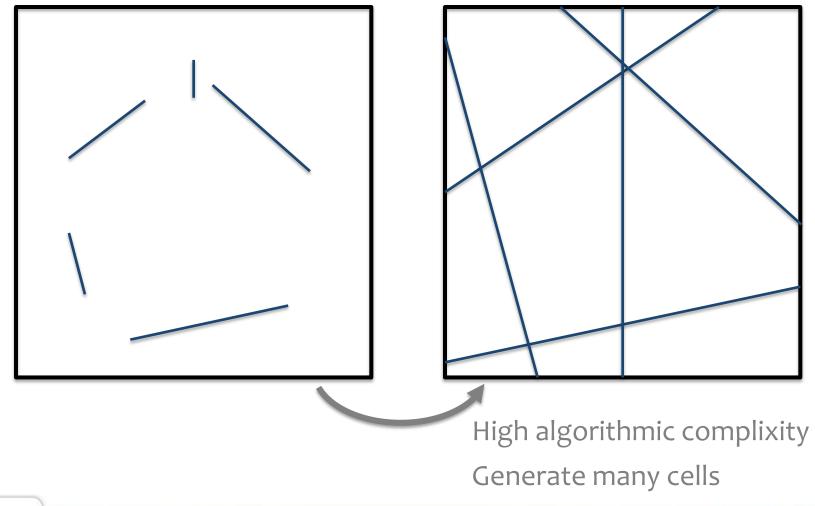
[Bauchet and Lafarge, KIPPI: Kinetic Polygonal Partitioning of Images, CVPR 2018]

Cells with heterogeneous size

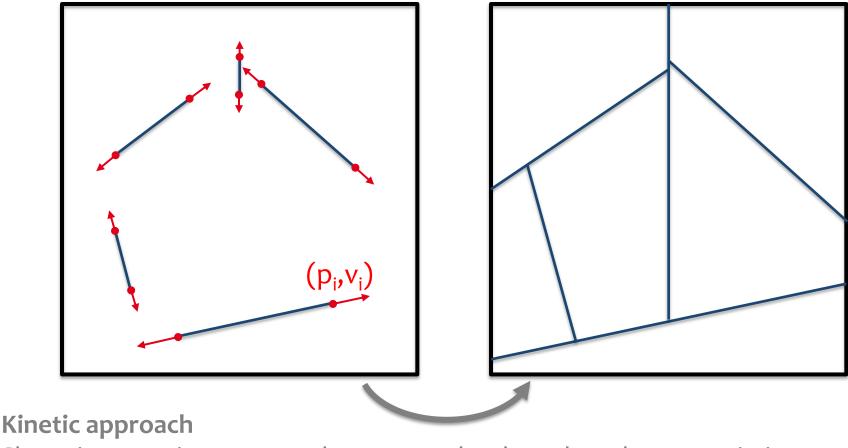


Inría

Polygonal partitioning as space cutting



Polygonal partitioning as space cutting



Shape intersection not greedy anymore, but based on shape proximity

Innía

Kinetic data-structure: a dynamic planar graph $G_t = (V_t, E_t)$

Kinetic data-structure: a dynamic planar graph $G_t = (V_t, E_t)$

Primitive: a dynamic segment
$$s_k(t) = [MP_k(t)] \xrightarrow{P_{k'}(t) \cdots v_{k'}} M$$

with $P_k(t) = A + \overrightarrow{v_k} \times t$

Kinetic data-structure: a dynamic planar graph $G_t = (V_t, E_t)$

Primitive: a dynamic segment
$$s_k(t) = [MP_k(t)] \xrightarrow{P_{k'}(t)} v_{k'}$$

with $P_k(t) = A + \overrightarrow{v_k} \times t$

Certificate

Function testing the intersection of primitive i with other primitives at time t

$$C_{i}(t) = \prod_{\substack{j=1\\ j\neq i}}^{N} Pr_{i,j}(t) \text{ with } Pr_{i,j}(t) = \begin{cases} 1 & \text{if } d(P_{i}(t), s_{j}(t)) > 0\\ 0 & \text{otherwise} \end{cases}$$

Kinetic data-structure: a dynamic planar graph $G_t = (V_t, E_t)$

Primitive: a dynamic segment
$$s_k(t) = [MP_k(t)] \xrightarrow{P_{k'}(t)} \underbrace{M}_{V_{k'}} \xrightarrow{P_{k}(t)} A$$

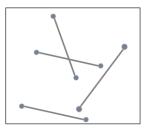
Certificate

Function testing the intersection of primitive i with other primitives at time t

$$C_{i}(t) = \prod_{\substack{j=1\\ j\neq i}}^{N} Pr_{i,j}(t) \text{ with } Pr_{i,j}(t) = \begin{cases} 1 & \text{if } d(P_{i}(t), s_{j}(t)) > 0\\ 0 & \text{otherwise} \end{cases}$$

Queue of events

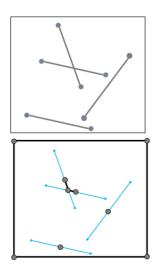
List of times t indicating when a certificate is equal to o (ranked by ascending order)



Algorithm

Algorithm

• Initialize the data-structure by inserting points where two line-segments intersect



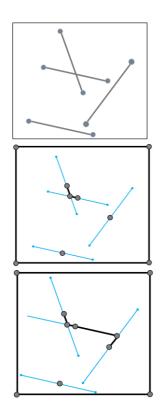
Algorithm

- Initialize the data-structure by inserting points where two line-segments intersect
- For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events



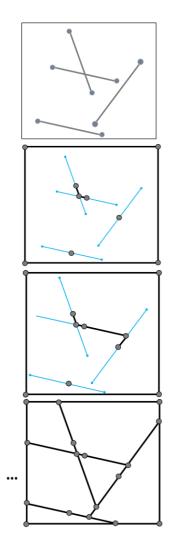
Algorithm

- Initialize the data-structure by inserting points where two line-segments intersect
- For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events



Algorithm

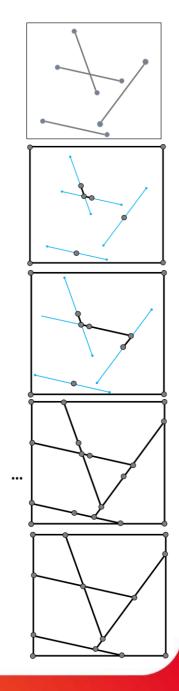
- Initialize the data-structure by inserting points where two line-segments intersect
- For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events

• Finalization



Flexibility

- Use the confidence for each detected line-segments to better adapt the partition (increase speed of good line-segments)

Flexibility

- Use the confidence for each detected line-segments to better adapt the partition (increase speed of good line-segments)

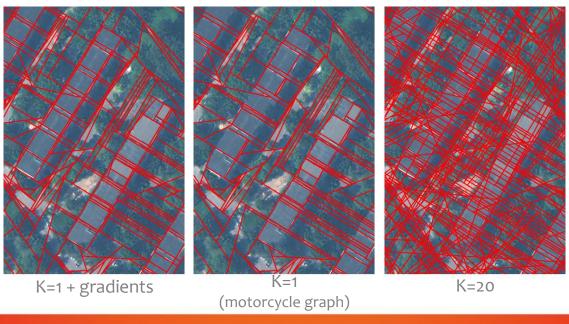
- Policy for deactivating a primitive
- Impose a maximal number of intersection K per primitive
- Check the alignment of a potential prolongation with image gradients

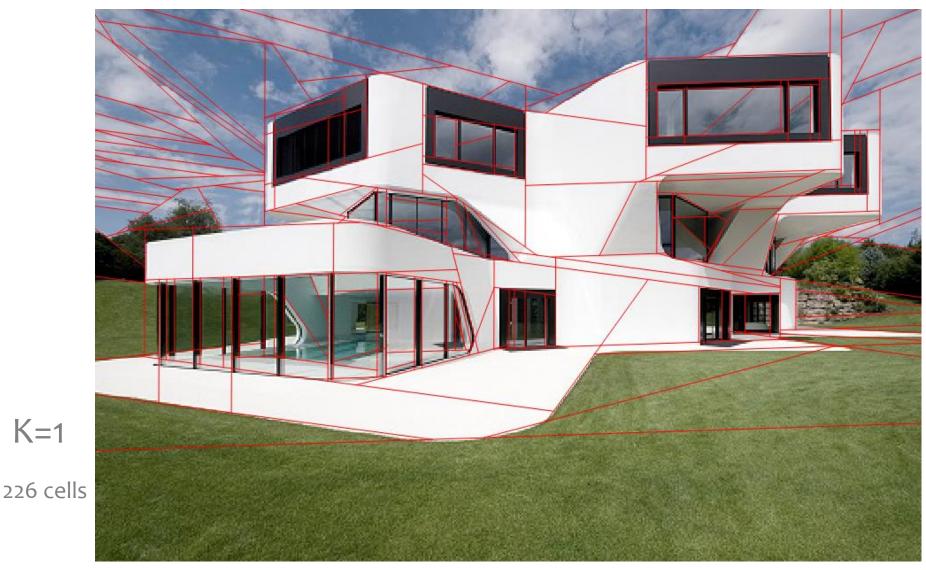
Innía

Flexibility

- Use the confidence for each detected line-segments to better adapt the partition (increase speed of good line-segments)

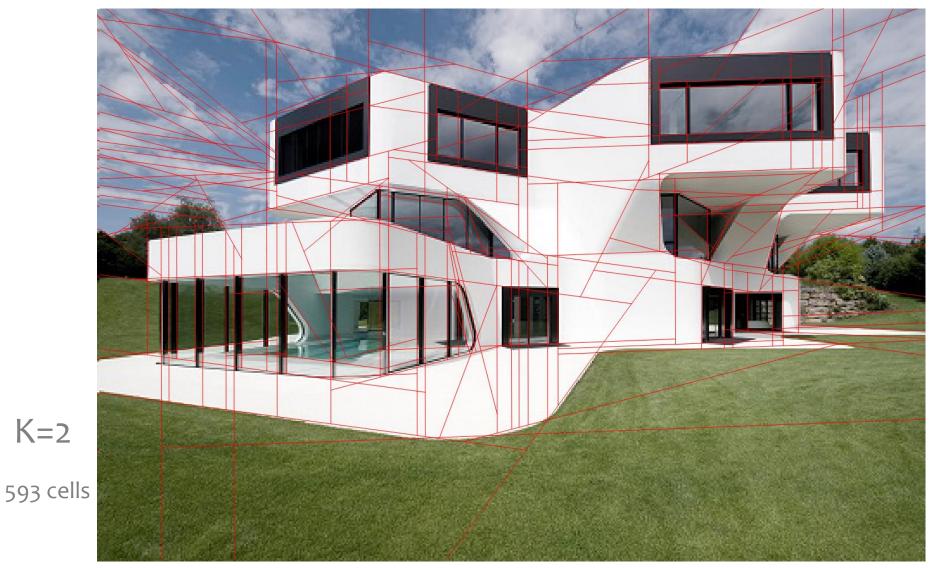
- Policy for deactivating a primitive
- Impose a maximal number of intersection K per primitive
- Check the alignment of a potential prolongation with image gradients



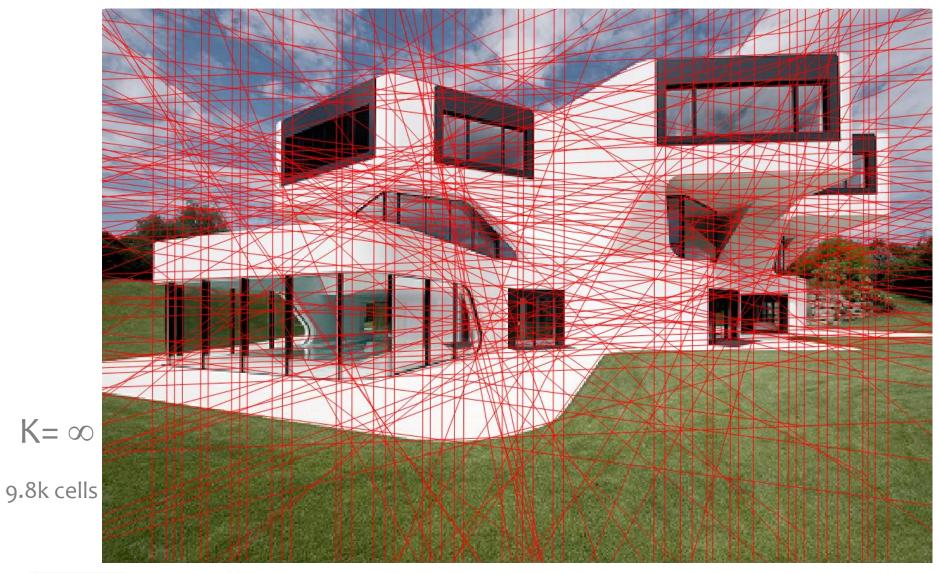


Ínría

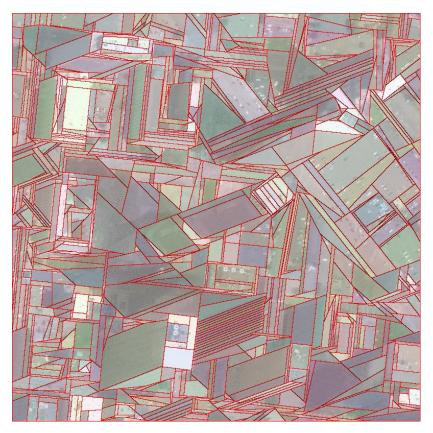
K=1



Inría



Results on satellite images



Inría

Results on satellite images

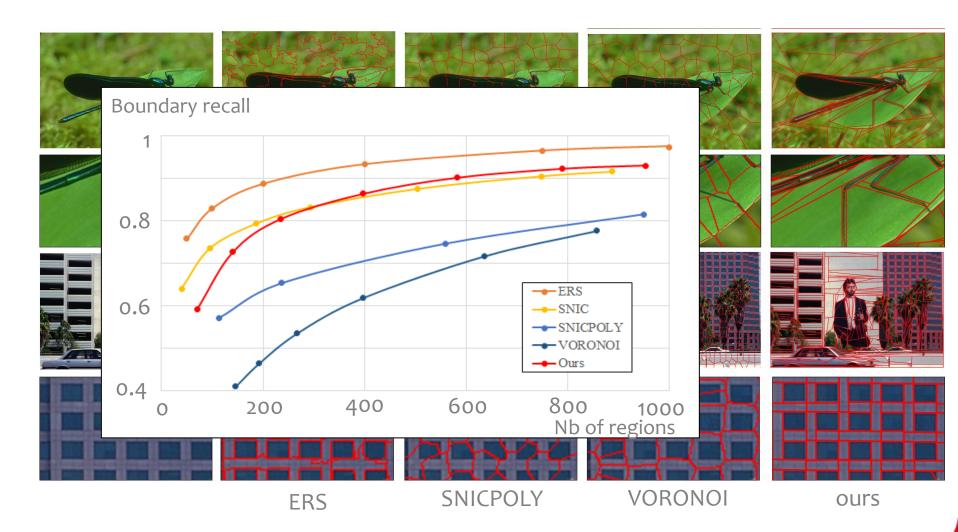
Without line-segment regularization

regularization			Facade 154Kpix	Aerial 2.46Mpix	Satellite 106Mpix	
	-	# Line-segments	847	3178	171.1K	7 <u>P</u> <u></u>
		# Output polygons	530	2488	124.5K	
regularization		Line-segment detection	52.4 ms	0.59 s	70.7 s	
		Regularization	72.8 ms	0.35 s	654.5 s	
		Kinetic partitioning	51.2 ms	0.23 s	45.1 s	

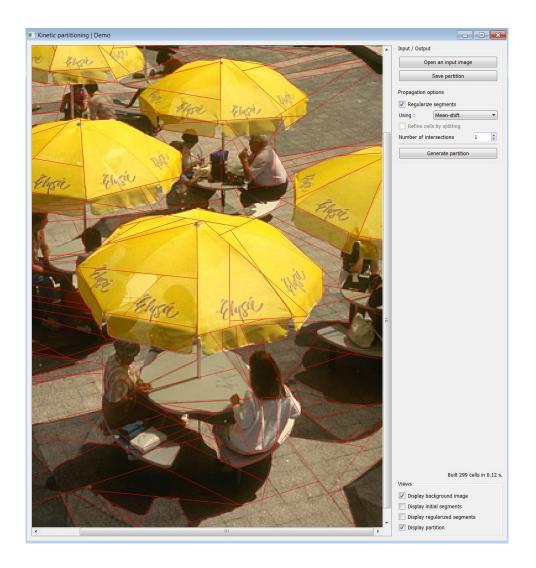
Inría

With line-segment

Comparisons with over-segmentation methods



Demo



Inría

Application to object contouring

Label each cell as inside or outside the objects of interest

Label each cell as inside or outside the objects of interest

Graph-cut

Data term: distance to a saliency map

$$H(i|m_f) = \frac{\min_{j \in S_{m_f}} \|I(i) - \widehat{I}(j)\|_2^2}{\min_{j \in S_0} \|I(i) - \widehat{I}(j)\|_2^2 + \min_{j \in S_1} \|I(i) - \widehat{I}(j)\|_2^2}$$

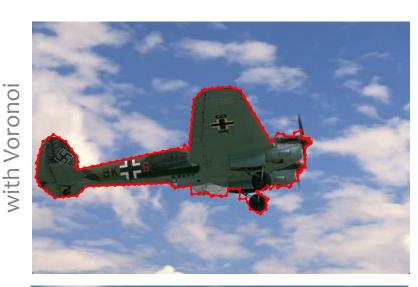
Label each cell as inside or outside the objects of interest

Graph-cut

Data term: distance to a saliency map

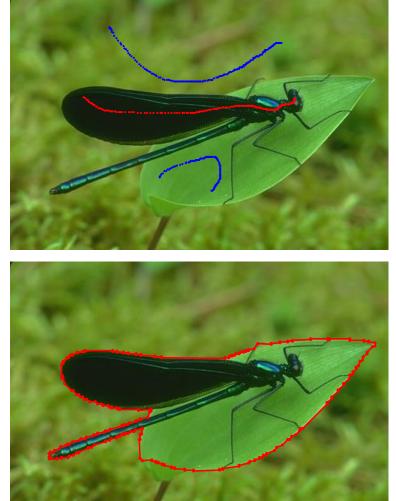
Potential: Potts model

Ínría



ours

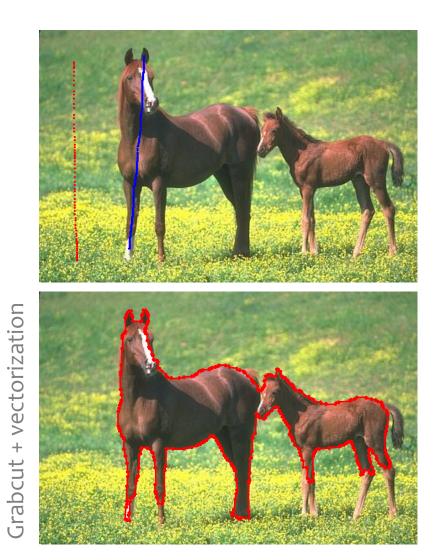
24



Grabcut + vectorization

(nría_

ours

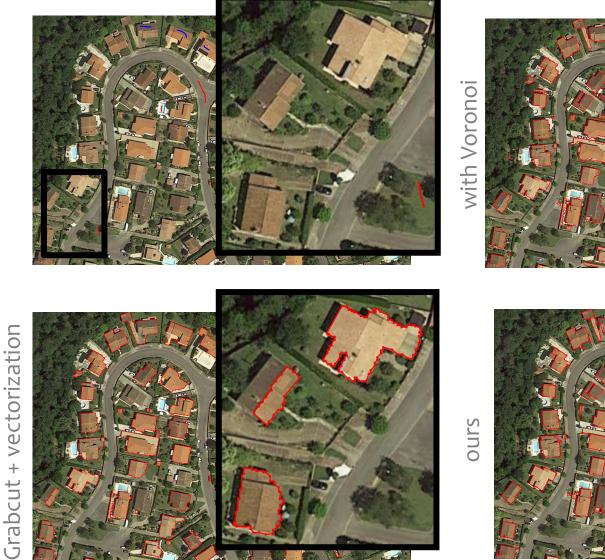


Inría

ours

with Voronoi

24



Inría

Nb of edges: 130

Nb of edges: 308

Nb of edges: 476

Application to city modeling from satellite images

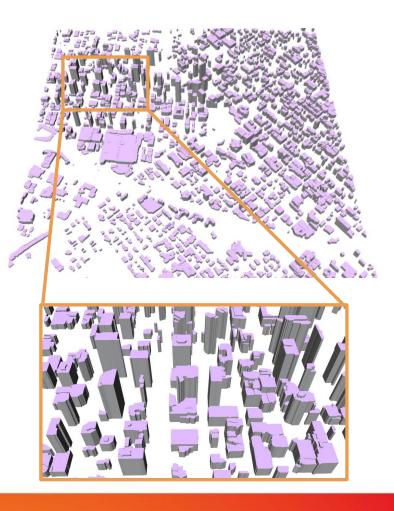
[Duan and Lafarge, Towards large-scale city reconstruction from satellites, ECCV 2016]

City modeling from satellite images

Input

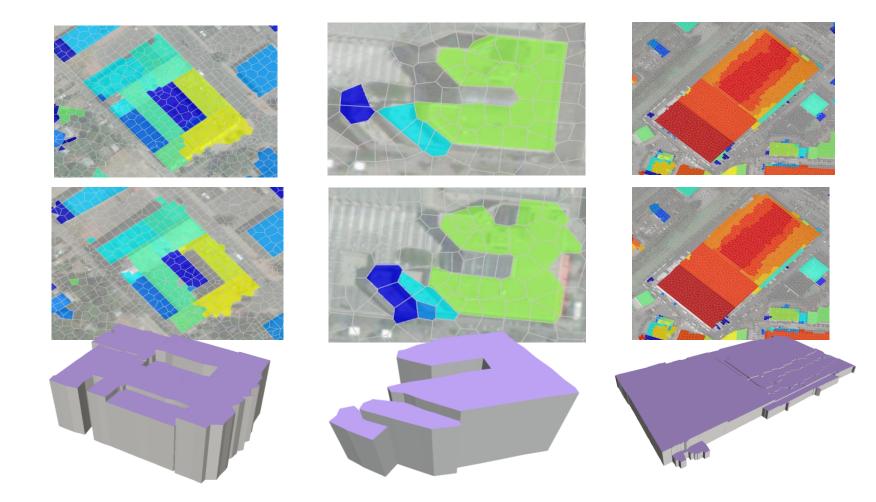
Stereo pair of satellite images

Output 3D model at LOD1



Inría

City modeling from satellite images

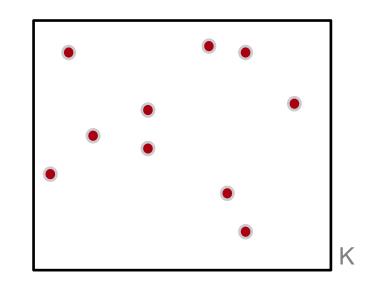


Inría

2

Delaunay point processes

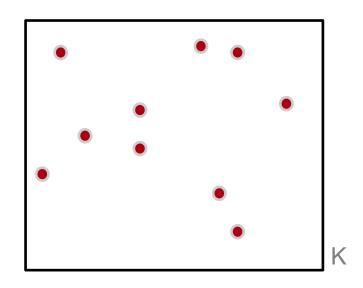
Random configurations of points distributed in a bounded domain K



Random configurations of points distributed in a bounded domain K

Interesting characteristics

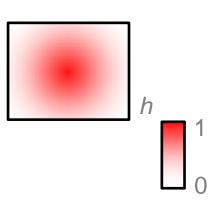
• **#points is a random variable**

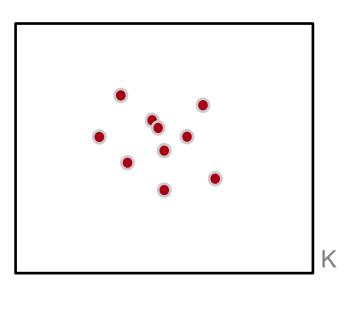


Random configurations of points distributed in a bounded domain K

Interesting characteristics

- #points is a random variable
- can be guided by a density h

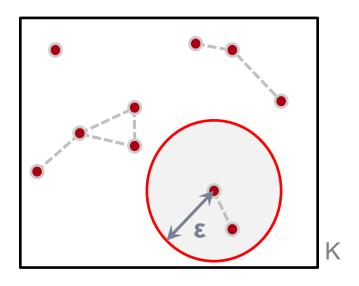




Random configurations of points distributed in a bounded domain K

Interesting characteristics

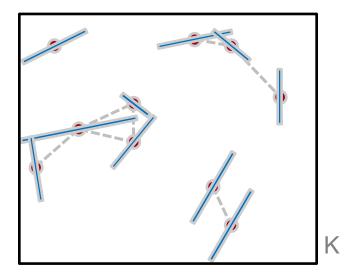
- #points is a random variable
- can be guided by a density h
- with spatial interactions



Random configurations of points distributed in a bounded domain K

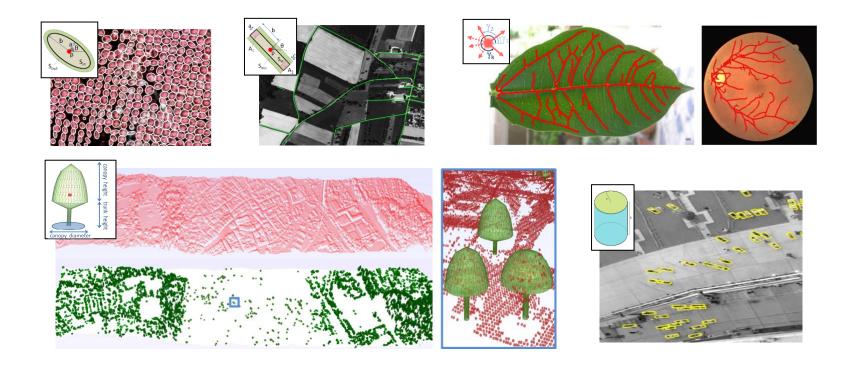
Interesting characteristics

- #points is a random variable
- can be guided by a density h
- with spatial interactions
- each point can be associated with a parametric object



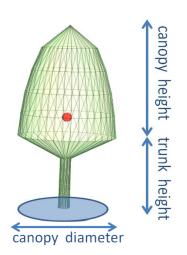
Applications

Parametric object detection



A parametric object

- points = object centroids
- some additional parameters



A parametric object

An energy U

- measures the quality of an object configuration
- specifies the density h of the process $h(.) \propto \exp -U(.)$

A parametric object

An energy U

- measures the quality of an object configuration
- specifies the density h of the process $h(.) \propto \exp{-U(.)}$
- typical form:

$$\forall x \in \mathcal{C}, \quad U(x) = \sum_{x_i \in x} D(x_i) + \sum_{x_i \sim x_j} V(x_i, x_j)$$

Data term Pairwise interactions

A parametric object

An energy U

- measures the quality of an object configuration
- specifies the density h of the process $h(.) \propto \exp{-U(.)}$
- typical form:

$$\forall x \in \mathcal{C}, \quad U(x) = \sum_{x_i \in x} D(x_i) + \sum_{x_i \sim x_j} V(x_i, x_j)$$

Data term Pairwise interactions

<u>Markovian property</u>: interactions restricted to a local neighborhood $x_i \sim x_j = \{(x_i, x_j) \in \mathbf{x}^2 : i > j, ||x_i - x_j||_2 < \epsilon\}$

- A parametric object
- An energy U
- A sampler
 - Find an approximate solution of the global minimum of U typically RJMCMC sampler [Green95]

- A parametric object
- An energy U
- A sampler
 - Find an approximate solution of the global minimum of U typically RJMCMC sampler [Green95]
 - **Principle:** iterative mechanism that simulates a discrete Markov chain on the configuration space

A parametric object

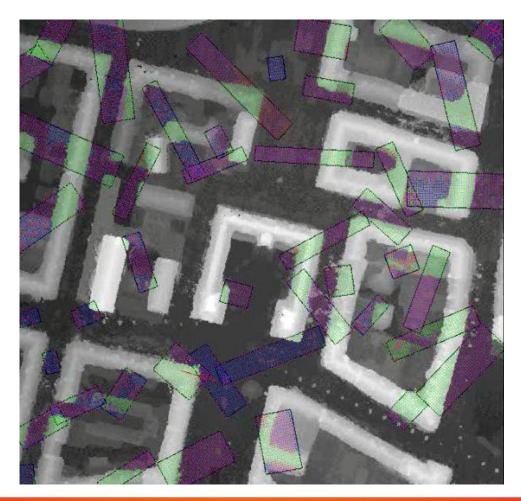
An energy U

A sampler

- Find an approximate solution of the global minimum of U typically RJMCMC sampler [Green95]
- **Principle:** iterative mechanism that simulates a discrete Markov chain on the configuration space
- At each iteration,

(i) proposition of a local modification
(ii) acceptation/rejection of the modification depending on energy variation, proposal densities and a relaxation parameter

An example: extracting buildings from Elevation maps



Three important ingredients

An example: extracting buildings from Elevation maps



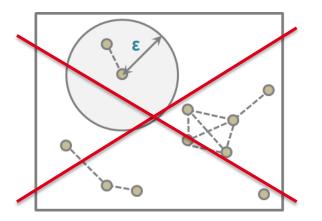
Geometric structures not guaranteed by construction!

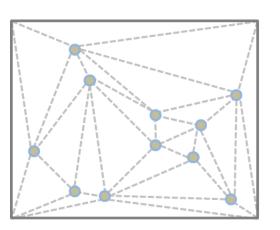
(time ×150)

Delaunay neighborhood

Idea: use Delaunay triangulation to define neighboring relationship (instead a traditional Euclidean distance)

$$p_i \sim_D p_j = \{(p_i, p_j) \in \mathbf{p}^2 : (p_i, p_j) \in C_2(\mathbf{p})\}$$





Why is it interesting?

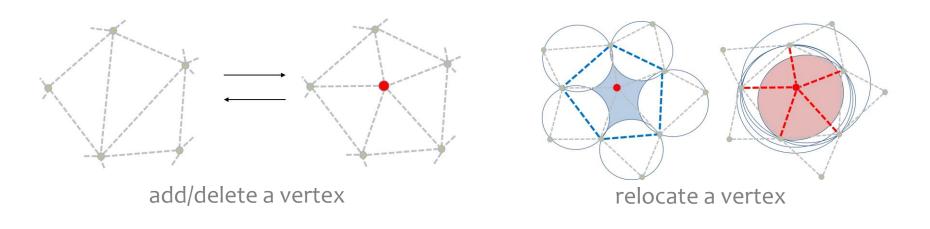
Each configuration relies on space decomposition that can be used as a mean to sample points but also as goal to segment data

• Parameter-free neighborhood

Why is it interesting?

Each configuration relies on space decomposition that can be used as a mean to sample points but also as goal to segment data

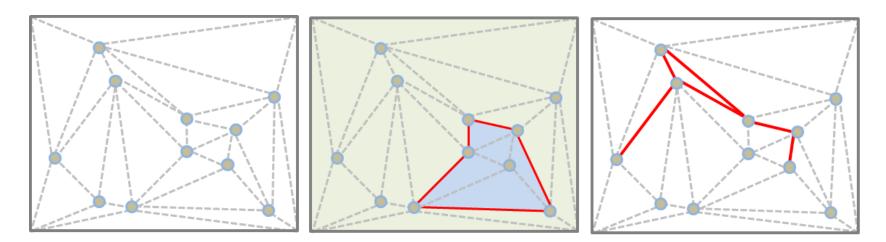
- Parameter-free neighborhood
- Efficient sampling



Why is it interesting?

Each configuration relies on space decomposition that can be used as a mean to sample points but also as goal to segment data

- Parameter-free neighborhood
- Efficient sampling
- flexibility for a large range of applications



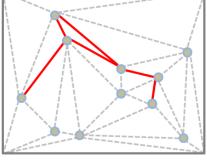
Energy formulation

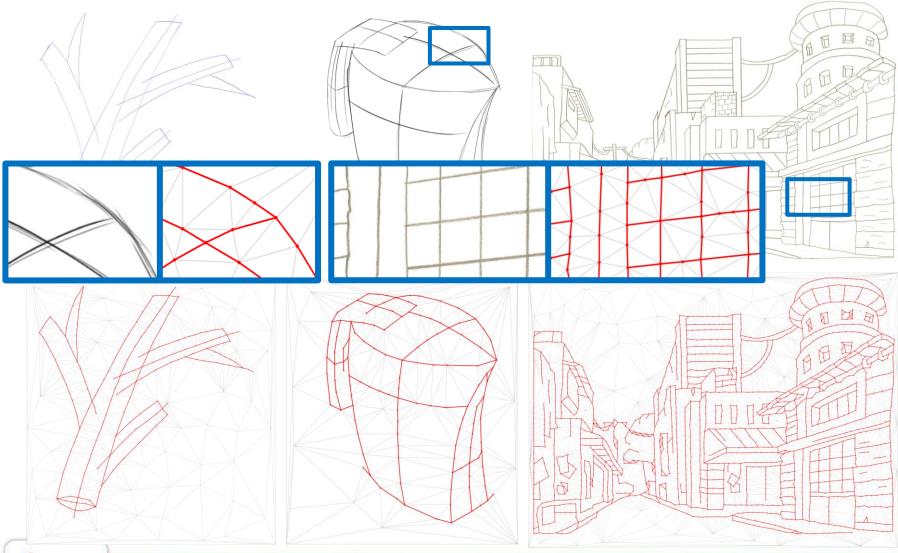
A configuration x = (p, m) a set of points and some additional parameter on points, edges or facets of the triangulation

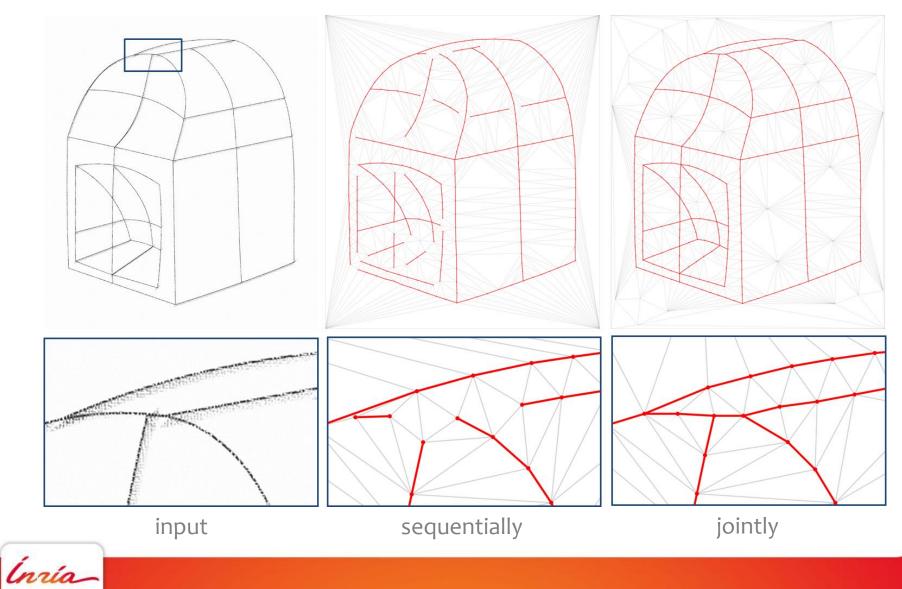
Energy of the form
$$~U(oldsymbol{x}) = U_{fidelity}(oldsymbol{x}) + U_{prior}(oldsymbol{x})$$

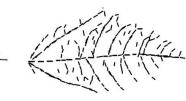
Example with line-network extraction

- $m = (m_e)_{e \in C_2(p)}$ with $m_e \in \{0, 1\}$
- U_{fidelity} : coherence with data (active edges should align with strong gradients)
- U_{prior} : penalty for short edges + penalty for badly connected edges
- Sampling: RJMCMC with points distributed with density following an image gradient

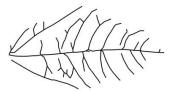


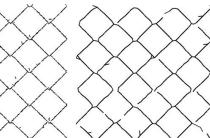


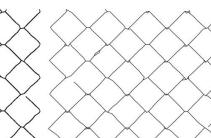












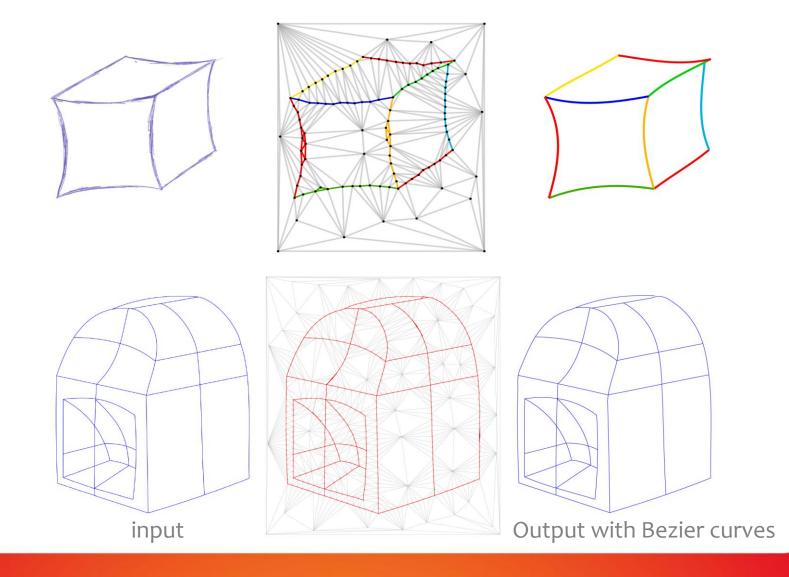
Input

GT

Marked point process [Verdie et al, IJCV14]

Junction point process [Chai et al, CVPR13] Ours

		Precision	F-measure	Time
Leaf	Junction-point process	0.59	0.64	73s
	Marked point process	0.76	0.70	33s
	ours	0.79	0.73	20s
Tiles	Junction-point process	0.46	0.54	227s
	Marked point process	0.67	0.72	103s
	ours	0.70	0.74	70s

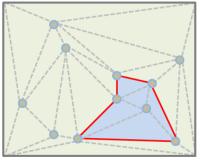


A configuration x = (p, m) a set of points and some additional parameter on points, edges or facets of the triangulation

Energy of the form
$$U(\boldsymbol{x}) = U_{fidelity}(\boldsymbol{x}) + U_{prior}(\boldsymbol{x})$$

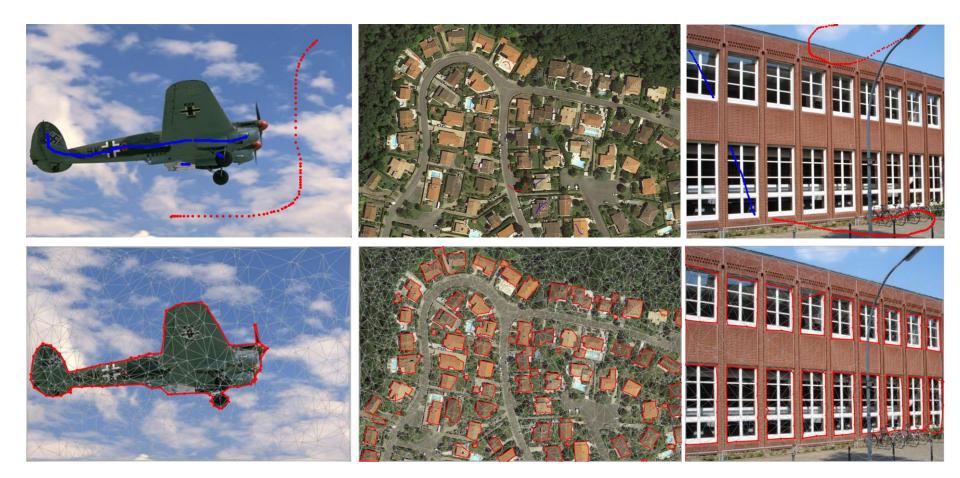
Example with object countouring

- $m = (l_f)_{f \in C_3(p)}$ with $l_f = 0, 1$
- U_{fidelity} : radiometric coherence inside each facet



- U_{prior} : penalty for short edges + label smoothness for adjacent facets
- Sampling: RJMCMC with points distributed with density following an image gradient

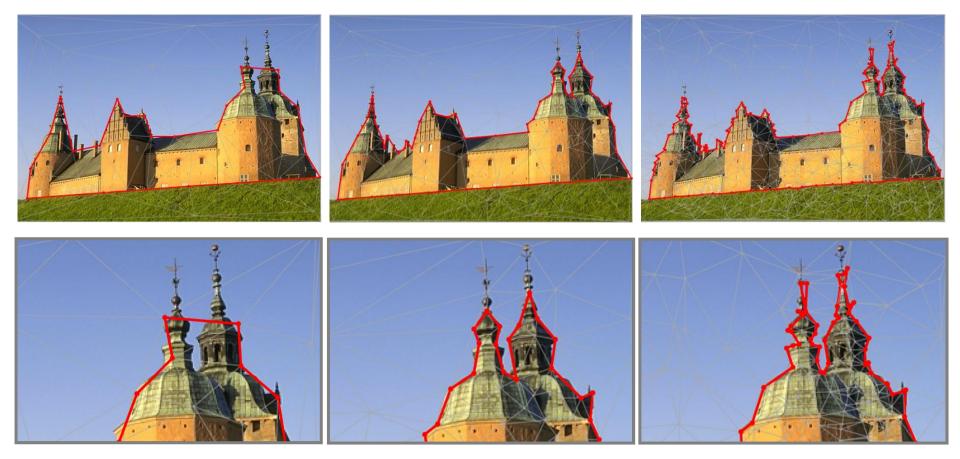
Inría



Inría

Inría

Inría



low point density

high point density

Inría

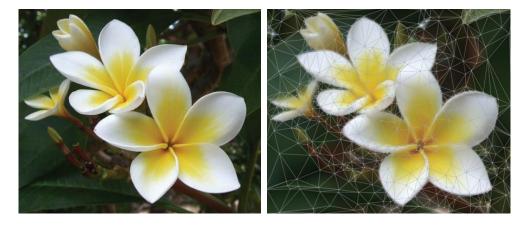
A configuration x = (p, m) a set of points and some additional parameter on points, edges or facets of the triangulation

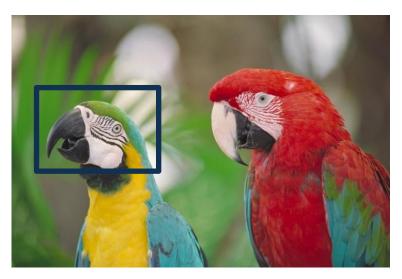
Energy of the form
$$~U(oldsymbol{x}) = U_{fidelity}(oldsymbol{x}) + U_{prior}(oldsymbol{x})$$

Example with image compression

- $oldsymbol{m} = (c_p)_{p \in oldsymbol{p}}$ where c_p is a RGB color
- U_{fidelity} : per-pixel error between input/output
- U_{prior} : penalty for high number of points
- Sampling: RJMCMC with points distributed with density following an image gradient

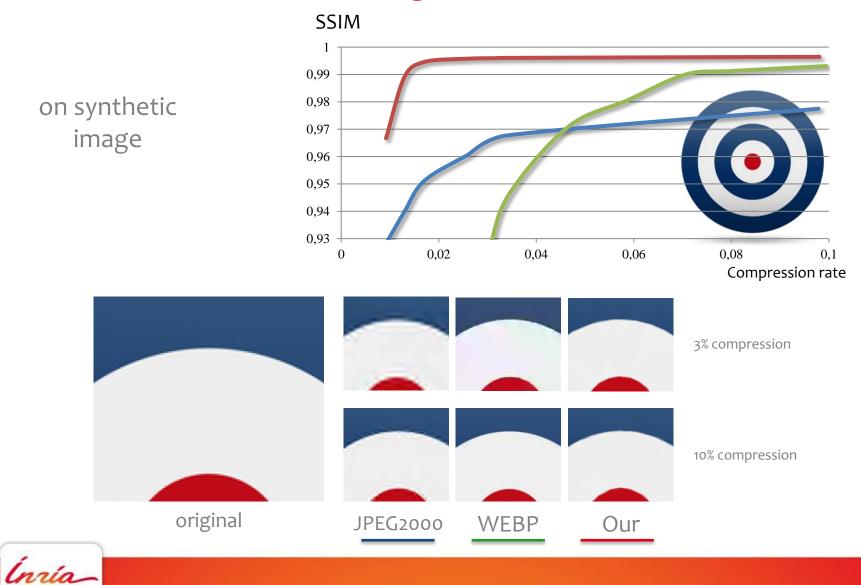


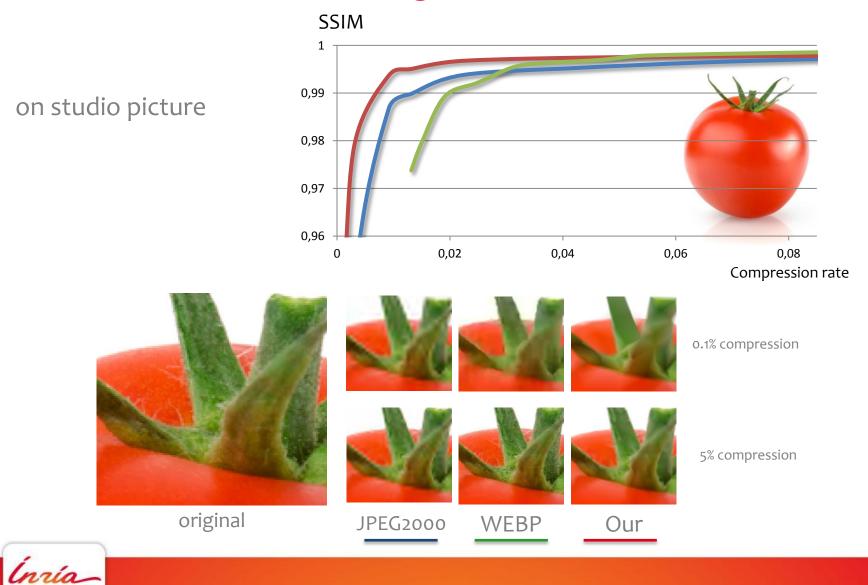


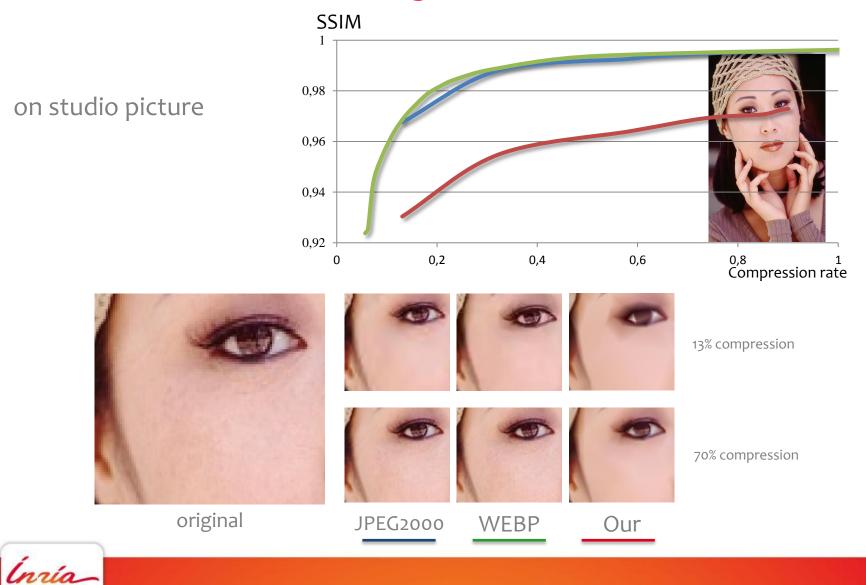


Input (6,3Mpix)

Output (700 vertices)







Conclusion

Partitioning images into geometric data structures:

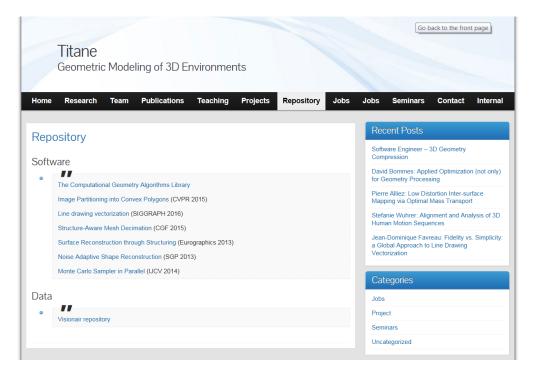
- fast preprocessing
- man-made objects and scenes
- Scalability
- easy-to-use
- comes with geometric guarantees (cell adjacency, convexity..)

Extensions

- Integrate image partitioning into the application process
- more types of shape
- 3D

naío

Code online



https://team.inria.fr/titane/software/

