Computational Geometry Tools and Applications in Computer Vision

Part A: Basics of Computational Geometry

Pierre Alliez Inria Sophia Antipolis – Méditerranée pierre.alliez@inria.fr

Outline

•Sample problems

- 2D, 3D
- Focus
- Voronoi diagram & Delaunay triangulation
- Shape reconstruction
- Mesh generation

Sample Problems

2D

Nearest Neighbor

Problem definition:

- Input: a set of points (*sites*) P in the plane and a query point q.
- Output: The point p∈P closest to q among all points in P.
- Rules of the game:
 - One point set, multiple queries

Shortest Path

•Problem definition:

- Input: Obstacles locations and query endpoints s and t.
- Output: shortest path between s and t that avoids all obstacles.

• Rules of the game: One obstacle set, multiple queries.

Range Searching and Counting

•Problem definition:

- Input: Set of points P in the plane and query rectangle R
- Output: (report) subset Q ⊆ P contained in R.
 (count) size of Q.

• Rules of the game:

• One point set, multiple queries.

Bounding Volumes

•Problem definition:

- Input: Set of points *P* in the plane
- Output: (report) Smallest enclosing polygon, disk, ellipse, annulus, rectangles, parallelograms, k>=2 axis-aligned rectangles

Visibility

Problem definition:

- Input: Polygon P in the plane, query point p.
- Output: Polygon $Q \subseteq P$, visible to p.
- Rules of the game:
 - One polygon, multiple queries

Optimal Distances

Distance between convex hulls of two point sets in Euclidean space (in dD!)

3D

Bounding Volumes

- Convex hull
- Bounding sphere
- Bounding sphere of spheres

Intersections

Boolean Operations

Triangulations

Advances

Advances on Algorithms

- Correctness
- Complexity
 - Worst case
 - Average (real-world) cases
- Memory
- Reliability
 - Arithmetic of real-world computers
 - Degenerate cases
- Robustness
 - Real-world data

"Geometric Computing"

Focus for Today...

- Voronoi diagrams
- Delaunay triangulations
- Mesh generation
 - Delaunay-based
 - 2D, surface, 3D
- Shape reconstruction
 - Delaunay filtering

Voronoi diagrams Delaunay Triangulations

Let $\mathcal{E} = {\mathbf{p_1}, \ldots, \mathbf{p_n}}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

$$V(\mathbf{p}_{\mathbf{i}}) = \{ \mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x} - \mathbf{p}_{\mathbf{i}}\| \le \|\mathbf{x} - \mathbf{p}_{\mathbf{j}}\|, \forall j \le n \}.$$

•The collection of the non-empty Voronoi regions and their faces, together with their incidence relations, form a cell complex called the **Voronoi diagram** of E.

•The locus of points which are equidistant to two sites and is called a **bisector**, all bisectors being affine subspaces of IR^d (lines in 2D).

A Voronoi cell of a site *pi* defined as the intersection of closed half-spaces bounded by bisectors. Implies: All Voronoi cells are **convex**.

Voronoi cells may be **unbounded** with unbounded bisectors. Happens when a site is on the boundary of the convex hull of E.

• Voronoi cells have faces of different dimensions.

• In 2D, a face of dimension k is the intersection of 3 - k Voronoi cells. A **Voronoi vertex** is generically equidistant from three points, and a **Voronoi edge** is equidistant from two points.

- Dual structure of the Voronoi diagram.
- •The Delaunay triangulation of a set of sites E is a simplicial complex such that k+1 points in E form a Delaunay simplex if their Voronoi cells have nonempty intersection

• The Delaunay triangulation of a point set E covers the convex hull of E.

canonical triangulation associated to any point set

Local Property

Empty circle: A triangulation T of a point set E such that any d-simplex of T has a circumsphere that does not enclose any point of E is a Delaunay triangulation of E. Conversely, any k-simplex with vertices in E that can be circumscribed by a hypersphere that does not enclose any point of E is a face of the Delaunay triangulation of E.

Empty Circles

Circumscribing circles -> pencil of circles

Voronoi edge Locus of circle centers

Global Properties

In 2D: « quality » triangulation

- Smallest triangle angle: The Delaunay triangulation of a point set E is the triangulation of E which maximizes the smallest angle.
- Even stronger: The triangulation of E whose **angular vector** is **maximal** for the lexicographic order is the Delaunay triangulation of E.

Duality on the paraboloid: Delaunay triangulation obtained by projecting the lower part of the convex hull.

Duality

• The intersection of a plane with the paraboloid is an ellipse whose projection to the plane is a circle.

• *s* lies within the circumcircle of p, q, r iff *s*' lies on the lower side of the plane passing through p', q', r'.

• $p, q, r \in S$ form a Delaunay triangle iff p', q', r' form a face of the convex hull of S'.

• Given a set S of points in the plane, associate with each point $p=(a,b)\in S$ the plane tangent to the paraboloid at p:

z = 2ax+2by-(a2+b2).

•VD(S) is the projection to the (x,y) plane of the 1-skeleton of the convex polyhedron formed from the intersection of the halfspaces above these planes.

O(nlogn) Delaunay Triangulation Algorithm

Incremental algorithm:

• Form bounding triangle which encloses all the sites.

•Add the sites one after another in random order and update triangulation.

• If the site is inside an existing triangle:

- Connect site to triangle vertices.
- Check if a 'flip' can be performed on one of the triangle edges. If so – check recursively the neighboring edges.

• If the site is on an existing edge:

- Replace edge with four new edges.
- Check if a 'flip' can be performed on one of the opposite edges. If so – check recursively the neighboring edges.

Flipping Edges

•A new vertex p_r is added, causing the creation of edges.

•The legality of the edge $p_i p_j$ (with opposite vertex) p_k is checked.

 p_r

• If $p_i p_j$ is illegal, perform a flip, and recursively check edges $p_i p_k$ and $p_j p_k$, the new edges opposite p_i , p_r .

• Notice that the recursive call for $p_i p_k$ cannot eliminate the edge $p_r p_k$.

• Note: All edge flips replace edges opposite the new vertex by edges incident to it!
Flipping Edges - Example

Algorithm Complexity

- Point location for every point: O(log n) time.
- Flips: $\Theta(n)$ expected time in total (for all steps).
- •Total expected time: $O(n \log n)$.
- •Space: $\Theta(n)$.

3D Delaunay Triangulation

Variants

- Constraints
- Periodic
- Weighted
- Generators: segments, circles

2D Constrained Delaunay Triangulation

Let (P, S) be a PSLG. The constrained triangulation T(P, S) is constrained Delaunay iff the circumcircle of any triangle t of T encloses no vertex visible from a point in the relative interior of t.

unconstrained

constrained

Periodic Delaunay Triangulation

Points in 2D flat torus

Periodic Delaunay Triangulation

• Points in 3D flat torus

Large weight

Generators = Line Segments

Apollonius Diagram / Graph

Shape Reconstruction

Reconstruction Problem

Input: point set *P* sampled over a surface *S*:

Non-uniform sampling

With holes

With uncertainty (noise)

Output: surface

Approximation of *S* in terms of topology and geometry

Desired:

Watertight

Intersection free

reconstruction

surface

Ill-posed Problem

Many candidate shapes for the reconstruction problem!

Ill-posed Problem

Many candidate shapes for the reconstruction problem! How to pick?

Priors

Smooth

Piecewise Smooth

"Simple"

Surface Smoothness Priors

Local fitting No control away from data Solution by interpolation

Global: linear, eigen, graph cut, ... Robustness to missing data

Sharp near features Smooth away from features

Domain-Specific Priors

Warm-up

Smooth

Piecewise Smooth

"Simple"

Voronoi / Delaunay

Let $\mathcal{E} = {\mathbf{p_1}, \dots, \mathbf{p_n}}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

 $V(\mathbf{p}_{\mathbf{i}}) = \{ \mathbf{x} \in \mathbb{R}^{d} : \|\mathbf{x} - \mathbf{p}_{\mathbf{i}}\| \le \|\mathbf{x} - \mathbf{p}_{\mathbf{j}}\|, \forall j \le n \}.$

Delaunay-based

• Key idea: assuming dense enough sampling, reconstructed edges are Delaunay edges.

Alpha-shapes

Alpha-Shapes

Segments: point pairs that can be touched by an empty disc of radius alpha.

[Edelsbrunner et al.]

Alpha-Shapes

• In 2D: family of piecewise linear simple curves constructed from a point set P.

- Subcomplex of the Delaunay triangulation of P.
- Generalization of the concept of the convex hull.

Alpha-Shapes

Alpha controls the desired level of detail

Convex hull!

Crust

Delaunay-based

• Key idea: assuming dense enough sampling, reconstructed edges are Delaunay edges.

• First define

- Medial axis
- Local feature size
- Epsilon-sampling

Medial Axis

Figures from O. Devillers

Medial Axis

Medial Axis

Voronoi & Medial Axis

Local Feature Size

Epsilon-Sampling

Crust [Amenta et al.]

Delaunay Triangulation

Delaunay Triangulation & Voronoi Diagram

Voronoi Vertices

Refined Delaunay Triangulation

Crust

Crust

Advancing Front

Crust

• Several Delaunay algorithms provably correct

Delaunay-based

• Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

perfect data ?

Noise & Undersampling

Delaunay-based

• Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

• Motivates reconstruction by fitting **approximating** implicit surfaces

Poisson Surface Reconstruction

[Kazhdan et al. 06]

Indicator Function

Construct indicator function from point samples

Indicator Function

Construct indicator function from point samples

Mesh Generation

2D Triangle Mesh Generation

Input:

- PSLG C (planar straight line graph)
- Domain Ω bounded by edges of C

Output:

- •Triangle mesh T of Ω such that
 - Vertices of C are vertices of T
 - Edges of C are union of edges in T
 - Triangles of T inside Ω have controlled size and quality

Key Idea

Break bad elements by inserting circumcenters (Voronoi vertices) [Chew, Ruppert, Shewchuk, Boissonnat...]

"bad" in terms of size or shape

Basic Notions

- C: PSLG describing the constraints
- T: Triangulation to be refined

Respect of the PSLG

- Edges a C are split until constrained subedges are edges of T
- Constrained subedges are required to be Gabriel edges
- •An edge of a triangulation is a **Gabriel** edge if its smallest circumcircle encloses no vertex of T
- •An edge e is **encroached** by point p if the smallest circumcircle of e encloses p.

Refinement Algorithm

Pictures from [Shewchuk]

Mesh Optimization?

Minimize error functional

$$E = \sum_{j=1..k} \int_{x \in R_j} ||x - x_j||^2 dx$$

Centroidal Voronoi Tessellation

Mesh Optimization

Surface Mesh Generation

Mesh Generation

Key concepts:

- Voronoi/Delaunay filtering
- Delaunay refinement

Voronoi Filtering

The Voronoi diagram **restricted** to a curve S, $Vor_{|S}(E)$, is the set of edges of Vor(E) that intersect S.

Delaunay Filtering

The restricted Delaunay triangulation restricted to a curve S is the set of **edges** of the Delaunay triangulation whose dual edges **intersect** S.

Delaunay Filtering

Delaunay Refinement

Surface Mesh Generation Algorithm

repeat

{

- pick bad facet **f**
- insert furthest (dual(\mathbf{f}) \cap \mathbf{S}) in Delaunay triangulation
- update Delaunay triangulation restricted to S

until all facets are good

Isosurface from 3D Grey Level Image

input

Guarantees

- Termination
- Parsimony

Output mesh properties:

- Well shaped triangles
 - Lower bound on triangle angles
- Homeomorphic to input surface
- Manifold
 - not only combinatorially, i.e., no self-intersection
- Faithful approximation of input surface
 - Hausdorff distance
 - Normals

Delaunay Refinement vs Marching Cubes

Volume Mesh Generation

Delaunay Filtering

Domain boundary

3D Delaunay triangulation

Restricted Delaunay triangulation Delaunay Refinement

Steiner point

Bad cell = big or badly shaped

Volume Mesh Generation Algorithm

repeat

pick bad simplex
if(Steiner point encroaches a facet)
 refine facet
else
 refine simplex
update Delaunay triangulation restricted to domain

until all simplices are good

