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Part A

Basics of Computational Geometry



Computational geometry: develop efficient algorithms and
data structures for solving problems stated in terms of basic
geometrical objects, eg points, line segments, polygons or
polyhedra




Problem examples

Shortest Path

Problem definition:

Input: Obstacles locations and
qguery endpoints s and t.

Output: shortest path between
s and t that avoids all obstacles.

Rules of the game: One obstacle
set, multiple queries.




Problem examples

Bounding Volumes

Problem definition:
Input: Set of points P in the plane

Output: (report) Smallest enclosing polygon,
disk, ellipse, annulus, rectangles,
parallelograms, k>=2 axis-aligned rectangles



Problem examples

Optimal Distances

Distance between convex hulls of
two point sets in Euclidean space
(in dD!)




Problem examples

Boolean Operations




Outlines

Some basic geometric objects and data-structures
- Voronoi diagram and Delaunay triangulation
- polygonal mesh

Shape reconstruction
- simple
- smooth
- primitive-based
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Some basic geometric objects and data-
structures

T e



Convex hulls

A set S is convex if for any two points
a,bes, the line segment between a

and bis alsoin S.

convex non-convex




Convex hulls

A set S is convex if for any two points
a,bes, the line segment between a

and bis alsoin S.

convex non-convex

The convex hull of a set of points is
the smallest convex set containing S.
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Alpha-shapes

The space generated by point pairs that can be touched
by an empty disc of radius alpha.




Alpha-shapes
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Medial axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that

only meets the shape tangentially, in at least two points.




Medial axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that

only meets the shape tangentially, in at least two points.

The centers of all such balls make

up the medial axis/skeleton.



Delaunay triangulation

A Delaunay Triangulation of S is the set of all triangles with vertices in

S whose circumscribing circle contains no other points in S*.

Compactness Property:

This is a triangulation that

maximizes the min angle.




Construction of a Delaunay triangulation

O(n log n) Incremental algorithm:

Form bounding triangle which encloses all
the sites.

Add the sites one after another in random
order and update triangulation.

If the site is inside an existing triangle:
Connect site to triangle vertices.

Check if a 'flip' can be performed on one of
the triangle edges. If so — check recursively
the neighboring edges.

If the site is on an existing edge:
Replace edge with four new edges.

Check if a 'flip' can be performed on one of
the opposite edges. If so — check recursively

the neighboring edges.
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Construction of a Delaunay triangulation

Algorithm complexity

* Point location for every point: O(log n) time.
* Flips: ®(n) expected time in total (for all steps).

Total expected time: O(n log n).

Space: O(n).




Voronoi diagrams

The Voronoi Diagram of S is a partition of space into regions V(p)
(peS) such that all points in V(p) are closer to p than any other
pointin S.

Let €& = {p1,...,pn} be a set of points (so-called sites) in RY. We

associate to each site p; its Voronoi region V' (p;j) such that:

4 ' — d, < Ty A <
Vipi) ={x e R [x — pil]| < ||x — p;l|, V) < n}.




Voronoi diagrams

The Voronoi Diagram of S is a partition of space into regions V(p)
(peS) such that all points in V(p) are closer to p than any other
pointin S.

For a point on an edge, we
can draw an empty circle
that only touches the points
in S separated by the edge.




Voronoi diagrams

The Voronoi Diagram of S is a partition of space into regions V(p)
(peS) such that all points in V(p) are closer to p than any other
pointin S.

For a vertex, we can draw
an empty circle that just
touches the three points
in S around the vertex.




Voronoi diagrams

The Voronoi Diagram of S is a partition of space into regions V(p)
(peS) such that all points in V(p) are closer to p than any other
pointin S.

SN L

Duality:
Each Voronoi vertex is in .

one-to-one correspondence
with a Delaunay triangle.




Polygonal meshes

vertex

\




vertex
Polygonal meshes \

edge —,

How good is a mesh data-structure?
— Time to construct (preprocessing) facet
— Time to answer a query
— Time to perform an operation

— Space complexity

— Redundancy




Polygonal meshes

Halfedge-based connectivity
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Polygonal meshes

One-ring traversal

1. Start at vertex \\ //T
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Polygonal meshes

One-ring traversal
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1. Start at vertex Q
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Polygonal meshes

One-ring traversal

1. Start at vertex

2. Outgoing halfedge

3. Opposite halfedge




Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge

3. Opposite halfedge

4. Next halfedge
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Polygonal meshes

One-ring traversal

1. Start at vertex Q

2. Outgoing halfedge \

3. Opposite halfedge

4. Next halfedge / \ |
0= ‘

5. Opposite = Q
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Polygonal meshes

One-ring traversal

1. Start at vertex Q v
2. Outgoing halfedge \ /
Q%)

3. Opposite halfedge

4. Next halfedge

Iy
5. Opposite = Q

6. Next

7. ..
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Shape reconstruction
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Reconstruction problem

Input: point set P sampled over Output: surface
asurface 5: Approximation of S in terms
Non-uniform sampling of topology and
geometry
With holes .
Desired:

With uncertainty (noise) Waterticht
atertig

Intersection free

reconstruction

point set surface




Reconstruction problem

lll-posed Problem

Many candidate shapes for the
reconstruction problem!




Reconstruction problem

lll-posed Problem

simple smooth primitive-based

Many candidate shapes for the
reconstruction problem!




Simple : Crust









Delaunay Triangulation & Voronoi Diagram
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Refined Delaunay Triangulation




Selected edges




Smooth: Poisson



Poisson Surface Reconstruction

Oriented point set
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Indicator Function

Construct indicator function from point samples
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Indicator Function

Construct indicator function from point samples

splatted normals
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Primitive-based: Structuring



structuring

3 ideas




structuring

" 3 jdeas
" Meaning insertion

clutter

corner

planar
crease




structuring
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" 3 jdeas
" Meaning insertion .

= Structure idealization under Delaunay triangulation
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structuring

" 3 jdeas
" Meaning insertion
= Structure idealization under Delaunay triangulation

= Complexity reduction
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structuring
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structuring
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structuring

Hausdorff distance to input point set ( % bbox diagonal)

Time (s) ¥=

0.35 - - 250
—

0.3 - 200
0.25 - + 150
—

——

0.2 —+ 100
— —
0.15 - - 50

L

0-1 T T T T T 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
€ (% bbox diagonal)
smooth " -Shape approximation Piecewise-smooth Interactive primitive

[Kazhdan et al. 2006] [Cohen-Steiner et al

2004]

[Salman et al. 2010]

[Arikan et al. 2012]




