Enquêter dans les Graphes

Nathann Cohen1 \quad Nícolas A. Martins2 \quad Fionn Mc Inerney3
Nicolas Nisse3 \quad Stéphane Pérennes3 \quad Rudini Sampaio2

1CNRS, Univ Paris Sud, LRI, Orsay, France
2Universidade Federal do Ceará, Fortaleza, Brésil
3Université Côte d’Azur, Inria, CNRS, I3S, France

June 2, 2017
Time: Too early!
AlgoTel 2017
2-Player Combinatorial Games

- Mobile agents in a graph.
- Turn-by-turn with 2 players.
 - Coordination for common goal, e.g.,
 - Cops and Robbers (capture) (Quilliot, 1978; Nowakowski, Winkler, 1983; Bonato, Nowakowski, 2011)
 - Eternal Domination (protection) (Goddard et al, 2005; Klostermeyer, MacGillivray, 2009).
Suspect (1st) vs detectives (2nd) in a graph G.

Start : Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn : Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal : Suspect wants to be at least distance $d + 1$ from all detectives.

Ex : $s = 2$ and $d = 1$.
Suspect (1^{st}) vs detectives (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex : $s = 2$ and $d = 1$.
Suspect (1st) vs **detectives** (2nd) in a graph G.

Start : Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn : Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal : Suspect wants to be at least distance $d + 1$ from all detectives.

Ex : $s = 2$ and $d = 1$.
Suspect (1st) vs detectives (2nd) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Suspect (1^{st}) vs detectives (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Suspect (1st) vs detectives (2nd) in a graph G.

\textbf{Start} : Suspect placed at a vertex. Then, detectives placed.

\textbf{Turn-by-turn} : Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

\textbf{Goal} : Suspect wants to be at least distance $d + 1$ from all detectives.

Ex : $s = 2$ and $d = 1$.
Investigations in Graphs

Suspect (1^{st}) vs **detectives** (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. **Detectives** traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Investigations in Graphs

Suspect (1^{st}) vs detectives (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Suspect (1^{st}) vs detectives (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Suspect (1^{st}) vs detectives (2^{nd}) in a graph G.

Start: Suspect placed at a vertex. Then, detectives placed.

Turn-by-turn: Suspect traverses up to $s \geq 2$ edges. Detectives traverse up to 1 edge.

Goal: Suspect wants to be at least distance $d + 1$ from all detectives.

Ex: $s = 2$ and $d = 1$.
Guard Number: $g_{n_s,d}(G)$

Definition

For all $s \geq 2$, $d \geq 0$ and a graph G, $g_{n_s,d}(G)$ is the minimum number of detectives guaranteed to win vs the suspect.
Guard Number: $gn_{s,d}(G)$

Definition

For all $s \geq 2$, $d \geq 0$ and a graph G, $gn_{s,d}(G)$ is the minimum number of detectives guaranteed to win vs the suspect.

$gn_{2,1}(G) = 2$

$gn_{s,1}(G) \leq \gamma(G)$
Our Results: Computing gn

Complexity
Calculating $gn_{s,d}$ is NP-hard in general.

Tight bounds for paths

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+q} \right\rceil \text{ where } q = \lfloor \frac{2d}{s-1} \rfloor.$$

Almost tight bounds for cycles

$$gn_{s,d}(C_n) \preceq \left\lceil \frac{n+2q}{2(d+q)+3} \right\rceil \text{ where } q = \lfloor \frac{2d}{s-1} \rfloor.$$

Polynomial time Linear Program for trees
Can calculate $gn_{s,d}(T)$ and a corresponding strategy in polynomial time.

Grids

$$\exists \beta > 0, \text{ s.t. } \Omega(n^{1+\beta}) \leq gn_{s,d}(G_{n \times n}).$$
Cops vs robber (capture at a distance) (Bonato et al, 2010).
Related Work

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
Related Work

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - Need $\Omega(\log n / \log \log n)$ cops in $n \times n$ grid. (Balister et al, 2016).
Related Work

- Cops vs robber (capture at a distance) (Bonato et al, 2010).
- Cops vs fast robber (Fomin et al, 2010).
 - Need $e^{\Omega(\log n / \log \log n)}$ cops in $n \times n$ grid. (Balister et al, 2016).
- Eternal Domination (Goddard et al, 2005).
Cops vs robber (capture at a distance) (Bonato et al, 2010).

Cops vs fast robber (Fomin et al, 2010).

Need $e^{\Omega(\log n / \log\log n)}$ cops in $n \times n$ grid. (Balister et al, 2016).

Eternal Domination (Goddard et al, 2005).

$\lceil \frac{4n}{5} \rceil + 1 \leq \gamma^m(3 \times n \text{ grid}) \leq \lceil \frac{4n}{5} \rceil + 3$ (Delaney et al, 2015).
Cops vs robber (capture at a distance) (Bonato et al, 2010).

Cops vs fast robber (Fomin et al, 2010).

- Need $e^{\Omega(\log n / \log \log n)}$ cops in $n \times n$ grid. (Balister et al, 2016).

Eternal Domination (Goddard et al, 2005).

- $\lceil \frac{4n}{5} \rceil + 1 \leq \gamma^m(3 \times n \text{ grid}) \leq \lceil \frac{4n}{5} \rceil + 3$ (Delaney et al, 2015).

- $\gamma^m(G) = gn_{s,d}(G)$ when $s = \infty$ and $d = 0$.
Theorem

For all \(s \geq 2, \ d \geq 0, \) and a path \(P_n \) on \(n \) vertices,

\[
gn_{s,d}(P_n) = \left\lceil \frac{n}{2d + 2 + \lfloor \frac{2d}{s-1} \rfloor} \right\rceil
\]
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$ gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil $$

Ex : $s = 3$ and $d = 1$.
Paths: Lower bound

Theorem
For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

![Diagram showing a path with specified vertices and edges.]
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$ gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+s-1} \right\rceil $$

Ex : $s = 3$ and $d = 1$.
Paths: Lower bound

Theorem

For all \(s \geq 2 \), \(d \geq 0 \), and a path \(P_n \) on \(n \) vertices,

\[
gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil
\]

Ex: \(s = 3 \) and \(d = 1 \).
Theorem
For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n^{2d+2} + 2 + \lfloor \frac{2d}{s-1} \rfloor}{2d+2} \right\rceil$$

Ex: $s = 3$ and $d = 1$.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.
Theorem

For all \(s \geq 2, \ d \geq 0 \), and a path \(P_n \) on \(n \) vertices,

\[
g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor\frac{2d}{s-1}\rfloor} \right\rceil
\]

Ex : \(s = 3 \) and \(d = 1 \).
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

![Diagram of a path with vertices and colors to illustrate the theorem](image)
Paths : Lower bound

Theorem
For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

![Path diagram with characters]
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

$$gn_{3,1}(P_{10}) = 2$$
Paths : Upper bound

Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \lfloor \frac{2d}{s-1} \rfloor$ vertices.
Paths : Upper bound

Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Paths : Upper bound

Theorem

For all \(s \geq 2, \ d \geq 0, \) and a path \(P_n \) on \(n \) vertices,

\[
g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil
\]

Ex : \(s = 3 \) and \(d = 1 \).

1 detective can protect subpath of \(2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor \) vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \lfloor \frac{2d}{s-1} \rfloor$ vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Theorem

For all \(s \geq 2, \quad d \geq 0, \) and a path \(P_n \) on \(n \) vertices,

\[
g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil
\]

Ex: \(s = 3 \) and \(d = 1 \).

1 detective can protect subpath of \(2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor \) vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex : $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\lfloor \frac{2d}{s-1} \rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \lfloor \frac{2d}{s-1} \rfloor$ vertices.
Paths : Upper bound

Theorem

For all \(s \geq 2, \ d \geq 0 \), and a path \(P_n \) on \(n \) vertices,

\[
g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil
\]

Ex: \(s = 3 \) and \(d = 1 \).

1 detective can protect subpath of \(2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor \) vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,
\[
g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil
\]

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Paths: Upper bound

Theorem
For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$gn_{s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Ex: $s = 3$ and $d = 1$.

1 detective can protect subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Each detective protects a subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Theorem

For all $s \geq 2$, $d \geq 0$, and a path P_n on n vertices,

$$g_{n,s,d}(P_n) = \left\lceil \frac{n}{2d+2+\left\lfloor \frac{2d}{s-1} \right\rfloor} \right\rceil$$

Each detective protects a subpath of $2d + 2 + \left\lfloor \frac{2d}{s-1} \right\rfloor$ vertices.
Cycles : Upper Bound Case \(2d < s - 1\)

Theorem

For all \(s \geq 2\), \(d \geq 0\) s.t. \(2d < s - 1\), and a cycle \(C_n\) on \(n\) vertices,

\[
g_{n,s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.
\]

Ex : \(s = 6\) and \(d = 0\).

\[
g_{6,0}(C_{12}) = 4
\]
Cycles : Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$gn_{s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex : $s = 6$ and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$
Cycles : Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$g_{n_{s,d}}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex : $s = 6$ and $d = 0$.

$$g_{n_{6,0}}(C_{12}) = 4$$
Cycles : Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$g_{n,s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex : $s = 6$ and $d = 0$.

$$g_{n,6,0}(C_{12}) = 4$$
Cycles : Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$gn_{s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex : $s = 6$ and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$
Cycles : Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$gn_{s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex : $s = 6$ and $d = 0$.

$$gn_{6,0}(C_{12}) = 4$$
Cycles: Upper Bound Case $2d < s - 1$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $2d < s - 1$, and a cycle C_n on n vertices,

$$g_{n,s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Ex: $s = 6$ and $d = 0$.

$$g_{6,0}(C_{12}) = 4$$
Let $2d = q(s - 1) + r$ ($0 \leq r < s - 1$) and $2d = q's + r'$ ($0 \leq r' < s$).
Then, $q = \left\lfloor \frac{2d}{s-1} \right\rfloor$ and $q' = \left\lfloor \frac{2d}{s} \right\rfloor$.
Let $(q^*, r^*) = (q, r)$ if s is odd and $(q^*, r^*) = (q', r')$ otherwise.

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $q = 0$, and a cycle C_n on n vertices,
$$g_{n,s,d}(C_n) = \left\lceil \frac{n}{2d+3} \right\rceil.$$

Theorem

For all $s \geq 2$, $d \geq 0$ s.t. $q \neq 0$, and a cycle C_n on n vertices,
$$\left\lceil \frac{n+2q}{2(d+q)+3} \right\rceil \leq g_{n,s,d}(C_n) \leq \left\lceil \frac{n+2q^*}{2(d+q^*)-r^*} \right\rceil.$$
Trees are Harder

Paths: 1 detective per subpath of $2d + 2 + \left\lceil \frac{2d}{s-1} \right\rceil$ vertices.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $g_{n_{2,1}}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree \(T \) where \(s = 2 \), \(d = 1 \) and \(gn_{2,1}(T) = 4 \).
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $\gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.

Trees are Harder
Trees are Harder

Can’t always divide tree into subtrees protected by a certain number of detectives.

Example of a tree T where $s = 2$, $d = 1$ and $gn_{2,1}(T) = 4$.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance ≤ \(d \) from suspect must be ≥ 1.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance \(\leq d \) from suspect must be \(\geq 1 \).

\[s = 2, \ d = 1. \]

\[gn_{2,1}(C_6) = 2 \]

but

1.5 detectives suffice.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance $\leq d$ from suspect must be ≥ 1.

$g_{n,1}(C_6) = 2$ but 1.5 detectives suffice.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance $\leq d$ from suspect must be ≥ 1.

$g_{n_2,1}(C_6) = 2$ but 1.5 detectives suffice.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance $\leq d$ from suspect must be ≥ 1.

Linear program to compute optimal fractional strategy.

$\text{gn}_{2,1}(C_6) = 2$ but 1.5 detectives suffice.
Detectives may be fractional entities; movements rep. by flows.

Unchanged for suspect. Total fraction of detectives distance \(\leq d \) from suspect must be \(\geq 1 \).

Linear program to compute optimal fractional strategy.

Optimal fractional strategy \(\Rightarrow \) optimal integral strategy in trees.

\(s = 2, \ d = 1 \).

\(gn_{2,1}(C_6) = 2 \) but 1.5 detectives suffice.

Theorem: Can transform optimal fractional strategy into optimal integral strategy in polynomial time.

Fractional Conf.
Theorem: Can transform optimal fractional strategy into optimal integral strategy in polynomial time.
Theorem: Can transform optimal fractional strategy into optimal integral strategy in polynomial time.
Theorem: Can transform optimal fractional strategy into optimal integral strategy in polynomial time.
Theorem: Can transform optimal fractional strategy into optimal integral strategy in polynomial time.
Theorem : Can transform optimal fractional strategy into optimal integral strategy in polynomial time.

Tree’s protection and detectives’ movements preserved.

Fractional Conf.

Integral Conf.

Tree’s protection and detectives’ movements preserved.
Restricted Strategies

\[f : V^k \times V \Rightarrow V^k \] (Unrestricted strategy)

\[\omega : V \Rightarrow V^k \] (Restricted strategy)
Restricted Strategies

\[f : \mathcal{V}^k \times \mathcal{V} \Rightarrow \mathcal{V}^k \text{ (Unrestricted strategy)} \]

\[\omega : \mathcal{V} \Rightarrow \mathcal{V}^k \text{ (Restricted strategy)} \]

- Detectives’ positions depend only on position of suspect.
- 1 Unique configuration for detectives for each position of suspect.

Theorem
Optimal fractional strategy \(\Rightarrow \) optimal fractional restricted strategy in trees.

Can calculate optimal restricted fractional strategies with Linear Program in polynomial time.
Restricted Strategies

\[f : V^k \times V \Rightarrow V^k \] (Unrestricted strategy)

\[\omega : V \Rightarrow V^k \] (Restricted strategy)

- Detectives’ positions depend only on position of suspect.
- 1 Unique configuration for detectives for each position of suspect.

Theorem

Optimal fractional strategy \(\Rightarrow \) optimal fractional restricted strategy in trees.
Restricted Strategies

\[f : V^k \times V \Rightarrow V^k \text{ (Unrestricted strategy)} \]

\[\omega : V \Rightarrow V^k \text{ (Restricted strategy)} \]

- Detectives’ positions depend only on position of suspect.
- 1 Unique configuration for detectives for each position of suspect.

Theorem

Optimal fractional strategy \(\Rightarrow \) optimal fractional restricted strategy in trees.

Can calculate optimal restricted fractional strategies with Linear Program in polynomial time.
Restricted strategy: $\omega: V \Rightarrow V^k$

$\omega_{x,u}$: quantity of detectives on u when suspect is on x.

$f_{x,x',u,u'}$: quantity of detectives that go from u to u' when suspect goes from x to x'.
Restricted strategy: \(\omega : V \Rightarrow V^k \)

\(\omega_{x,u} \) : quantity of detectives on \(u \) when suspect is on \(x \).

\(f_{x,x',u,u'} \) : quantity of detectives that go from \(u \) to \(u' \) when suspect goes from \(x \) to \(x' \).

(1) Minimize \(\sum_{v \in V} \omega_{x_0,v} \)

Minimize number of detectives.
Restricted strategy: $\omega : V \Rightarrow V^k$

$\omega_{x,u}$: quantity of detectives on u when suspect is on x.

$f_{x,x',u,u'}$: quantity of detectives that go from u to u' when suspect goes from x to x'.

\[
(2) \sum_{v \in N_d[x]} \omega_{x,v} \geq 1 \quad \forall x \in V
\]

Guarantees always at least 1 detective within distance d of suspect.
Linear Program

Restricted strategy: \(\omega : V \Rightarrow V^k \)

\(\omega_{x,u} \) : quantity of detectives on \(u \) when suspect is on \(x \).

\(f_{x,x',u,u'} \) : quantity of detectives that go from \(u \) to \(u' \) when suspect goes from \(x \) to \(x' \).

\[
\begin{align*}
(3) \quad & \sum_{u' \in N[u]} f_{x,x',u,u'} = \omega_{x,u} & \forall u \in V, x' \in N_s[x] \\
(4) \quad & \sum_{u' \in N[u]} f_{x,x',u',u} = \omega_{x',u} & \forall u \in V, x' \in N_s[x]
\end{align*}
\]

Guarantees validity of moves of detectives when suspect moves.
Restricted strategy: \(\omega : V \Rightarrow V^k \)

\(\omega_{x,u} \) : quantity of detectives on \(u \) when suspect is on \(x \).

\(f_{x,x',u,u'} \) : quantity of detectives that go from \(u \) to \(u' \) when suspect goes from \(x \) to \(x' \).

\[
\begin{align*}
(3) \quad \sum_{u' \in N[u]} f_{x,x',u,u'} &= \omega_{x,u} & \forall u \in V, x' \in N_s[x] \\
(4) \quad \sum_{u' \in N[u]} f_{x,x',u',u} &= \omega_{x',u} & \forall u \in V, x' \in N_s[x]
\end{align*}
\]

Guarantees validity of moves of detectives when suspect moves.

\(O(n^4) \) real variables and constraints.
Main Result: gn in Trees

Theorem

$\forall s > 1, d \geq 0$ and all trees T, $gn_{s,d}(T)$ and a corresponding strategy can be calculated in polynomial time.

Idea of proof : Linear Program can compute opt. frac. restr. strategy in polynomial time.

Run LP. From previous theorem, strategy is opt. frac.

Can transform opt. frac. into opt. int. in polynomial time.
Theorem

\[\exists \beta > 0, \text{ s.t. } \forall s > 1, \; d \geq 0, \; \Omega(n^{1+\beta}) \leq gn_s,d(G_{n \times n}). \]

Idea of proof: Lower bound holds for fractional version.
Grids

Theorem
\[\exists \beta > 0, \text{ s.t. } \forall s > 1, \ d \geq 0, \ \Omega(n^{1+\beta}) \leq gn_{s,d}(G_{n \times n}). \]

Idea of proof : Lower bound holds for fractional version.

Torus and grid have same order of number of detectives.

Theorem
\[\exists \alpha \geq \log(3/2) \approx 0.58, \text{ s.t. } \forall s > 1, \ d \geq 0, \ fgn_{s,d}(G_{n \times n}) \leq O(n^{2-\alpha}). \]

Idea of proof : Density function \(\omega^*(v) = \frac{c}{(\text{dist}(v,v_0)+1)^{\log 3/2}} \) for a constant \(c > 0 \) satisfies LP.
Distribution of Detectives in the Torus for an optimal symmetrical suspect-positional strategy when $n = 100$, $m = 100$, $s = 2$ and $d = 1$
Further Work

- Determine $g_{n_s,d}(G_{n \times n})$.

- Approximate $g_{n_s,d}(G)$ in polynomial time in certain classes of graphs?

- Fractional approach applied to other combinatorial games.
Thanks!