Localiser une cible dans un graphe

Julien Bensmail1, Dorian Mazauric2, \textbf{Fionn Mc Inerney}1, Nicolas Nisse1, Stéphane Pérennes1

1Université Côte d’Azur, Inria, CNRS, I3S, France
2Université Côte d’Azur, Inria, France

May 30, 2018, Roscoff, France

AlgoTel 2018
A facility, city or some other location is modelled by a graph G.

A target is hidden at a vertex of G (i.e., a building).

Detector at each vertex; when “probed”, returns its distance to the target.

Metric Dimension of G

Min. # of vertices needed to be probed all at once to locate the target in G.
Sequential Locating Game on Graphs [Seager, 2013] & Game of Guess Who?

\[SL(G) : \text{Sequential location number of } G \]

Min. \# of turns of probing one vertex per turn, to locate a target hidden in \(G \).
Sequential Locating Game on Graphs [Seager, 2013] & Game of Guess Who?

\[SL(G) : \text{Sequential location number of } G \]

Min. \# of turns of probing one vertex per turn, to locate a target hidden in \(G \).
Sequential Locating Game on Graphs [Seager, 2013] & Game of Guess Who?
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension

Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related : Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension

Sequential Metric Dimension of \(G \)

Given \(k, \ell, G \), is it possible to locate the immobile target in \(G \) in at most \(\ell \) turns by probing at most \(k \) vertices each turn.

Related: Locate moving target with \(k \)? [Bosek et al, 2017]; \(k = 1 \) [Seager, 2012].

\[\frac{MD(G)}{k} \] turns suffice to locate target. But it can be located faster.

\[MD(G) = 19 \] and for \(k = 4 \), the target can be located in 2 turns.

![Diagram of a graph with blue and red vertices, showing sequential probing and locating of a target.]

Answer: \(d = 3 \)
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

All vertices in blue probed

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

Two vertices in blue NOT probed
$MD(G) > 18$

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$$\frac{MD(G)}{k}$$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of \(G \)

Given \(k, \ell, G \), is it possible to locate the immobile target in \(G \) in at most \(\ell \) turns by probing at most \(k \) vertices each turn.

Related: Locate moving target with \(k \)? [Bosek et al, 2017]; \(k = 1 \) [Seager, 2012].

\[
\frac{MD(G)}{k} \quad \text{turns suffice to locate target. But it can be located faster.}
\]

\(MD(G) = 19 \) and for \(k = 4 \), the target can be located in 2 turns.
Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

Now sequential probing

All vertices in blue probed

Locate in 2 turns (FIRST turn)

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

Now sequential probing

All vertices in blue probed

Locate in 2 turns (FIRST turn)

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Sequential Metric Dimension of G

Given k, ℓ, G, is it possible to locate the immobile target in G in at most ℓ turns by probing at most k vertices each turn.

Related: Locate moving target with k? [Bosek et al, 2017]; $k = 1$ [Seager, 2012].

$\frac{MD(G)}{k}$ turns suffice to locate target. But it can be located faster.

Now sequential probing

All vertices in blue probed

Locate in 2 turns (SECOND turn)

$MD(G) = 19$ and for $k = 4$, the target can be located in 2 turns.
Complexity

NP-complete when either number of vertices to be probed or number of turns is fixed.

Trees

NP-complete in trees.

- Difficulty only comes from first turn.
- Polynomial-time (+1)-approximation algorithm for trees.
Summary of results in trees

\[\lambda_k(T) : \text{min. \# turns to locate target in } T. \]

(+1)-approximation algorithm

- Computes strategy that locates target in \(T \) in at most \(\lambda_k(T) + 1 \) steps.
- Time complexity: \(O(n \log n) \).

Exact algorithm

- Computes strategy that locates target in \(T \) in at most \(\lambda_k(T) \) steps.
- Time complexity: \(O(n^{k+2} \log n) \).
Trees: why problem is “easy” after 1st turn

Probe any 1 vertex on 1st turn.
Probe any 1 vertex on 1st turn.
Probe any 1 vertex on 1st turn.

Result: Tree T' rooted in r where all leaves are the same distance from r and the target is known to occupy a leaf.
Probe any 1 vertex on 1st turn.

Result: Tree T' rooted in r where all leaves are the same distance from r and the target is known to occupy a leaf.
Second key argument for “easiness”

T_v : subtree rooted in v of T' rooted in r, v is a child of r.

Probing 1 vertex in T_v allows to know if target is in T_v or in $T' \setminus T_v$.
Two parameters needed for algorithm

Assume target is known to occupy a leaf of T_i. Then,

$\lambda_k(T_i)$: min. # of turns of probings to locate target in T_i.

$\pi_k(T_i)$: min. # of vertices to probe in T_i during first turn of probing vertices in T_i to locate target in $\lambda_k(T_i)$ turns.

$k = 3$ \hspace{1cm} $\lambda_3(T) = 3$ \hspace{1cm} $\pi_3(T) = 2$
Need for tradeoff between probing 1 or $\pi(T_{v_i})$ vertices in T_{v_i}

$k = 3$

$\lambda(T) = 5$

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes

Localiser une cible dans un graphe
Need for tradeoff between probing 1 or $\pi(T_{v_i})$ vertices in T_{v_i}

$k = 3$ \hspace{1cm} $\lambda(T) = 5$

\begin{itemize}
 \item v_1
 \item v_2
 \item v_3
 \item v_4
 \item v_5
 \item v_6
\end{itemize}

\begin{itemize}
 \item $\lambda_3(T_{v_i}), \pi_3(T_{v_i})$
\end{itemize}
Need for tradeoff between probing 1 or $\pi(T_{v_i})$ vertices in T_{v_i}

$k = 3$ \hspace{1cm} $\lambda(T) = 5$

$\lambda_3(T_{v_i}), \pi_3(T_{v_i})$
Variant with relative distances

Relative distances returned instead of exact distances.

Target

v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9

Relative dist. vector from probing blue vertices: $(v_7 < v_4 = v_8 < v_1)$.

Complexity

NP-complete when either number of vertices to be probed or number of turns is fixed.
Future work

- Study the problem with exact distances in other graph classes such as planar and interval graphs.
- Try to get exact values for the problem with relative distances in paths [Foucaud et al, 2014].
- Study the problem with relative distances in trees.
Thanks!