## Part A

## Basics of Computational Geometry

Computational geometry: develop efficient algorithms and data structures for solving problems stated in terms of basic geometrical objects, eg points, line segments, polygons or polyhedra

## Problem examples

## Shortest Path

- Problem definition:
- Input: Obstacles locations and query endpoints s and $t$.


Rules of the game: One obstacle set, multiple queries.

## Problem examples

## Bounding Volumes

## Problem definition:



Input: Set of points $P$ in the plane

Output: (report) Smallest enclosing polygon, disk, ellipse, annulus, rectangles, parallelograms, k>=2 axis-aligned rectangles


## Íniá

## Problem examples

## Optimal Distances

Distance between convex hulls of two point sets in Euclidean space (in dD!)


## Problem examples

## Boolean Operations



## Outlines

Some basic geometric objects and data-structures

- Voronoi diagram and Delaunay triangulation
- polygonal mesh

Shape reconstruction

- simple
- smooth
- primitive-based

Some basic geometric objects and datastructures

## Convex hulls

A set $S$ is convex if for any two points $a, b \in S$, the line segment between $a$ and $b$ is also in $S$.


## Convex hulls

A set $S$ is convex if for any two points $a, b \in S$, the line segment between $a$ and $b$ is also in $S$.


The convex hull of a set of points is the smallest convex set containing $S$.


## Alpha-shapes



The space generated by point pairs that can be touched by an empty disc of radius alpha.

## Alpha-shapes


$\alpha=0$



Alpha Controls the desired level of detail

$\alpha=\infty$

## Medial axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.


## Medial axis

For a shape (curve/surface) a Medial Ball is a circle/sphere that only meets the shape tangentially, in at least two points.

The centers of all such balls make up the medial axis/skeleton.


## Delaunay triangulation

A Delaunay Triangulation of $S$ is the set of all triangles with vertices in
S whose circumscribing circle contains no other points in S*.

Compactness Property:
This is a triangulation that maximizes the min angle.


## Construction of a Delaunay triangulation

## O(n $\log n$ ) Incremental algorithm:

- Form bounding triangle which encloses all the sites.
- Add the sites one after another in random order and update triangulation.
- If the site is inside an existing triangle:
- Connect site to triangle vertices.
- Check if a 'flip' can be performed on one of the triangle edges. If so - check recursively the neighboring edges.
- If the site is on an existing edge:
- Replace edge with four new edges.
- Check if a 'flip' can be performed on one of
 the opposite edges. If so - check recursively the neighboring edges.


## Construction of a Delaunay triangulation

Algorithm complexity

- Point location for every point: O(log n) time.
- Flips: $\Theta(\mathrm{n})$ expected time in total (for all steps).

Total expected time: $O(n \log n)$.
Space: $\Theta(n)$.

## Voronoi diagrams

The Voronoi Diagram of $S$ is a partition of space into regions $V(p)$ $(p \in S)$ such that all points in $V(p)$ are closer to $p$ than any other point in $S$.

Let $\mathcal{E}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}$ be a set of points (so-called sites) in $\mathbb{R}^{d}$. We associate to each site $\mathbf{p}_{\mathbf{i}}$ its Voronoi region $V\left(\mathbf{p}_{\mathbf{i}}\right)$ such that:

$$
V\left(\mathbf{p}_{\mathbf{i}}\right)=\left\{\mathbf{x} \in \mathbb{R}^{d}:\left\|\mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\| \leq\left\|\mathbf{x}-\mathrm{p}_{\mathbf{j}}\right\|, \forall j \leq n\right\} .
$$

## Voronoi diagrams

The Voronoi Diagram of $S$ is a partition of space into regions $V(p)$ $(p \in S)$ such that all points in $V(p)$ are closer to $p$ than any other point in $S$.

For a point on an edge, we can draw an empty circle that only touches the points in $S$ separated by the edge.


## Voronoi diagrams

The Voronoi Diagram of $S$ is a partition of space into regions $V(p)$ $(p \in S)$ such that all points in $V(p)$ are closer to $p$ than any other point in $S$.

For a vertex, we can draw an empty circle that just touches the three points in $S$ around the vertex.


## Voronoi diagrams

The Voronoi Diagram of $S$ is a partition of space into regions $V(p)$ $(p \in S)$ such that all points in $V(p)$ are closer to $p$ than any other point in $S$.

## Duality:

Each Voronoi vertex is in
one-to-one correspondence with a Delaunay triangle.


## Polygonal meshes



## vertex

## Polygonal meshes

How good is a mesh data-structure?

- Time to construct (preprocessing)
facet
- Time to answer a query
- Time to perform an operation
- Space complexity
- Redundancy


## Polygonal meshes

## Halfedge-based connectivity



Ínía

## Polygonal meshes

One-ring traversal

1. Start at vertex


## Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge


## Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge


## Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge


## Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite


## Polygonal meshes

One-ring traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite

6. Next
7. ...


Shape reconstruction

## Enian

## Reconstruction problem

Input: point set $P$ sampled over a surface $S$ :

Non-uniform sampling
With holes
With uncertainty (noise)

point set

Output: surface
Approximation of $S$ in terms
of topology and geometry

Desired:
Watertight

surface

## Reconstruction problem

III-posed Problem


Many candidate shapes for the reconstruction problem!

## Reconstruction problem

## III-posed Problem


simple

smooth


Many candidate shapes for the reconstruction problem!

Simple : Crust

invía

## Delaunay Triangulation



Output surface $=$ a subset of Delaunay edges

## Delaunay Triangulation \& Voronoi Diagram



Éria

Voronoi Vertices


Inría

## Refined Delaunay Triangulation



Ínia

## Selected edges



Incian

## Smooth: Poisson

## Poisson Surface Reconstruction



Énía

## Indicator Function

Construct indicator function from point samples


$P, N$
$\longrightarrow$ ??? $\chi$

## Indicator Function

Construct indicator function from point samples


## Primitive-based: Structuring

structuring
3 ideas


## structuring

- 3 ideas
- Meaning insertion



## structuring

## - 3 ideas

- Meaning insertion

- Structure idealization under Delaunay triangulation



## structuring

## - 3 ideas

- Meaning insertion
- Structure idealization under Delaunay triangulation
- Complexity reduction



## structuring



Primitive \&

## 

6 primitives 0 adjacency



18 primitives
48 adjacencies



13 primitives
16 adjacencies



## structuring



## structuring



