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Part C

Applications to image analysis problems



Outlines

Polygonal superpixels
- with Voronoi diagrams
- with Kinetic data-structures
- application to object contouring

Delaunay point processes
- principle
- application to object contouring
- application to line-network extraction
- application to image compression




Polygonal superpixels
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Superpixels

Over-segmentation of images
\I contour preservation

\I algorithmic complexity

X storage

X control on region shapes
T X region adjacency

3

Can we improve this with geometric data-
structures ?




Superpixels as Voronoi cells

\I storage

(2D Delaunay triangulation)
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\Icontrol on region shapes
(convex polygons)

\Iregion adjacency
(uniqueness)

How to doit?




Superpixels as Voronoi cells

\I storage

(2D Delaunay triangulation)
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\Icontrol on region shapes
(convex polygons)

\Iregion adjacency
(uniqueness)

How to doit?

Guide the partition by geometric shapes




Voronoi-based Image partitioning

[Duan and Lafarge, Partitioning images into convex polygons,
CVPR 2015]



Step 1: extraction of geometric shapes

Detection of line-segments

[Von Gioi et al., Lsd: A fast line segment detector with a false
detection control, PAMI 2010]

Consolidation of line-segments

merging
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Step 2: anchoring
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Step 2: anchoring

= |ine-segment

—— Voronoi edge

@ - ® anchors

@- - #® junction-anchors
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Step 3: homogeneization

Poisson disk sampling




Step 3: homogeneization

Poisson disk sampling guided by
image gradient




Step 3: homogeneization
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Comparisons with superpixel methods




Comparisons with superpixel methods
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Comparisons with superpixel methods
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Comparisons with superpixel methods

Boundary recall Undersegmentation error Compactness
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Comparisons with superpixel methods

Boundary recall . Undersegmentation error Compactness
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Results on very big images
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Demo

[a | Voronoi partitioning demo ‘
Show Vertex Show Delaunay m Show Lines Show IMG Show Probability Map ReRecenter O n e p a ra m e t e r

Settings:

emsENESS
.‘6;«53:3'

L € : expected width
389 ,
" ‘> of the Voronoi cells

[] user Defined ProMap?
—

epsilon

Generate Partitions

21921,161298




Image partitioning with a kinetic data-structure

[Bauchet and Lafarge, KIPPI: Kinetic Polygonal Partitioning of Images,
CVPR 2018]




ith heterogeneous size
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Polygonal partitioning as space cutting
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High algorithmic complixity

Generate many cells
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Kinetic approach

Polygonal partitioning as space cutting
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Shape intersection not greedy anymore, but based on shape proximity
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kinetic formulation

Kinetic data-structure: a dynamic planar graph G; = (V;. E;)




kinetic formulation

Kinetic data-structure: a dynamic planar graph G; = (V;. E;)

.l . ; o A P,. .
Primitive: a dynamic segment sk(t) = [MP()] " et
with P(t) = A+ 0 x P.(0) B

A
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kinetic formulation

Kinetic data-structure: a dynamic planar graph G; = (V;. E;)

Primitive: a dynamic segment sk(t) = [MPg(t)]
with Py (t) = A+ 0} x ¢

Certificate
Function testing the intersection of primitive i with other primitives at time t

N 5 5 - -
Cilt) = T Pros(t) with pre,(6) = {1 Td(P(0), 5 (1) >0

0 otherwise

j=1
J#i




kinetic formulation

Kinetic data-structure: a dynamic planar graph G; = (V;. E;)

Primitive: a dynamic segment sk(t) = [MPg(t)]
with Py (t) = A+ 0} x ¢

Certificate
Function testing the intersection of primitive i with other primitives at time t

N 5 5 - -
Cilt) = T Pros(t) with pre,(6) = {1 Td(P(0), 5 (1) >0

i 0 otherwise

G

Queue of events
List of times t indicating when a certificate is equal to o

(ranked by ascending order) |



kinetic formulation %\/

Algorithm




kinetic formulation %\/
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Algorithm A\
e [nitialize the data-structure by inserting points /
where two line-segments intersect —




kinetic formulation

Algorithm

e [nitialize the data-structure by inserting points
where two line-segments intersect

e For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events




kinetic formulation

Algorithm

e [nitialize the data-structure by inserting points
where two line-segments intersect

e For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events




kinetic formulation

Algorithm

e [nitialize the data-structure by inserting points
where two line-segments intersect

e For each event of the queue,

update the data-structure

test the deactivation of the primitive

update the queue of events

e Finalization
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kinetic formulation
Flexibility

- Use the confidence for each detected line-segments to better adapt the
partition (increase speed of good line-segments)




kinetic formulation
Flexibility

- Use the confidence for each detected line-segments to better adapt the
partition (increase speed of good line-segments)

- Policy for deactivating a primitive
e Impose a maximal number of intersection K per primitive
e Check the alignment of a potential prolongation with image gradients




kinetic formulation
Flexibility

- Use the confidence for each detected line-segments to better adapt the
partition (increase speed of good line-segments)

- Policy for deactivating a primitive
e Impose a maximal number of intersection K per primitive
e Check the alignment of a potential prolongation with image gradients

\ ) / \ PN ‘ p ;.. / : S
K=1+ gradients K=1 K=20
(motorcycle graph)
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Results on satellite images




Results on satellite images
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Comparisons with over-segmentation methods

Boundary recall
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Demo

| | Kinetic partitioning | Demo

Tnput / Output

l Open an input image ]

l Save partition ]

Propagation options
Regularize segments
ift

Using : Me:
Refine cells by splitting

Number of intersections 1 |5

[ Generate partition ]

Built 299 cellsin 0.12 s.
Views
[¥] pisplay background image
[ pisplay initial segments
[ pisplay regularized segments
Display partition



Application to object contouring



Object contouring

Label each cell as inside or outside the objects of interest




Object contouring

Label each cell as inside or outside the objects of interest
Graph-cut

Data term: distance to a saliency map

min [|1(i) — I(5)|3
JESm :

H(ilmys) =

min | 1(i) — 1(5)/|3 + min [[7(2) — I(5)| 3

JES0




Object contouring

Label each cell as inside or outside the objects of interest
Graph-cut
Data term: distance to a saliency map

Potential: Potts model




t contouring
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Object contouring

with Voronoi
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Object contouring

with Voronoi

&\ Grabcut + vectorization
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Object contouring

Nb of edges: 130 Nb of edges: 308 Nb of edges: 476
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Application to city modeling from satellite images

[Duan and Lafarge, Towards large-scale city reconstruction from
satellites, ECCV 2016]




City modeling from satellite images

Input Output
Stereo pair of satellite images 3D model at LOD1
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City modeling from satellite images
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Delaunay point processes

T e



Background on point process

Random configurations of points distributed in a bounded
domain K




Background on point process

Random configurations of points distributed in a bounded
domain K

Interesting characteristics

e #points is a random variable




Background on point process

Random configurations of points distributed in a bounded
domain K

Interesting characteristics

e #points is a random variable

e can be guided by a density h e

» | K




Background on point process

Random configurations of points distributed in a bounded
domain K

Interesting characteristics

. . . ° ®-.o
e #points is a random variable
e can be guided by a density h o o
e with spatial interactions -




Background on point process

Random configurations of points distributed in a bounded
domain K

Interesting characteristics

e #points is a random variable = TN
e can be guided by a density h N “.
e with spatial interactions //
e each point can be associated \ /
with a parametric object /
K




Applications

ject detection

Parametric ob
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Canopy diameter




Three important ingredients

A parametric object

>€

e points = object centroids
e some additional parameters
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Three important ingredients

A parametric object

An energy U

e measures the quality of an object configuration

-+ f

e specifies the density h of the process h(.) ocexp—U(.)




Three important ingredients

A parametric object

An energy U

e measures the quality of an object configuration
e specifies the density h of the process h(.) ocexp—U(.)
e typical form:

Ve eC, U(x) = ZD(’.:;) 4+ Z Vg, ©3)

T;Ex T~

Data term Pairwise interactions




Three important ingredients

A parametric object

An energy U

e measures the quality of an object configuration
e specifies the density h of the process h(.) ocexp—U(.)
e typical form:

Ve eC, U(x) = ZD(’.:;) 4+ Z Vg, ©3)

T;Ex T~

Data term Pairwise interactions

Markovian property: interactions restricted to a local neighborhood

| 9 . :
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Three important ingredients

A parametric object
An energy U

A sampler

e Find an approximate solution of the global minimum of U
typically RIMCMC sampler [Greengs]




Three important ingredients

A parametric object
An energy U

A sampler

e Find an approximate solution of the global minimum of U
typically RIMCMC sampler [Greengs]

e Principle: iterative mechanism that simulates a discrete
Markov chain on the configuration space




Three important ingredients

A parametric object
An energy U

A sampler

e Find an approximate solution of the global minimum of U
typically RIMCMC sampler [Greengs]

e Principle: iterative mechanism that simulates a discrete
Markov chain on the configuration space

e At each iteration,
(i) proposition of a local modification
(ii) acceptation/rejection of the modification depending on
energy variation, proposal densities and a relaxation parameter




Three important ingredients

An example: extracting buildings from Elevation maps

(time X150)




Three important ingredients

An example: extracting buildings from Elevation maps

Geometric structures
not guaranteed by

ime X
construction! (time X150)
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Delaunay neighborhood

|dea: use Delaunay triangulation to define neighboring
relationship (instead a traditional Euclidean distance)

pi ~p p;j = {(pi,p;) €P* : (pi,pj) € Ca2(p)}




Why is it interesting?

Each configuration relies on space decomposition that can be used
as a mean to sample points but also as goal to segment data

* Parameter-free neighborhood




Why is it interesting?

Each configuration relies on space decomposition that can be used
as a mean to sample points but also as goal to segment data

* Parameter-free neighborhood
* Efficient sampling




Why is it interesting?

Each configuration relies on space decomposition that can be used
as a mean to sample points but also as goal to segment data

* Parameter-free neighborhood
* Efficient sampling
* flexibility for a large range of applications




Application to line-network extraction



Energy formulation

A configuration @ = (P, m) a set of points and some additional
parameter on points, edges or facets of the triangulation

Energy of the form U(x) = U tigetity () + Uprior ()

Example with line-network extraction

°m = (me)fecz(p} with m, € {0,1} ®

* Ugigeiity - COherence with data (active edges should align with strong gradients)

* U,ior : PeNalty for short edges + penalty for badly connected edges

* Sampling: RIMCMC with points distributed with density following an image
gradient

I‘;‘“bf—



Application to line-network extraction




Application to line-network extraction
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Application to line-network extraction

GT Marked point process Junction point process Ours

[Verdie et al, 1JCV14] [Chai et al, CVPR13]

Precision F-measure Time

. Junction-point process 0.59 0.64 73s
T | Marked point process 0.76 0.70 33s
~ | ours 0.79 0.73 20s
_ Junction-point process 0.46 0.54 227s
:é Marked point process 0.67 0.72 103s
ours 0.70 0.74 70s




Application to line-network extraction

input Output with Bezier curves
. lrzia—~



Application to object contouring



Application to object contouring

A configuration @ = (P, m) a set of points and some additional
parameter on points, edges or facets of the triangulation

Energy of the form U(x) = U tidetity(T) + Uprior ()

Example with object countouring .

* m = (lf)ecyp) Withly = 0,1 ;
*  Ufgenty - radiometric coherence inside each facet o

* U, : Penalty for short edges + label smoothness for adjacent facets

e Sampling: RIMCMC with points distributed with density following an

image gradient

I’?‘W—



Application to object contouring
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Application to object contouring
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Applications to object contouring
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Application to object contouring

high point density




Application to image compression



Application to image compression

A configuration x = (p, m) aset of points and some additional
parameter on points, edges or facets of the triangulation

Energy of the form U(x) = U tigetity(T) + Uprior () '

Example with image compression

* m = (¢p)pep Where Cp is a RGB color

Usiderity * PEr-pixel error between input/output
*  Upor : PeNalty for high number of points
e Sampling: RIMCMC with points distributed with density following an

image gradient

I‘?‘W—



Application to image compression




Application to image compression

Output (700 vertices)



Application to image compression

SSIM
1
0,99 /r
on synthetic 0.9 ]
0,97 1

image

o -~ 7/
o / /
0:93 / r /

0 0,02 0,04 0,06 0,08 0,1

Compression rate

i aEB A

10% compression
‘ S A N

original JPEG2000  WEBP Our ‘

3% compression




Application to image compression
SSIM

0,99 -

on studio picture

0,98 -

| |
0,97 4
|

0,96 n T T T T
0 0,02 0,04 0,06 0,08
Compression rate

. ‘ ‘ h CompreSSion
- - . 5/ CompreSSIon

original JPEG2000  WEBP




Application to image compression
SSIM

0,98

on studio picture

0,96

0,94

0,92

0,8
CompreSSIon rate

13% compression

o

70% compression

original JPEG2000 WEBP Our




Conclusion

T e



Partitioning images into geometric data structures:

* fast preprocessing

* man-made objects and scenes

* Scalability

* easy-to-use

* comes with geometric guarantees (cell adjacency,
convexity..)

Extensions

* Integrate image partitioning into the application process
* more types of shape

o 3D

I‘;‘W—



Go back to the front page

COde Online Titane

Geometric Modeling of 3D Environments

Seminars Contact Internal

. R Post:
Repository

Software Engineer — 3D Geometry

Compression
Software
n David Bommes: Applied Optimization (not only)
e for Geometry Processing

The Computational Geometry Algorithms Library

B Pierre Alliez: Low Distortion Inter-surface
Image Partitioning into Convex Polygons (CVPR 2015) Mapping via Optimal Mass Transport

Line drawing vectorization (SIGGRAPH 2016) Stefanie Wuhrer- Alignment and Analysis of 3D

. Human Motion Sequences
Structure-Aware Mesh Decimation (CGF 2015)

Jean-Dominique Favreau: Fidelity vs. Simplicity
a Global Approach to Line Drawing
Vectorization

Surface Reconstruction through Structuring (Eurographics 2013)

Noise Adaptive Shape Reconstruction (SGP 2013)

Monte Carlo Sampler in Parallel (IJCV 2014)
Categories

Data Jobs
] ’ Project
Visionair repository
Seminars
Uncategorized

https://team.inria.fr/titane/software/




