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Abstract

In this thesis, implicit matrix-based representations of finite fibers of rational maps
are studied theoretically and computationally for two problems: implicitization of
rational algebraic curves in arbitrary dimension and orthogonal projections of a point
onto an rational algebraic surface in three dimensional space. The proposed matrices
have the property that their cokernels at a given point p in the target space of the
rational map are in relation with the pre-images of the p via this rational map. In
addition, these matrices can be pre-computed so that the pre-images of such a point p
can be approximately computed by means of fast and robust numerical linear algebra
tools.

In the second chapter, a new family of implicit matrix representations is intro-
duced for algebraic curves. It relies on the use of moving quadrics following curve
parameterizations and provides a high-order extension of the implicit matrix repre-
sentations built from their linear counterparts, the moving planes. Such matrices
offer new, more compact, implicit representations of rational curves. Their entries
are filled by linear and quadratic forms in the space variables and their ranks drop
exactly on the curve. Typically, for a general rational curve of degree d we obtain a
matrix whose size is half of the size of the corresponding matrix obtained with the
moving planes method.

In the third chapter, the problem of computing the orthogonal projections of
a point onto a rational algebraic surface embedded in three dimensional projective
space is turned into the problem of computing the finite fibers of a generically finite
dominant rational map: a congruence of normal lines to the rational surface. Then, an
in-depth study of certain syzygy modules associated to such a congruence is presented
and applied to build elimination matrices that provide universal representations of
its finite fibers, under some genericity assumptions. Moreover, these matrices depend
linearly in the variables of the three dimensional space and can be pre-computed for
a given rational surface.

Lastly, the appendix of this thesis reports on a three-month industrial secondment
at the company Missler Software where two distance problems are treated : distance
between a circle and a line in 3D and distance between an arc of a circle and a segment
of a line in three dimensional space.

Key words : multi-graded rational map, implicitization, parameterization, fiber,
distance, orthogonal projection, syzygies, µ-basis, moving quadric.
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Résumé

Dans cette thèse, de nouvelles représentations matricielles des fibres finies d’applications
rationnelles sont introduites et étudiées d’un point de vue théorique mais aussi pra-
tique avec l’objectif de traiter des problèmes de distances, notamment les deux prob-
lèmes suivant: l’implicitation des courbes rationnnelles algébriques en dimension ar-
bitraire et la détermination des projetés orthogonaux d’un point sur une surface
rationnelle algébrique en dimension trois. Les noyaux à gauche de ces représentations
matrices, après évaluation en un point p de l’espace ambiant sont reliés aux pré-images
du point p par l’application rationnelle considérée. De plus, ces matrices peuvent être
pré-calculées et les pré-images d’un point p peuvent être calculées approximativement
de manière efficace et robuste grâce aux outils d’algèbre linéaire.

Dans le deuxième chapitre, une nouvelle famille des représentations matricielles
est proposée pour les courbes algébriques rationnelles. Elle est basée sur le concept de
‘quadriques mobiles’ associées aux courbes parametrées. Elle fournit une extension
non linéaire des représentations matricielles qui sont obtenues au moyen du concept
plus classique de ‘plans mobiles’ associés à une paramétrisation. Ces matrices four-
nissent ainsi de nouvelles représentations implicites plus compactes pour les courbes
rationnelles algébriques. Leurs entrées sont composées de formes linéaires et quadra-
tiques en les variables de l’espace ambiant et leur rang chute exactement sur la courbe
considérée. De plus, pour une courbe rationnelle générale de degré d ces nouvelles
matrices sont deux fois plus petites en taille que les matrices, plus classiques, qui
n’utilisent que des plans mobiles, et donc dont les entrées sont exclusivement com-
posées de formes linéaires.

Dans le troisième chapitre, le calcul des projetés orthogonaux d’un point sur une
surface rationnelle algébrique dans l’espace projectif de dimension trois est étudié
comme un problème d’inversion, plus précisément comme le calcul des fibre finies
d’applications rationnelles génériquement finies et dominantes : les congruences des
droites normales à une surface algébrique rationnelle. Une analyse fine des mod-
ules de relations (syzygies) associés à ces congruences est tout d’abord menée, puis
utilisée pour construire des matrices eliminantes qui fournissent des représentations
universelles de ces fibres finies. De plus, ces matrices dépendent linéairement des
variables de l’espace ambiant de dimension trois et elles peuvent être pré-calculées
pour une surface algébrique rationnelle donnée.

Enfin, l’appendice de cette thèse décrit les résultats obtenus lors d’un séjour de
recherche mené chez le partenaire industriel Missler Software. Deux problèmes de
distance en dimension trois ont été étudiés: le calcul de la distance entre un cercle et
une droite puis le calcul de la distance entre un arc de cercle et un segment de droite.

Mots-clés : application rationnelle multi-graduée, implicitisation, paramétrisation,
fibre, distance, projection orthogonale, syzygies, µ-base, quadriques mobiles.
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Je remercie aussi d’abord Carlos D’Andrea pour sa supervision pendant ma visite
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pendant tout au long de mon doctorat.
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ix

Contents

Introduction xxi

1 Preliminaries 1
1.1 Closed image and fibers of rational maps . . . . . . . . . . . . . . . . . 1
1.2 Blow-up algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Koszul complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Approximation complexes . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Generalized Koszul complex . . . . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

Rational maps are fundamental objects in algebraic geometry. In the field of Computer-
Aided Geometric Design (CAGD) and geometric modeling, they are used to describe
geometric objects. For instance, the image of rational maps are used to give paramet-
ric representations of geometric objects as parameterizations of for example curves
and surfaces. To illustrate, the unit sphere in R3 is usually parameterized by the
rational map φ

φ : A2
R → A3

R
(u, v) 7→

(
2u

1+u2+v2
, 2v

1+u2+v2
, −1+u2+v2

1+u2+v2

)
.

Parametric algebraic curves and surfaces can be also described by implicit repre-
sentations as the set of points verifying common zeros of polynomial equation(s). To
illustrate, we consider again the unit sphere in R3. Then, the zeros of the equation

x2 + y2 + z2 − 1 = 0 where (x, y, z) ∈ R3

define the unit sphere in R3, i.e. x2 + y2 + z2 − 1 = 0 is its implicit equation. Here,
we emphasize that only one polynomial equation is enough to represent implicitly a
plane curve, whereas we need several polynomial equations for curves and surfaces in
space over C. Both representations are intensively used in Computer-Aided Geometric
Design (CAGD) and geometric modeling depending on the problem. Nevertheless,
we emphasize that the implicit equation(s) of a given parametric geometric object
looses information about parameter values.

Very interesting and useful knowledge about a given geometric object in geometric
modeling is how many distinct parameter values correspond to the same point p on
the given object, and what their coordinates are. Indeed, in CAGD, instead of the
entire geometric object, generally a patch of it is considered. Equivalently we consider
its parameterization only in some intervals of parameter values. The investigation of
which parameter values of p are on the patch requires more information than what
the implicit equations provide. Seeking for answers to these questions leads to study
the fibers of the corresponding parameterization, i.e. rational map.

Let k be a field and Φ be a rational map from Pnk to Pmk given by homogeneous
polynomials F0, . . . , Fm of degree d in the coordinate ring R = k[x0, . . . , xn]. Then,
the closed image of Φ is a subvariety in Pmk . Moreover, from the graph ΓΦ of the ratio-
nal map Φ, we have two canonical projections, the first one is on the first component,
i.e. π1 : ΓΦ → Pnk , the second one is on the last component, i.e. π2 : ΓΦ → Pmk .

ΓΦ

π1

��

π2

((

� � //Pnk × Pmk

Pnk
Φ //Pmk .

Then, the closed image of Φ is the image of π2. We define the fiber over the point p
in Pmk as the pre-images along π2 of p and we denote it as π2(p)−1.

Moreover, the investigation of whether the fiber is empty answers the impliciti-
zation problem. The first part of my thesis studies the fibers of rational maps from
P1
k to Pmk , for any integer m > 2 by means of implicit matrices built from both lin-

ear (syzygies) and quadratic relations between the coordinates of Φ for the rational
algebraic curve implicitization problem.
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We can describe a rational algebraic surface S as used in CAGD by a parameter-
ization of the form Φ : X 99K P3

k, where X is either P1
k × P1

k (rational tensor-product
surface) or P2

k (rational triangular surface). Let k[x] be the coordinate ring of X. We
know that in Euclidean geometry the orthogonal projections of a point p onto the
surface S in P3

k lie on the normal lines to the surface S passing through the point
p. With the goal to compute the orthogonal projections of p onto S, we study the
fiber over p of the multi-graded dense rational map Ψ, which is a parameterization
of the normal lines of the surface S. We assume that the fiber over p is finite, i.e.
there are finitely many orthogonal projections onto S. The rational map Ψ is of form
Ψ : X × P1

k → P3
k such that Ψ(x) = t̄Φ(x) + t∇(x), where ∇(x) is the homogeneous

normal vector to S (see §3.1.3 for the details) and k[t̄, t] is the coordinate ring of the
last P1

k. It is of degree (d, 1) on X × P1
k where d is bidegree if X = P1

k × P1
k or d

is degree if X = P2
k. Moreover, for a general rational surface we observe that the

base locus of the rational map Ψ, i.e. points in X × P1
k where Ψ0,Ψ1,Ψ2 and Ψ3

vanish simultaneously is of dimension one (see Lemma 3.1.2). Once, we know the
orthogonal projections of p onto S, then we can compute the distance between the
point p and the surface S which will be the smallest among the distances between p
and its orthogonal projections. In a second part, my thesis studies the finite fibers
of multi-graded rational dominant maps onto three dimensional projective space and
its application to the computation of orthogonal projections of a point onto a rational
algebraic surface.

Finally, in the last chapter, my thesis reports on 3-month industrial secondment
in Missler Software in France where I treated distance between a circle and a line and
also between an arc of a circle and a line segment in space.

Curve implicitization

In what follows, we give a short overview about existing works on the implicitization
of plane curves and introduce the contribution of this thesis on this topic. Let Φ :
P1
k → P2

k be a parameterization of a plane curve C given by

(s : t) 7→ (F0(s, t) : F1(s, t) : F2(s, t)),

where F0, F1, F2 are homogeneous polynomials of the same degree d > 1 in k[s, t].
Implicit representations are particularly interesting for determining whether a point
lies on the curve C, also for solving curve/curve intersection problems. Therefore,
the implicitization of rational plane curves have been extensively studied for those
reasons in CAGD. One main approach is to use the resultant. Let k[T0, T1, T2] be the
coordinate ring of P2

k. Consider the polynomials

F0T1 − F1T0 = a0(T0, T1, T2)td + a1(T0, T1, T2)std−1 + · · ·+ ad(T0, T1, T2)sd and
F0T2 − F2T0 = b0(T0, T1, T2)td + b1(T0, T1, T2)std−1 + · · ·+ bd(T0, T1, T2)sd.
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Then, the classical Sylvester matrix of F0T1 − F1T0 and F0T2 − F2T0

Syl(F0T1 − F1T0, F0T2 − F2T0) =



ad bd

ad−1
. . . bd−1

. . .
...

. . . ad
...

. . . bd
... ad−1

... bd−1

a0
... b0

...
. . .

...
. . .

a0 b0


is a 2d× 2d matrix with linear entries in T0, T1, T2 and of which determinant is given
by

Res(F0T1 − F1T0, F0T2 − F2T0) = T d0C(T0, T1, T2)deg(Φ),

where C(T0, T1, T2) is the implicit equation of the curve (defined up to a nonzero
constant factor) and deg(Φ) is the degree of the map Φ. When k is algebraically
closed, then deg(Φ) is the number of pre-images of a generic point on the curve C via
Φ.

There exist also the methods based on moving lines for the implicitization prob-
lem. The moving lines have been introduced by Sederberg and Chen in [73]. A moving
line L is a polynomial

L(T0, T1, T2; s, t) := A(s, t)T0 +B(s, t)T1 + C(s, t)T2.

For fixed s, t values, the equation L = 0 defines a line that moves when the parameter
value s, t of the curve moves. We say that the moving line L follows the rational plane
curve C if

L(Φ(s, t); s, t) = A(s, t)F0(s, t) +B(s, t)F1(s, t) + C(s, t)F2(s, t) = 0.

Let I := (F0, F1, F2) be the ideal of k[s, t]. The syzygy module of the ideal I is defined
as

Syz(I) := {(g0, g1, g2) ∈ k[s, t]3 : g0F0 + g1F1 + g2F2 = 0}.

Thus, (A(s, t), B(s, t), C(s, t)) is a syzygy of I if L follows Φ. Moreover it is known
that Syz(F0, F1, F2) is a free k[s, t]-module of rank 2 (see [31]). We denote a couple
of generators by p := (p0, p1, p2) and q := (q0, q1, q2). The couple p, q is called a
µ-basis (see [31]). Let deg(p) = µ1,deg(q) = µ2 and µ1 6 µ2. The µ-basis p, q verifies
µ1 +µ2 = d. It is known that for a general plane curve of degree d, we have µ2 =

⌈
d
2

⌉
(see [31]).

There are several existing works on µ-basis. In [31], the method of moving lines
following a given plane curve is studied with µ-basis notion. Later in [26], more
properties and equivalent definitions of a µ-basis of I for a rational plane curve are
given in terms of moving line method with an algorithm based on Gaussian elimi-
nation computing the µ-basis. In [73], matrix of moving lines is interpreted as the
Sylvester matrix of µ-basis of I, denoted by Syl(p, q). Syl(p, q) is of size d × d of
which determinant yields a polynomial of degree d in k[T0, T1, T2]. We remark that
the matrix Syl(p, q) has half size of the matrix Syl(F0T1 −F1T0, F0T2 −F2T0), which
implies that the use of µ-basis allows us to decrease the size of the implicit matrix
whose determinant yields the implicit equation of C. Moreover, the matrix Syl(p, q),
without computing its determinant, can be used for determining if a point lies on
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the curve simply by evaluating its rank at this point. Then its parameter(s) can be
determined from the kernel of this matrix, whereas this is not possible to do with an
implicit polynomial equation of the curve C. For that reason, instead of dealing with
the polynomials of higher degree obtained by such determinants, the developed results
in this thesis focus on the matrix itself as an implicit representation of the curve C.

In Chapter 2, we consider Hybrid Bézout matrices of µ-basis that we denoted by
MQ. Let p and q be as follows,

p = a0(T0, T1, T2)tµ1 + a1(T0, T1, T2)stµ1−1 + · · ·+ aµ1(T0, T1, T2)sµ1 ,

q = b0(T0, T1, T2)tµ2 + b1(T0, T1, T2)stµ2−1 + · · ·+ bµ2(T0, T1, T2)sµ2 .

For plane curves, MQ is µ2 × µ2 matrix which is composed by the last µ2 − µ1

columns of Syl(p, q) in coefficients of q and the first µ1 columns of Bézout matrix of
p and q. We recall that the Bézout matrix of p, q, denoted by Bez(p, q) is defined by
Bez(p, q) = (bij)16i,j6d where

p(σ, τ)q(s, t)− p(s, t)q(σ, τ)

sτ − tσ
=

∑
16i,j6d

bijt
i−1sd−i+1τ j−1σd−j+1,

and σ, τ are new indeterminates. Since Bez(p, q) has quadratic entries in T0, T1, T2,
Hybrid Bézout matrix consists of both linear and quadratic terms and its determi-
nant yields a homogeneous polynomial of degree (µ2 − µ1) + 2µ1 = d in T0, T1, T2.
This approach for obtaining such more compact implicitization matrices with some
quadratic entries is also known as the method of moving conics (see [29]). A moving
conic of degree ν in N is a polynomial of the form

Q(T0, T1, T2; s, t) = g0,0(s, t)T 2
0 + g0,1(s, t)T0T1+

g0,2(s, t)T0T2 + g1,1(s, t)T 2
1 + g1,2(s, t)T1T2 + g2,2(s, t)T 2

2

where the polynomials gi,j(s, t) are homogeneous polynomials of degree ν in k[s, t].
In addition, this moving conic is said to follow the parameterization φ if

Q(Φ(s, t); s, t) =
∑

06i6j62

gi,j(s, t)Fi(s, t)Fj(s, t) = 0.

Similarly to moving lines, this latter condition means geometrically that the conic
Q goes through the point φ(s : t) ∈ C. The moving conics have been introduced in
[74] and then extensively used, especially to deal with the implicitization of rational
surfaces (see [61, 29]).

Unlike the case of plane curves, the implicitization of parameterized curves in
higher dimension is much more delicate because now a space curve is not given by a
single equation over algebraically closed field. Nevertheless, the concept of µ-basis is
easily generalized to curves in higher dimension [52, 77] and from them many results
to produce some implicit polynomial equations of a curve have been proposed. For
instance [16] and [18] consist in using the elimination matrix built from a µ-basis as an
implicit representation. Thus, this matrix of moving hyperplanes denoted by M is the
natural generalization of the Sylvester matrix of a µ-basis in the case of plane curves.
Although this matrix is no longer a square matrix, it still allows to characterize the
point that lie on the curve by a drop of its rank. In [16], the construction and the
properties of the matrix of moving hyperplanes Mν has been studied. Briefly, the
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matrix Mν is filled by the syzygies of the ideal generated by the coordinates of a
parameterization of the space curve of a suitable degree ν. We will say that Mν is
the matrix of moving hyperplanes at given degree ν. Some applications such that
inversion of a point on a curve by means of generalized eigenvalues computation,
multiplicity of a point p on a curve by means of drop of rank of Mν evaluated at p are
explained in details. Furthermore, intersection problems are studied. More precisely,
intersection of two curves is studied by substituting the parameterization of the first
curve C1 into a suitable implicit matrix Mν of the second curve C2. Then, one may
consider the two companion matrices of the cokernel of Mν , then reduce them into
two square full rank matrices by Kronecker form (see [63, §3.2], [16, §6.2.]), and after
that compute their generalized eigenvalues in order to compute the coordinates of the
intersection points. Similar matrices are also used for curve/surface, surface/surface
intersection problems (see [17, 63]).

From now on, let Φ be the parameterization

Φ : P1
k → Pmk

(s : t) 7→ (F0(s, t) : F1(s, t) : . . . : Fm(s, t))

where F0, . . . , Fm are homogeneous polynomials of degree d > 1 in k[s, t]. Let I :=
(F0, . . . , Fm) be an ideal of k[s, t]. Then, the µ-basis notion can be generalized to
higher dimensions m > 2 for curves, since the syzygy module of I, denoted by Syz(I),
is still free and Syz(I) is generated by m vectors of homogeneous polynomials, whose
degrees sum up to d, according to Hilbert-Burch Theorem (see [9]). We will still
assume that µ1 6 · · · 6 µm, where µi’s are the degrees of µ-basis. We refer the
reader to the work [77] which generalizes moving line methods in [26] into higher
dimensions, i.e. generalizes to the rational space curves in arbitrary dimension. In
addition, [51] gives explicitly the properties of µ-basis of space curve parameterization
Φ with an algorithm based on partial reduced row-echelon form of a coefficient matrix
of Sylvester type which is faster than the previous known methods in [77, 26].

Back to the use of resultant type matrices for implicitization problem, in Chapter
2 we generalize the Hybrid Bézout matrix of µ-basis into higher dimensions. We
construct it by concatenating the matrix of moving hyperplanes and matrix of moving
quadrics at given degree ν and denote it by MQ. We also show the strong relation
between the matrices MQ and degree of the fiber over a point p on the given curve C.

We first recall that for all R-module M where R is a graded ring and k = R0 is a
field, we define Hilbert function of M as

HFM (µ) = dimk(Mµ),

and Hilbert series of M as

HSM (x) =
LM (x)

(1− x)δ
,

where δ denotes the Krull dimension of M and LM (x) is the unique polynomial
verifying LM (a) 6= 0 (see [41, §1.9], [9, Chapter 4]). We define Hilbert polynomial of
M as

HPM (µ) =
aδ−1

(δ − 1)!
xδ−1 + · · ·+ a0,

where aδ−1 = LM (1). We also know that for all sufficiently large µ, Hilbert function
is equal to Hilbert polynomial. Let p be a point in Pmk having finite fiber π−1

2 (p).
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Then, for the µ degrees where the Hilbert function of π−1
2 (p) is equal to the Hilbert

polynomial of π−1
2 (p), it is also equal to the degree of π−1

2 (p).

Main result 1.(Theorem 2.2.1) Assume that ν > µm − 1. Let rν be the dimension
of the vector space of moving hyperplanes in degree ν. Let cν be the dimension of
the quotient vector space obtained as the vector space of moving quadrics modulo
the vector space of moving hyperplanes, both in degree ν. Then, rν + cν > ν + 1 and
the degree of the fiber at p ∈ C is equal to corank of MQν(p). In particular,

rank(MQν(p)) < ν + 1 ⇐⇒ p ∈ C.

Moreover, we have that

cν =
∑

16i<j6m

max(0, µi + µj − 1− ν).

Also, if ν > µm + µm−1 − 1 then cν = 0 and it follows that MQν = Mν .

After that, the structure of Hybrid Bézout is explained. Its quadratic relations
are computed by Sylvester forms of µ-basis p1, . . . , pm of the parameterization Φ in
§2.2.1. Let’s first define Sylvester forms. Let k[T0, . . . , Tm] be the coordinate ring of
Pmk . Let µi 6 µj be degrees of pi and pj . Let α := (αi, αj) be any couple of non-
negative integers such that |α| := αi + αj 6 µi − 1. Since pi and pj are homogeneous
polynomials in the variables s, t, one can decompose them as

pi = sαi+1hi,1 + tαj+1hi,2,

pj = sαi+1hj,1 + tαj+1hj,2,

where hk,h(s, t;T0, . . . , Tm) are homogeneous polynomials of degree µk − αh − 1 with
respect to the variables s, t and linear forms with respect to the variables T0, . . . , Tm.
Then, we define the polynomial

sylα(pi, pj) := det

(
hi,1 hi,2
hj,1 hj,2

)
and call it a Sylvester form of pi and pj . Then, for any integer ν consider the vector
space Sν that is generated by all the Sylvester forms of degree ν, i.e.

Sν = 〈sylα(pi, pj) such that 1 ≤ i < j ≤ m and |α| = µi + µj − 2− ν〉 .

Main result 2.(Theorem 2.2.2) If ν ≥ µm− 1, then the moving quadrics of degree ν
following Φ are generated by the moving hyperplanes of degree ν following Φ and by
the Sylvester forms of degree ν. Moreover, these latter Sylvester forms are linearly
independent and hence

dim(Sν) = cν =
∑

16i<j6m

max(0, µi + µj − ν − 1).

Fibers of rational maps in dimension three

In what follows, a new method to study fibers of multi-graded rational dominant
maps onto three dimensional space is presented. We start by mentioning some related
works on fibers of rational maps emphasizing their assumptions on base locus before
explaining our results that will be described in Chapter 3.
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There exist many related works on properties of rational maps for instance their
degrees (see [4, 36, 14, 43]), dimensions, and Jacobian matrices (see [25, 72]), bira-
tionality criteria (see [37, 72]), also on equations of Rees algebra of the ideal generated
by the coordinates of the rational maps ([58, 59, 19, 59, 79]). We notice that mostly
all these works assume that the base locus of the rational map is either empty or
zero-dimensional (consists of finite number of isolated points).

In [2], degree and dimension of the fibers of a birational map Φ : X 99K P3
k where

X is either P2
k or P1

k × P1
k (or more generally a toric variety), under assumption that

the base locus B of the rational map Φ consists of finitely many points and B is locally
a complete intersection, are studied in terms of singular matrices M based on some
syzygies of Φ. The degree of the fiber over the point p in P3

k is given in terms of
corank of M evaluated at p.

In [25], the fibers of rational maps Φ : Pnk 99K Pmk where Φ is generically finite onto
its image are studied. It is shown that the number of (n−1)-dimensional fibers of such
rational map Φ is bounded linearly in terms of the degree of the polynomials defining
Φ. The result is obtained by studying the ideals of minors of the Jacobian matrix of Φ.
In this approach, Φ is assumed to have (possibly empty) base locus B containing finitely
many points, which is not necessarily locally a complete intersection. Moreover, Φ is
assumed to be generically finite onto its image.

Later in [5], the multi-graded rational maps Φ :
∏

16i6s P
ri
k 99K Pmk with m =

1 +
∑

16i6s
ri and finite base locus are studied for the implicitization of rational multi-

projective hypersurfaces.

As far as we know the rational maps having base locus of dimension one were
treated for the first and only time in [23] for the problem of hypersurface impliciti-
zation, i.e. for computing the equation of the closed image of for instance the map
Φ : Pm−1

k 99K Pmk .

In Chapter 3, we study the finite fibers of multi-graded, dense, rational maps
Ψ : X × P1

k 99K P3
k, where X is either P1

k × P1
k or P2

k. Such a map Ψ is defined by the
homogeneous polynomials Ψ0,Ψ1,Ψ2,Ψ3 of the same degree (d, e) over homogeneous
coordinate ring R := k[x, t, t] = k[x] ⊗k k[t, t̄] = RX ⊗ R1 with k is a field and
x = (x0, . . .), RX = k[x] and R1 = k[t, t̄] are the coordinate ring of X and P1

k

respectively. Hence, (d, e) is the degree on X × P1
k. The main difficulty that we

deal with in Chapter 3 is coming from our assumption that Ψ has a one dimensional
base locus B, i.e. the variety on which the coordinates of Ψ vanish has at most one-
dimensional component. This latter requirement is the most technical property that
is treated in this thesis.

Our contribution is more general. More precisely we consider any such rational
map Ψ of degree (d, e) from X × P1

k to P3
k. Since the fibers of the rational map Ψ

are not well defined, we need to consider its graph. The defining equations of this
graph are known to be the equations of the multi-graded Rees algebra of the ideal I
generated by the coordinates of Ψ, that we denote by Rees(I).

We recall that Rees algebra of the ideal I := (Ψ0,Ψ1,Ψ2,Ψ3) with respect to the
ring R is

Rees(I) := ⊕i>0I
izi ⊂ R[z].

The Rees algebra Rees(I) inherits the multi-grading via the natural map

α : R[T0, T1, T2, T3] → Rees(I) ⊂ R[z]
Ti 7→ Ψiz.
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It is known that it is difficult to compute the equations of Rees algebra, for this reason
we approximate Rees algebra by symmetric algebra. We refer the reader to [80, 48,
50] for further details about Rees algebra.

Let’s denote the ring R[T0, T1, T2, T3] by S and the ring k[T0, T1, T2, T3] by R′. Let
ker(α) = p an homogeneous ideal of S. We set p(µ,ν) ⊂ Rµ⊗kR′ν , namely µ is degree
over X × P1

k and ν is degree over P3
k. We have the S-ideal generated by the syzygies

of the ideal I := (Ψ0, . . . ,Ψ3), i.e.

(p(∗,1)) = ({
3∑
i=0

giTi : gi ∈ R and
3∑
i=0

giΨi = 0}).

Moreover, we have the following surjective maps

S → S/(p(∗,1)) ' Sym(I) and Sym(I)→ Rees(I) ' S/(p),

where Sym(I) is called the symmetric algebra of the ideal I. Consider the graph ΓΨ

of Ψ:

ΓΨ

π1

��

π2

''

� � //X × P3
k

X
Φ //P3

k

We define the fiber over the point p ∈ P3
k as the pre-images along π2 of p, i.e. π2(p)−1.

In particular, the fiber over p is a subscheme Fp = Proj(Rees(I) ⊗ κ(p)) ⊂ X × P1
k,

where κ(p) is the residue field of p. We consider symmetric algebra of the ideal I,
more precisely the subscheme Lp = Proj(Sym(I)⊗κ(p)) of X×P1

k. We call Lp as the
linear fiber of p. We notice that the fiber Fp is always contained in the linear fiber
Lp.

For both X = P1
k×P1

k and X = P2
k, we give threshold degrees depending of the de-

gree (d, e) of Ψi’s. Beyond these threshold degrees, let’s denote them as (µ, ν), Hilbert
function of the linear fiber at p evaluated at (µ, ν), denoted by HFSym(I)⊗κ(p)(µ, ν)
is equal to Hilbert polynomial of the linear fiber at p evaluated at (µ, ν), denoted
by HPSym(I)⊗κ(p)(µ, ν). In the case where the fiber π−1

2 is finite, HPSym(I)⊗κ(p)(µ, ν)
is nothing but the degree of the linear fiber at p, which implies it is the number of
the orthogonal projections of p onto the given surface. For this reason, we study the
vanishings of the local cohomology modules of the linear fiber over the irrelevant ideal
B = (x) · (t, t) of the ring R. Moreover, we fill a matrix with syzygies of I at degree
beyond the threshold degree. We denote this matrix as M(µ,ν)(Ψ). Then, for any
point p ∈ P3

k the corank of the matrix evaluated at p, denoted as M(µ,ν)(p), is equal
to the Hilbert function of the linear fiber at p in degree (µ, ν).

Similar to the work [24], the study of linear fiber of the rational map Ψ defined
as before requires some assumptions on dimension one components of the base locus
B of Ψ. For this purpose, we introduce the following definition.

Definition. A curve C ⊂ X × P1
k is said to have no section in degree < (a, b) if

H0(C,OC(α, β)) = 0 for any degree (α, β) such that α < a and β < b, i.e. if C has
no global section in degree < (a, b).

Lastly before giving our main results, for simplicity we introduce a notation :
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Notation. Let r be a positive integer. For any α = (α1, . . . , αr) ∈ (Z ∪ {−∞})r we
set

E(α) := {ζ ∈ Zr | ζi > αi for all i = 1, . . . , r}.

It follows that for any α and β in (Z ∪ {−∞})r we have that E(α) ∩ E(β) = E(γ)
where γi = max{αi, βi} for all i = 1, . . . , r, i.e. γ is the maximum of α and β
component-wisely.

Main result 3.(Theorem 3.2.1) Assume that we are in one of the two following cases:

(a) The base locus B is finite, possibly empty,

(b) dim(B) = 1, the top unmixed one-dimensional curve component C of B has no
section in degree < (0, e) and Isat = I ′sat where I ′ is an ideal generated by three
general linear combinations of the polynomials Ψ0, . . . ,Ψ3.

Let p be a point in P3
k such that Lp is finite, then

corankM(µ,ν)(p) = deg(Lp)

for any degree (µ, ν) such that

• if X = P2
k,

(µ, ν) ∈ E(3d− 2, e− 1) ∪ E(2d− 2, 3e− 1).

• if X = P1
k × P1

k,

(µ, ν) ∈ E(3d1 − 1, 2d2 − 1, e− 1) ∪ E(2d1 − 1, 3d2 − 1, e− 1)

∪ E(2d1 − 1, 2d2 − 1, 3e− 1).

Our motivation to study the fibers of multi-graded rational map Ψ is to compute
the orthogonal projections of a point in P3

k onto a given surface. However, the hypoth-
esis Isat = I ′sat where I ′ is an ideal generated by three general linear combinations of
the polynomials Ψ0, . . . ,Ψ3 is rarely fulfilled, particularly if Ψ is a parameterization of
the congruence of normal lines to a given surface. For that reason, we use explicitely
the fact that the base locus B of Ψ has a known dimension one component in order
to compute the degree of linear fiber. Let’s denote the top unmixed one-dimensional
curve component of B by C.

Main result 4.(Theorem 3.2.2) Assume that dim(B) = 1 and that C has no section
in degree < (0, e). Moreover, assume that there exists an homogeneous ideal J ⊂ R
generated by a regular sequence (g1, g2) such that I ⊂ J and (I : J) defines a finite
subscheme in X × P1

k. Denote by (m1, n1), resp. (m2, n2), the degree of g1, resp. g2.
If X = P2

k then m1,m2 are degrees, if X = P1
k × P1

k then m1,m2 are bidegrees such
that m1 = (m1,1,m1,2) and m2 = (m2,1,m2,2). Set η := max(e− n1 − n2, 0) and let
p be a point in P3

k such that Lp is finite. Then,

corankM(µ,ν)(p) = deg(Lp)

for any degree (µ, ν) such that

(a) if X = P2
k

(µ, ν) ∈ E(3d− 2, e− 1 + η) ∪ E(3d− 2−min{m1,m2}, 3e− 1).
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(b) if X = P1
k × P1

k

(µ, ν) ∈ E(3d1 − 1, 2d2 − 1 + τ2, e− 1 + η)∪
E(2d1 − 1 + τ1, 3d2 − 1, e− 1 + η)∪

E(2d1 − 1 + τ1, 2d2 − 1 + τ2, 3e− 1),

where τi := di −min{2m1,i +m2,i,mi,1 + 2m2,i, di} > 0, i = 1, 2.

In the same chapter, the computation of M(µ,ν)(Ψ) is described as a null space of a
linear system, and corresponding Macaulay2 code is also given with. We emphasize
that the matrix M(µ,ν)(Ψ) does not depend on the chosen point p in P3

k. Namely,
once we compute it, we store and use it for any p in P3

k. After computing the matrix
M(µ,ν)(Ψ), for any point p in P3

k having finite fiber, we describe how to compute
the coordinates of the orthogonal projections of p onto the given surface by using
generalized eigenvalues and eigenvectors computations. Even if we introduce a new
algebraic method, it allows the use of numerical approximations, i.e. floating-point
data relying on numerical linear algebra. Lastly, we observe that the computations
over the rational field takes much more time than the computations on floating points,
since the coefficients get bigger along the calculations. For that reason, we give
a bound for the height of the matrix M(µ,ν)(Ψ), in terms of the height of Ψ with
respect to p-adic and absolute valuation, degree of the polynomials which define the
parameterization of the given surface and the degree (µ, ν).

Three-month industrial secondment at Missler Software

The appendix A consists of my technical report which explains two distance prob-
lems in space which I treated during my 3-month secondment in Missler Software in
Toulouse in France based on some methods in symbolic computation. The aim of my
stay was only to transfer some known algebraic approaches for solving the following
problems. Problem 1 is the distance between a circle and a line in 3D and Problem
2 is the distance between an arc of a circle and a line segment in three dimensional
space. These problems were chosen to improve some existing algorithms in terms of
accuracy and the time computation. Since, after all experiments we have seen that
the new algorithms are faster and they get more accurate solutions, I have integrated
the algorithms into the interface of TopSolid. They are going to be used in the next
version of TopSolid.

Firstly, two implemented algorithms in the CAD Software TopSolid (in program-
ming language C#) to compute the distance between a circle and a line in space are
described briefly. One of the algorithms depends on the parameter value of the circle
and the other one depends on the parameter value of the line.

After that, my new algorithm for the distance between a line and a circle is
explained (see Algorithm 3). Algorithm 3 handles the problem in three different
cases : the line is perpendicular to the plane where the circle is located, the line
is in the same plane as the circle, and the other situations. First two cases use
the elementary Euclidean geometry, and the third case studies the resultant of two
partial derivatives of the distance function between a circle and a line. This particular
problem of distance yields a resultant which is a univariate polynomial of degree four
(see §A.3.3). I had two main reasons to split the algorithm into several cases. First,
the elementary geometry is enough for first two cases, and second the computation
time for them using elementary geometry is faster. In section §A.3.4, the number of
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the real solutions of such a resultant is studied by Theorem A.3.1 which is a root
classification of a polynomial of degree four.

Then, my new algorithm for the distance between an arc of a circle and a line
segment is described in Algorithm 4. This algorithm is based on each critical points
of the distance between the circle containing the given arc and the line containing
the given line segment, which are the extremities of the arc and the segment with the
parameter values that are obtained by the resultant.

Lastly, the computational observations such as tolerance choice at several steps in
the algorithms are explained. The comparisons between existing algorithms and the
algorithms that I implemented are described with some examples (see §A.7).
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CHAPTER 1

Preliminaries

In this chapter, we give some basic constructions with their known properties which
are all necessary for the following chapters, such as closed image and fiber of a rational
map, blow-up algebras. After that, in order to approximate blow-up algebras we
describe approximation complexes, generalized Koszul complex, Čech complex and
local cohomology, spectral sequences and their convergence. In addition, we give
some necessary definitions for height computation in order to give some complexity
for our computation over Q.

1.1 Closed image and fibers of rational maps

Let R := k[x0, . . . , xn] = k[x] and R′ = k[T0, · · · , Tm] = k[T ] be the standard graded
polynomial rings over a field k. We are given a rational map

Φ : Pnk 99K Pmk
(x0 : · · · : xn) 7→ (F0(x) : · · · : Fm(x)) , (1.1)

where F0, · · · , Fm are homogeneous polynomials in x0, . . . , xn of the same degree
d greater or equal to 1. Let I be the ideal in R generated by F0, · · · , Fm, m :=
(x0, . . . , xn) be the irrelevant ideal of R. Let S := R ⊗ R′ = k[x, T ] be the bi-
graded polynomial ring over the field k with canonical grading deg(xi) = (1, 0) and
deg(Tj) = (0, 1) for i = 0, · · ·n and j = 0, . . . ,m.

The graph of the rational map Φ as in (1.1) is the closure of the set

{(x0 : . . . : xn)× Φ(x0 : · · · : xn) : (x0 : . . . : xn)× Φ(x0 : · · · : xn)

∈ (Pnk\V (F0, . . . , Fm))× Pmk },

denoted by ΓΦ, from which we have two canonical projections, first one is on the
first component, i.e. π1 : ΓΦ → Pnk , the second one is on the last component, i.e.
π2 : ΓΦ → Pmk .

ΓΦ

π1

��

π2

((

� � //Pnk × Pmk

Pnk
Φ //Pmk

(1.2)

We know that the closure of the image of the rational map Φ is the image of its graph
Γφ via π2 (see [46]). Also, by the above diagram, we define the fiber of a point p in
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Pmk as the pre-images along π2 of p, i.e. π2(p)−1 ⊂ Pmk . More precisely, the fiber at
point p ∈ Pm is the subscheme

Fp := π2(p)−1 = Proj(Rees(I)⊗ κ(p)) ⊂ Pnk × Pmk ,

where κ(p) is the residue field of p and Rees(I) denotes the Rees algebra of I, as
explained in §1.2.

With a geometric point of view, the surjective map S 7→ B = S/I induces the
k-schemes inclusion

Proj(B) ⊂ Pnk × Pmk := Proj(S).

Then, the definition ideal of the projection of Proj(B) in Pmk via π2 is

U = ker
(
R′ →

∏3
i=0B(Ti)

)
= {r ∈ R′ : ∃n ∈ N rmn =B 0}
= (I :S m∞) ∩R′

= (I :S m∞)0 (with respect to the grading of R = k[x])

= H0
m(B)0 (see §1.6.).

1.2 Blow-up algebras

The defining equations of the graph ΓΦ of Φ are known to be the equations of the
multi-graded Rees algebra of the ideal I generated by the coordinates of Φ, i.e. I :=
(F0, . . . , Fm), denoted by Rees(I). We recall that

Rees(I) := ⊕i>0I
iti ⊂ R[t].

The Rees algebra Rees(I) inherits the multi-grading via the natural map

α : R[T0, . . . , Tm] → Rees(I) ⊂ R[t]
Ti 7→ Fit.

We refer the reader to [48, 50, 80] for further details about Rees algebra.

Let R′ = k[T0, . . . , Tm], S = R ⊗ R′ and ker(α) = p. The ideal p is bigraded.
We set p(µ,ν) ⊂ Rµ ⊗k R′ν , namely µ is the degree with respect to R and ν is the
degree with respect to R′. We have the S-ideal generated by the syzygies of the ideal
I := (F0, . . . , Fm),

(p(∗,1)) = ({
m∑
i=0

giTi : gi ∈ R and

m∑
i=0

giFi = 0}).

Moreover, we have the following surjective maps

S → S/(p(∗,1)) ' Sym(I) and Sym(I)→ Rees(I) ' S/(p),

where Sym(I) is called the symmetric algebra of the ideal I.

1.3 Koszul complex

In what follows we give some basic constructions from homological algebra: Koszul
complex and its generalizations, approximation complexes, Čech complex and local
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cohomology modules. We refer the reader for instance to [42, Appendix §2F], [9,
§1.6], [41, §17], [7, §9] for more details about Koszul complex.

Let R be a commutative ring, M be an R-module, and ϕ : M → R be an R-linear
map.

Definition 1.3.1 ([9, §1.6]). The complex

· · · →
n∧
M

dϕ−→
n−1∧
→ · · · →

2∧
M

dϕ−→
1∧
M

dϕ−→ R→ 0,

where the R-linear map dϕ :
∧nM →

∧n−1M is such that for all x1, . . . , xn in M ,

dϕ(x1 ∧ · · · ∧ xn) =
n∑
i=1

(−1)i+1ϕ(xi)x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

(where x̂i indicates that xi is omitted from the exterior product), is called the Koszul
complex of ϕ, denoted by K•(ϕ). Thus, Ki(ϕ) =

∧iM .

One can easily show that dϕ is a differential i.e, dϕ ◦ dϕ = 0. Also it is an
antiderivation of degree −1, i.e. dϕ(x ∧ y) = dϕ(x) ∧ y + (−1)deg(x)x ∧ dϕ(y) for all
homogeneous x, y ∈ M . Moreover, if N is an R-module, then K•(ϕ) ⊗R N is the
Koszul complex of ϕ with coefficients in N, denoted by K•(ϕ,N). Thus, we have
K0(ϕ,N) = R, K1(ϕ) = N .

Definition 1.3.2 ([9, §1.6]). Let M be a finite free R-module with basis e1, . . . , en.
Then, a linear map ϕ : M → R is uniquely determined by xi = ϕ(ei) for all i =
1, . . . , n. Conversely given a sequence x = x1, . . . , xn, there exists a linear form ϕ on
M with ϕ(ei) = xi. Then, the Koszul complex of the sequence x is K•(x) := K•(ϕ).
Moreover,

K•(x) ' K•(x1, . . . , xn−1)⊗K•(xn) ' K•(x1)⊗ · · · ⊗K•(xn).

We call Z•(ϕ) = ker(dϕ), B•(ϕ) = Im(dϕ), H•(ϕ) = Z•(ϕ)/B•(ϕ) the cycle,
boundary and the Koszul homology of ϕ, respectively. Similarly, for every R-module
N , we call Z•(ϕ,N) = Z•(ϕ) ⊗R N , B•(ϕ,N) = B•(ϕ) ⊗R N and H•(ϕ,N) =
Z•(ϕ,N)/B•(ϕ,N) the cycle, boundary and the Koszul homology of ϕ with coef-
ficients in N , (in other words the i-th homology R-module of the Koszul complex
K•(ϕ,N)). Thus, with the notation of Definition 1.3.2, H0(K•(ϕ)) = coker(ϕ) = R/I,
where I = (x) is the ideal of R.

Definition 1.3.3 ([9, p. 47]). Let M be a finite free R-module with basis e∗1, . . . , e
∗
n.

The complex

0
d∗ϕ−→ (

0∧
M)∗

d∗ϕ−→ (

1∧
M)∗

d∗ϕ−→ · · ·
d∗ϕ−→ (

n∧
M)∗

d∗ϕ−→ 0

together with the differential d∗ϕ : (
∧pM)∗ → (

∧p+1M)∗ such that for all i = 0, . . . , n

d∗ϕ(e∗i1 ∧ · · · ∧ e
∗
ip) =

∑
∀j∈{1,...,n}\{1,...,ip}

(−1)j+1xje
∗
i1 ∧ · · · ∧ e

∗
ip ∧ e

∗
j

is a dual Koszul complex of ϕ, denoted by K•(x,M)∗.
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There exists a unique R-isomorphism wn :
∧nM → R, with wn(e1∧ · · ·∧ en) = 1.

wi :
∧iM → (

∧n−iM)∗ given by (wi(x))(y) = wn(x∧ y). In particular, it is the sign
of the permutation of x, y for all x ∈

∧iM , y ∈
∧n−iM .

Proposition 1.3.1 ([42, Appendix §2F]). Let e1, . . . , en be a basis of M and {j1, . . . , jn−p}
be the complement of {i1, . . . , ip} ∈ {1, . . . , n}. Then, wp :=

∧pM → (
∧n−pM)∗

wp(ei1 ∧ . . . ∧ eip) = sign(σ)(e∗j1 ∧ . . . ∧ e
∗
jn−p)

where sign(σ) is the sign of the permutation σ = (i1 · · · ipj1 · · · jn−p) defines an iso-
morphism.

Then, e∗i+1, . . . , e
∗
n is the dual basis of e1, . . . ei for i = 1, . . . n and we have the

following commutative diagram.

K•(x) : 0 →
∧nM

dϕ−→
∧n−1M · · · dϕ−→

∧1M
dϕ−→ R→ 0

↓wn ↓wn−1 ↓w1 ↓w0

K•(x)∗ : 0 → (
∧0M)∗

d∗ϕ−→ (
∧1M)∗ · · ·

d∗ϕ−→ (
∧n−1M)∗

d∗ϕ−→ R→ 0

Example 1.3.1. Let M be a finite free R-module with basis e0, e1, e2, e3. Then its
Koszul complex is as follows

0→
4∧
M


−e3

e2

−e1

e0


−−−−−→

3∧
M



e2 e3 0 0
−e1 0 e3 0

0 −e1 −e2 e3

e0 0 0 −e2

0 0 e0 e1


−−−−−−−−−−−−−−−−−−−→

2∧
M (1.3)


−e1 −e2 −e3 0 0 0
e0 0 0 −e2 −e3 0
0 e0 0 e1 0 −e3

0 0 e0 0 e1 e2


−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1∧
M (= M)

[
e0 e1 e2 e3

]
−−−−−−−−−−−−−→

0∧
M (= R)→ 0.

Its dual Koszul complex is

0→ (

0∧
M)∗ (= R)


e0

e1

e2

e3


−−−→ (

1∧
M)∗ (= M∗)



−e1 e0 0 0
−e2 0 e0 0
−e3 0 0 e0

0 −e2 e1 0
0 −e3 0 e1

0 0 −e3 e2


−−−−−−−−−−−−−−−−−→ (

2∧
M)∗(1.4)


e2 −e1 0 e0 0
e3 0 −e1 0 0
0 e3 −e2 0 e0

0 0 e3 −e2 e1


−−−−−−−−−−−−−−−−−−−−−→ (

3∧
M)∗

[
−e3 e2 −e1 e0

]
−−−−−−−−−−−−−−−→ (

4∧
M)∗ → 0.
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Proposition 1.3.2 ([9, Proposition 1.6.10]). With the previous notation,

1. K•(x) and (K•(x))∗ = K• are isomorphic; the Koszul complex is said to be
self-dual.

2. For every R-module N , the complexes K•(x, N) and K•(x, N) are isomorphic.

3. Hi(x, N) ' Hn−i(x, N), for all i = 0, . . . , n.

Proposition 1.3.3 ([9, Proposition 1.6.5.(b)]). Let I be Im(ϕ), then I annihilates
K•(ϕ), K•(ϕ,N), K•(ϕ), K•(ϕ,N). Furthermore, the annihilator of N annihilates
K•(ϕ,N), K•(ϕ,N).

Definition 1.3.4 ([9, Definition 1.1.1]). A sequence x = x1, . . . , xn of elements in
R is called a weak M -sequence if xi is not a zero divisor on M/(x1, . . . , xn−1)M for
i = 1, . . . n. Moreover, x is called a M -regular sequence if it is a weak M -sequence
and M/xM 6= 0.

Proposition 1.3.4 ([41, §17.2]). If x is a M -regular sequence, then K•(x,M) is
acyclic

Hi(x,M) = 0 for all i > 1.

We refer the reader to [41, §17.2] for details about M -regular sequences and Koszul
homology, to [41, §2.2] for details about Hom functor, and to [41, §A3.11] or [60,
§IV.1] for Ext functor.

Theorem 1.3.1 ([9, Theorem 1.6.16]). With the previous notation, if I = (x) con-
tains a weak M -sequence y = y1, . . . , ym, then

Hn+1−m(x,M) = 0 for i = 1, . . . ,m and

Hn−m(x,M) ' HomR(R/I,M/yM) ' ExtmR (R/I,M).

Corollary 1.3.1 ([9, Corollary 1.6.13]). Using the previous notation,

1. Set x = x1, . . . , xn−1. Then, we have an exact sequence

· · · ±xn−−−→ Hi(x
′,M)→ Hi(x,M)→ Hi−1(x′,M)

±xn−−−→ Hi−1(x′,M)→ · · ·

2. Let p 6 n, x′ = x1, . . . , xp and x′′ = xp+1, . . . , xn. If x′ is weakly M -regular,
then one has an isomorphism

H•(x,M) ' H•(x′′,M/x′M).

1.4 Approximation complexes

In this section we introduce approximation complexes with some basic properties such
as their acyclicity. They have been firstly introduced in [49]. We refer the reader to
[80, 48, 50] for further details.
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Let k be a field, k[x0, . . . , xn] = k[x] be the coordinate ring of Pnk and R be
the ring k[T0, . . . , Tm] = k[T ]. Consider two Koszul complexes over the ring S =
k[x0, . . . , xn] ⊗ k[T0, . . . , Tm] = k[x,T ] associated to the sequences of homogeneous
polynomials F := (F0, . . . , Fm), where Fi’s are in k[x] for all i = 0, . . . ,m and also to
T0, . . . , Tm. We denote these Koszul complexes by K•(F , S) and K•(T , S) with the
corresponding differentials dF and respectively dT . The last differentials of these two
Koszul complexes are as follows

dF1 : Sm
(F0,...,Fm)−−−−−−→ S

(g0, . . . , gm) 7→
m∑
i=0

giFi,

dT1 : Sm
(T0,...,Tm)−−−−−−→ S

(g0, . . . , gm) 7→
m∑
i=0

giTi,

One can easily check that dF and dT verifies dF ◦ dT + dT ◦ dF which gives rise
to a double complex K•(x,T ;S). We set Zi, Bi and Hi for the cycles, boundaries
and the homology modules of K•(F , S) respectively. From them, dT induces Z• =
(ker(dF ), dT ), B• = (Im(dF ), dT ) and lastly M• = (H•(K•(F , S)), dT ) the cycles,
boundaries and the homology modules of approximation complexes respectively.

Consider the end of Z•, i.e.

ker(dF1 )
dT1−−→ S → 0.

By definition, we have

dT1 (ker(dF1 )) = {
m∑
i=0

giTi :
m∑
i=0

giFi = 0},

which implies that

H0(Z•) =
S

dT1 (ker(dF1 ))
' Sym(I), (see §1.2 for Sym(I))

where I is the ideal generated by F0, . . . , Fm. More precisely, the Z• gives an approx-
imation for symmetric algebra of I with respect to the ring S.

Proposition 1.4.1. With previous notation, the modules Zi, Bi and Mi for all i do
not depend on the chosen generating set of the ideal I of R.

Proof. See Proposition 3.2.6 and Corollary 3.2.7 in [80] or [49, §3].

Proposition 1.4.2. Assume S is a noetherian ring and i > 1. If Hi(M) = 0 then
Hi(Z) = 0. In particular, if M is acyclic then Z is also acyclic.

Proof. See [14, Proposition 4.3].

Proposition 1.4.3. If H1(M) = 0, then Sym(I) ' Rees(I).

Proof. See [14, Proposition 4.5] or [80].
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1.5 Generalized Koszul complex

Before presenting the generalized Koszul complex, we need to introduce determinantal
ideals (see [41, 69]). Let M and N be R-modules. Let the notation (−)∗ stands for the
dual, i.e. N∗ = HomR(N,R). For further details about generalized Koszul complex,
we refer the reader to for instance [42, Appendix §2H], [41, Appendix §2.6] or [10,
40].

Definition 1.5.1 ([41, §20.2]). If ϕ : M → N is a map of free modules, then Ij(ϕ)
is the image of the map

∧jM ⊗ ∧jN∗ → R

induced by ∧jϕ : ∧jM → ∧jN . If we choose bases for M and N , then ϕ might be
represented by a matrix and Ij(ϕ) is generated by the j× j-minors of this matrix. By
convention, determinant of 0× 0-matrix is 1, also Ij(ϕ) = R for Ij 6 0.

These ideals are invariants:

Corollary 1.5.1 ([41, Corollary-Definition 20.4]). Let M be a finitely generated R-
module, and let ϕ : F → G → M → 0 and ϕ′ : F ′ → G′ → M → 0 be any
two presentations with G and G′ finitely generated free modules of rank r and r′,
respectively. For each non-negative integer i, we have

Ir−i(ϕ) = Ir′−i(ϕ
′).

Definition 1.5.2. With previous notation, we define i-th Fitting invariant of M to
be the ideal

Ir−i(ϕ) ⊂ R.

We have seen that Koszul complex corresponds to a map from finitely generated
free module over a given ring R to R, i.e. to ϕ : M → R, where M is a finitely
generated R-module. In this section, we generalize Koszul complex to the complexes
associated to a map of finitely generated free modules over R, i.e. to ϕ : M → N ,
where M and N are finitely generated R-modules. Let M and N be of rank m and n,
respectively. Assume that m > n. Then, these new complexes are in strong relation
with the determinantal ideal In(ϕ) of maximal minors of ϕ. Let Si(N) denotes the
i-th symmetric power of N (see [41, Appendix §2.3]).

Definition 1.5.3 ([42, Appendix §2H]). We define the complex

0→ (Sm−n(N))∗ ⊗ ∧mM δm−n+1−−−−−→ (Sm−n−1(N))∗ ⊗ ∧m−1 δm−n−−−−→

· · · δ2−→ N∗ ⊗ ∧n+1M
δ1−→ ∧nM ε−→ R,

where

(a) the map ε is identified with the map ∧nM ∧nϕ−−→ ∧nN ' R, whose image is the
ideal generated by n× n-minors of ϕ,

(b) the map δ is defined as follows. Firstly, we define

∆ : (Sk(N))∗ → N∗ ⊗ (Sk−1(N))∗
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as the dual of the multiplication map N ⊗ Sk−1(N) → Sk(N) in symmetric
algebra of N . Analogously we define the map

∆ : ∧kM →M ⊗ ∧k−1M

as the dual of the multiplication in the exterior algebra of M∗. For u ∈ (Sj−1(N))∗

we write ∆(u) =
∑

i u
′
i⊗u′′i ∈ N∗⊗ (Sj−2(N))∗ and similarly for v ∈ ∧n+j−1M

we write ∆(v) =
∑

t v
′
t ⊗ v′′t ∈M ⊗ ∧n+j−2M . Let’s note that α∗(u′s) ∈M∗, so

[α∗(u′i)](v
′
t) ∈ R. Then, we set

δj : (Sj−1(N))∗ ⊗ ∧n+j−1M → (Sj−2(N))∗ ⊗ ∧n+j−2M
u⊗ v 7→

∑
s,t

[α∗(u′s)](v
′
s)u̇
′′
s ⊗ v′′t . (1.5)

This complex is called the Eagon-Northcott complex of ϕ, denoted by EN(ϕ).

Now, we will define a complex which can be thought as an approximation of a
resolution of the cokernel of the map of finitely generated R-modules, ϕ : M → N .

Definition 1.5.4 ([41, Appendix §2.6.1]). We define the complex

0→ (Sm−n−1(N))∗ ⊗ ∧mM δm−n−−−→ (Sm−n−2(N))∗ ⊗ ∧m−2M
δm−n−1−−−−−→

· · · δ1−→ ∧n+1M
ε−→M

ϕ−→ N.

where

(a) the map δ is similar to the map δ as in Definition 1.5.3, (It may be described
by the multiplication a ∈ N ⊗N∗ ⊂ S(N)⊗ ∧N∗.)

(b) the map ε is the action of ∧nϕ∗γ on M , where γ ∈ ∧nN∗ ' R. (Such a map γ
might be chosen because we have assumed that N is a free module.)

This complex is called the Buchsbaum-Rim complex of ϕ, denoted by BR(ϕ).

Theorem 1.5.1 ([41, Theorem A2.10]). The Eagon-Northcott complex and the
Buchsbaum-Rim complex of ϕ, as defined above, are exact and provide free resolutions
of R/Im(ϕ) if and only if Im(ϕ) contains a regular sequence of length m− n+ 1.

Example 1.5.1 ([42, Appendix §2.65]). With the previous notation, let rank(N) =
n = 1. Then, we can identify N , its symmetric powers Sk(N) and their duals
(Sk(N))∗ with R. Thus, the Eagon-Northcott complex in this case is nothing but
the Koszul complex of ϕ : M → R (' ∧1N).

1.6 Čech Complex and local cohomology

Let R be a ring, x = x1, . . . , xn be a sequence in R and M be a R-module.

Definition 1.6.1 ([8, Proposition and Definition 5.1.5]). We define a complex C̆ •(x,M),
or simply C̆ •(M), of R-modules and R-homomorphisms as follows

0→ C̆ 0(M)
d0−→ C̆ 1(M)→ · · · → C̆ n−1 dn−1

−−−→ C̆ n(M)→ 0,

with



1.6. Čech Complex and local cohomology 9

(a) C̆ 0(M) := M ,

(b) C̆ k(M) :=
⊕

16i1<···<ik6nMxi1xi2 ···xik , for all k = 1, . . . , n,

(c) d0 : C̆ 0(M) → C̆ 1(M) is such that for each h = 1, . . . , n the composition of d0

followed by the canonical projection from C̆ 1(M) to Mxh is natural map from

M to Mxh (i.e. localization and d0(m) =
n∑
i=1

m
1 for m ∈M); and

(d) dh(mi1···ih) =
∑

k/∈i1,...,ih
(−1)s(k)φk(mi1···ih), where is(k) < k < is(k)+1 and φk(mi1···ih) ∈

Mxi1 ···xih ···xih .

Then, the complex C̆ •(M) is called the Čech complex of M with respect to x1, . . . , xn.

Example 1.6.1 ([8, Example 5.1.6]). Let us write the differentials of Čech complex
C̆ • = C̆ •(R) with respect to x1, x2, x3. Then, the Čech complex is

0→ R
d0−→ Rx1 ⊕Rx2 ⊕Rx3

d1−→ Rx2x3 ⊕Rx1x3 ⊕Rx1x2
d2−→ Rx1x2x3 → 0,

where the differentials d0, d1, d2 are described as follows for r, r1, r2, r3 ∈ R and
n1, n2, n3 ∈ N∗.

d0(r) =
(r

1
,
r

1
,
r

1

)
,

d1

(
r1

an1
1

,
r2

an2
2

,
r3

an3
3

)
=

(
an3

2 r3

(a2a3)n3
− an2

3 r2

(a2a3)n2
,
an3

1 r3

(a1a3)n3
− an1

3 r1

(a1a3)n1
,
an2

1 r2

(a1a2)n2
− an1

2 r1

(a1a2)n1

)
,

and lastly

d2

(
r1

(a2a3)n1
,

r2

(a1a3)n2
,

r3

(a1a2)n3

)
=

(
an1

1 r1

(a1a2a3)n1
− an2

2 r2

(a1a2a3)n2
+

an3
3 r3

(a1a2a3)n3
.

)

Definition 1.6.2. We define the local cohomology modules of R-module M over x
as H i

x(M) = ker(di)/Im(di−1) where di’s are the differentials of Čech complex of M
for all i = 0, . . . , n.

Let R be a standard graded polynomial ring over field k, M be a finitely generated
graded R-module, m be the irrelevant ideal of R. Then, we have the invariant

ai(M) := inf{µ : H i
m(M)µ = 0}.

Definition 1.6.3. With the same notation, Castenuovo-Mumford regularity of M
over R is defined by

reg(M) := max
i
{ai(M) + i}.

Theorem 1.6.1 ([9, Theorem 3.5.8]). Let (R,m, k) be a Noetherian local ring and
M be a finite R-module of depth t and dimension d. Then,

(a) H i
m(M) = 0 for i < t and i > d,

(b) Ht
m(M) 6= 0 and Hd

m(M) 6= 0.
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1.7 Spectral sequences and double complexes

In this section we recall spectral sequences with some properties such as vertical and
horizontal filtrations of a double complex, convergence and comparison theorems. For
further details, we refer the reader to [83, 41].

Definition 1.7.1 ([83, Example 1.2.4]). A double complex in an abelian category A
is a family {Cp,q} of objects of A, together with maps

dh : Cpq → Cp−1,q and dv : Cp,q → Cp,q−1,

verifying dh ◦ dh = dv ◦ dv = dh ◦ dv + dv ◦ dh = 0.

Definition 1.7.2 ([41, Appendix §3.12]). We define the total complex of C, denoted
by Tot(C), with differential d = dh + dv (as in Definition 1.7.1) is a complex whose
k-th term is

⊕p+q=kCpq.

Definition 1.7.3 ([83, Definition 5.2.1]). A homology spectral sequence (starting with
Ea) in an abelian category A consists of the following data:

1. A family {Erpq} of objects of A defined for all integers p, q, and r > a,

2. Maps drpq : Erpq → Erp−r,q+r−1 that are differentials in the sens that dr ◦ dr = 0,

3. Isomorphisms between Er+1
pq and the homology of Er∗∗ at the spot Erpq:

Er+1
pq '

ker(drpq)

Im(drp+r,q−r+1)
.

The total degree of the term Erpq is n = p+ q; the terms of total degree n line of slope
−1, and each differential drpq decreases the total degree by one.

Note that di+1
pq is defined on the kernel of dipq with i 6 1 and Er+1

pq is a subquotient
of Erpq. Let Bi

pq denotes Im(drpq) and Zipq denotes ker(drpq). Then, we have the nested
submodules

0 = B1
pq ⊂ B2

pq ⊂ · · · ⊂ Br
pq ⊂ · · · ⊂ Zrpq ⊂ · · · ⊂ Z2

pq ⊂ Z1
pq = E1

pq

such that Eipq = Zipq/B
i
pq for each i.

Enpq can be seen as n-th order approximation of the homology of the total complex
Tot(E∗∗). We will call Er∗∗ as r-th sheet of spectral sequences. Similarly, there exists
a dual definition to Definition 1.7.3 for cohomology spectral sequences, for instance see
[83, Definition 5.2.3].

Definition 1.7.4 ([83, §5.3]). A homology spectral sequence is said to be bounded if
for each n there are only finitely many nonzero terms of total degree n in Ea∗∗. If it
is the case then for each p and q there is a r0 such that Erpq = Er+1

pq for all r > r0.
We denote this limit term as E∞pq .
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We call a filtration F on a chain complex C, an ordered family of chain subcom-
plexes

· · · ⊂ Fp−1C ⊂ FpC ⊂ · · ·

of C (see [83, §5],[41, Appendix §3.13]).

Definition 1.7.5 ([83, Bounded Convergence 5.2.5]). We say that a bounded spectral
sequence converges to H∗ if we are given a family of objects Hn in abelian category
A, each having a finite filtration (i.e. the filtration stabilizes.)

0 = FsHn ⊂ · · · ⊂ Fp−1Hn ⊂ FpHn ⊂ Fp+1Hn ⊂ · · · ⊂ FtHn = Hn,

then we have
E∞pq = FpHp+q/Fp−1Hp+q.

Set
B∞pq = ∩∞r=0B

r
pq and Z∞pq = ∪∞r=0Z

r
pq

and then we have,
E∞pq = Z∞pq /B

∞
pq .

Definition 1.7.6 ([83, Definition 5.4.2]). A filtration on a chain complex C is called
bounded if for each n there are integers s < t such that FsCn = 0 and FtCn = Cn.
In this case, there are only finitely many nonzero terms of total degree n in E0

∗∗, then
the spectral sequence is also bounded.

Let G be the total complex of double complex C, i.e. G = Tot(C). Then, there
exist two filtrations on G, namely vertical and horizontal filtrations.

Definition 1.7.7 ([83, Definition 5.6.1]). The vertical filtration of total complex G is
defined by the subcomplexes denoted by verGp, where verGp come from the columns of
Cp,∗. It gives rise to a spectral sequence verGp, starting with Cpq.

Definition 1.7.8 ([83, Definition 5.6.2]). The horizontal filtration of total complex
G is defined by the subcomplexes denoted by horGq, where horGq come from the rows
of C∗,q. It gives rise to a spectral sequence horGq, starting with Cqp (it interchanges
indices p and q).

In what follows, we will call the row filtered or column filtered double complex as
horizontal and vertical filtrations respectively (see [41, Appendix §3.13]).

In addition, we will mainly use the following theorem to compare row and column
filtered spectral sequences of a given double complex:

Theorem 1.7.1 ([41, Theorem A3.24]). Let C = Cpq be a double complex, horE
r

and verE
r be the horizontal and the vertical filtrations of the total complex Tot(C),

respectively. The E1 terms are bigraded with the components given by

horE
1
pq = Hq(C∗,p) and verE

1
pq = Hq(Cp,∗).

If Ci,j = 0 for all i < 0 or for all j > 0, then the horizontal spectral sequences horE
r

converges to Hp+q(Tot(C)) and by symmetry, if Ci,j = 0 for all i > 0 or for all j < 0,
then the vertical spectral sequences verE

r converges to Hp+q(Tot(C)).
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1.8 Height computation

In what follows, we give some basic definitions of standard and p-adic valuations
and absolute values, height of a finite set and a polynomial with respect to these
valuations. In §2.5 and §3.5.1, we compute upper bounds for the height of some
special matrices that we introduce in §2.2 and §3.2.2 respectively in order to give
some complexity upper bounds.

Definition 1.8.1 ([27, Chapter 4]). Let k be a field. An absolute value (standard
absolute value) is a map

|.| : k → R>0

x 7→ |x|

satisfying for all x, y ∈ k

1. |x| = 0 if and only if x = 0,

2. |x · y| = |x| · |y|,

3. |x+ y| 6 |x|+ |y|.

The notation |.|∞ is also used for standard absolute value.

Definition 1.8.2 ([27, Chapter 4]). Let p a prime number. The p-adic valuation is
a map

vp : Q → Z ∪ {∞}
x 7→ m,

with x = apm

b where a, b are integers such that p - a, p - b satisfying for all x, y ∈ Q

1. vp(x) =∞ if and only if x = 0,

2. vp(x · y) = vp(x) + vp(y),

3. vp(x+ y) > min{vp(x), vp(y)}.

Definition 1.8.3 ([27, Chapter 4]). Let p be a prime number. The p-adic absolute
value is defined as

|.|p : Q → Q>0

x 7→ p−vp(x),

satisfying the three properties of an absolute value (given in the Definition 1.8.1).

Following the same notation of [57, §1.1.], there are p-adic absolute value, denoted
by |.|p, and the standard absolute value, denoted by |.|∞, over Q. Let v be either ∞
or a prime number p. Qv is defined to be the completion of Q with respect to the
absolute value v. Also, Cv is defined to be the completion of the algebraic closure of
Qv with respect to the absolute value v (see [45, 21]).

Definition 1.8.4 ([57, §1.1.]). Let S be a finite subset of Cv, its absolute value is

|S|v := max{|s|v : s ∈ S},

and its height is
hv(S) := max{0, log|S|v}.
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Proposition 1.8.1. Let S = {s1, . . . , sn} be a finite set of Cv, v stands for either ∞
or a prime number p, then we have

1. hv(
n∑
i=1

si) = max{0, log(|
n∑
i=1

si|v)} 6 max{0, log(
n∑
i=1
|si|v)},

2. hv(
∏n
i=1 si) = max{0, log(

∏n
i=1 |si|v)} = max{0,

n∑
i=1

log|si|v}.

Consider the polynomial

f =
∑

06α1,··· ,αn6d
α1+···+αn6d

aα1···αnx
α1
1 · · ·x

αn
n =

∑
α

aαx
α

in Cv[x1, · · · , xn] of total degree d.

Definition 1.8.5 ([57, §1.1.]). The absolute value of the polynomial f , denoted by
|f |v, is defined to be the maximum absolute value of its set of coefficients, i.e.

|f |v := max
α
{|aα|v}.

Definition 1.8.6 ([57, §1.1.]). The height of the polynomial f , denoted by hv(f), is
defined to be

hv(f) := max{0, log(|f |v)}.

We notice that the height of a polynomial in Cv[x1, · · · , xn] is always non-negative.

Notation 1.8.1. Let F be the homogenization of f in PnCν . Since the definition of
height only considers the coefficients of f , we set

hv(F ) = hv(f).
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CHAPTER 2

Curve implicitization

The main contribution of this chapter is a generalization of the method of moving
conics [74] to the case of space curves, that we call the method of moving quadrics.
In other words, we introduce a generalization to parameterized space curves of the
hybrid Bézout matrix of a µ-basis. As in the case of plane curves, we will show that
the gain in the size of the matrix is similar: for a general parameterized space curve,
the size of the matrix of moving quadrics is about half of the size of the matrix of
moving hyperplanes.

The chapter is organized as follows. In §2.1.1, we first revisit the method of
moving conics [74] with a particular focus on Sylvester forms, a central construction
of this chapter. In §2.1.2 we fix some notations and introduce the notion of moving
hyperplanes and µ-basis for space curves. Then, in §2.2 we deal with the general case
of parameterized curves in arbitrary dimension and state our main results. Their
proofs have been concentrated in §2.3. After that, in §2.5, we give a upper height
bound for the Hybrid Bézout matrix in any dimension in terms of the height of
the parameterization of the curve. Finally, in §2.4 the effective computation of our
new matrices is discussed and illustrated with some experiments. In particular, we
illustrate the gain we obtain for the inversion of a point on the curve. This work is
published in the proceeding of Symposium on Solid and Physical Modeling 2019 (see
[20]).

2.1 Previous works on curve implicitization

2.1.1 Maps from P1 to P2

The implicitization of rational plane curves, that is to say the finding of an implicit
equation of a plane curve from a parameterization, has been extensively studied in
the past. Besides the basic method based on a resultant computation directly from
a parameterization, the method of moving lines introduced by Sederberg and Chen
in [73], and developed further with the concept of µ-basis in [31], has been the more
powerful and fruitful one in geometric modeling. In this section, we briefly review it
with a particular emphasis on its generalization to moving conics [74] that allows to
obtain more compact matrices.



16 Chapter 2. Curve implicitization

In what follows, we suppose that an homogeneous parameterization of a rational
plane curve C is given over a field k by

Φ : P1 → P2 (2.1)

(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)) ,

where f0, f1 and f2 are homogeneous polynomials in k[s, t] of the same degree d > 1.
For the sake of simplicity, we assume that these polynomials have no common factor,
so that the map Φ is well defined everywhere on P1.

Moving lines

A µ-basis of a rational plane curve is composed of two polynomial equations that
both define a line in the plane that moves when the parameter of the curve moves
[52, 26, 31].

Definition 2.1.1. A moving line of degree ν ∈ N is a polynomial of the form

L(s, t;x0, x1, x2) = g0(s, t)x0 + g1(s, t)x1 + g2(s, t)x2

where g0, g1 and g2 are homogeneous polynomials in k[s, t] of degree ν. For any point
(s0 : t0) ∈ P1, L(s0, t0;x0, x1, x2) is a linear form in the variables x0, x1, x2 that can
be interpreted as the defining equation of a line in P2. This line moves when the point
(s0 : t0) varies in P1, hence its name. In addition, the moving line L is said to follow
the parameterization Φ if

L(s, t; f0(s, t), f1(s, t), f2(s, t)) = g0f0 + g1f1 + g2f2 = 0.

Geometrically, this implies that the line defined in the plane by the equation L = 0
goes through the point Φ(s : t) ∈ C.

For any integer ν > 0, it is straightforward to compute a basis L1, . . . , Lrν of the
vector space of moving lines of degree ν following Φ by solving a simple linear system.
We define the matrix Mν(Φ), or simply Mν , as the matrix whose columns are filled
with the coefficients of the moving lines Lj with respect to the variables s, t. More
precisely, Mν is defined by the matrix equality

(L1 L2 · · · Lrν ) = (sν sν−1t · · · tν) ·Mν . (2.2)

It is of size (ν + 1)× rν and its entries are linear forms in k[x0, x1, x2]. Therefore, it
has sense to evaluate the matrix Mν at a point p ∈ P2, which we denote by Mν(p).

Proposition 2.1.1. For all integer ν > d− 1 we have rν > ν + 1 and

rankMν(p) < ν + 1 ⇐⇒ p ∈ C.

In addition, rd−1 = d and rν > ν + 1 if ν > d.

Proof. See [11, §2] and [73].

Thus, Proposition 2.1.1 shows that the matrices Mν are implicit representations
of the curve C for all ν > d − 1, in the sense that they allow to discriminate the
points p ∈ P2 that belong to the curve C. Introduced first in [73] as the method of
moving lines, the matrix Md−1 is a particular member in the family of matrices Mν ,
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ν > d− 1: it is a square matrix whose determinant gives an implicit equation of the
curve C raised to the power the degree of Φ [11, 31]. By the degree of Φ we mean the
number of pre-images of a general point on C via Φ and over the algebraic closure k
of k. In other words, this is nothing but the number of times the curve C is traced by
the parameterization Φ over k.

µ-basis

In the foundational paper [31], among other results the authors show that the matrices
Mν exhibit a specific structure by introducing the concept of µ-basis.

Proposition 2.1.2. There exists two moving lines p1 and p2 following Φ such that
any moving line L following Φ can be written as

L = h1p1 + h2p2,

where h1 and h2 are homogeneous polynomials in k[s, t]. Such a couple of moving
lines p1, p2 is a called a µ-basis of the parameterization Φ. In addition, the degrees µ1

and µ2 of the moving lines p1 and p2 only depend on Φ and are such that µ1 +µ2 = d.

Proof. See for instance [26] and [31].

As a consequence of this proposition, the vector space of moving lines we used to
define the matrices Mν(Φ) have a simple description. More precisely, for any integer
ν we have

〈L1, . . . , Lrν 〉 = 〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉

where it is understood that the multiples of p1, respectively p2, disappear if ν < µ1,
respectively ν < µ2. It follows that

rν = max(0, ν − µ1 + 1) + max(0, ν − µ2 + 1).

Moreover, written in these special bases the matrices Mν exhibit a Sylvester-like
block structure. In particular, in these bases the matrix Md−1 is nothing but the
classical Sylvester matrix associated to the polynomials p1 and p2 with respect to
the homogeneous variables s, t, denoted Syl(p1, p2). Thus, we recover the property
that the resultant of these two polynomials, which is defined as the determinant of
Syl(p1, p2), is equal to an implicit equation of C raised to the power the degree of Φ.

Several methods have been proposed to compute a µ-basis. The first type of
methods starts from a generating collection of moving lines following Φ, namely the
obvious moving lines of degree d of the form

fi(s, t)xj − fj(s, t)xi, 0 6 i < j 6 2, (2.3)

and uses various reductions to reach iteratively a µ-basis by means of linear algebra
algorithms; see e.g. [26, 51]. Another type of methods arise from the computation of
normal forms of matrices over a principal ideal domain, typically the computation of a
Popov form; see e.g. [67, 85]. So far, these latter methods exhibit the best theoretical
complexity.

The matrix Md−1 is the smallest matrix that is an implicit representation of the
curve in the family of matrices Mν . For a general parameterization Φ, the implicit
equation of the curve is a degree d homogeneous polynomial equation in k[x0, x1, x2].
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Therefore, the matrices Mν with ν 6 d − 2 cannot yield an implicit representation
of C because their entries are linear forms in k[x0, x1, x2]. As a consequence, to
obtain more compact matrices it is necessary to introduce high-order extensions of
the moving lines. Having in mind the correspondence between Md−1 and the Sylvester
matrix Syl(p1, p2), the well-know family of (hybrid) Bézout matrices of p1, p2, which
provides more compact matrices for the resultant, suggests to introduce quadratic
forms in some entries of the matrices we consider.

Moving conics

As we call a moving line an equation of a line in the plane that moves as the parameter
(s : t) ∈ P1 varies, we call a moving conic an equation of a conic in the plane whose
coefficients depend on the parameter (s : t) ∈ P1. More concretely, a moving conic of
degree ν ∈ N is a polynomial of the form

Q(s, t;x0, x1, x2) = g0,0(s, t)x2
0 + g0,1(s, t)x0x1+

g0,2(s, t)x0x2 + g1,1(s, t)x2
1 + g1,2(s, t)x1x2 + g2,2(s, t)x2

2

where the polynomials gi,j(s, t) are homogeneous polynomials of degree ν in k[s, t].
In addition, this moving conic is said to follow the parameterization Φ if

Q(s, t; f0, f1, f2) =
∑

06i6j62

gi,j(s, t)fi(s, t)fj(s, t) = 0.

Similarly to moving lines, this latter condition means geometrically that the conic
defined in the plane by the polynomial Q goes through the point Φ(s : t) ∈ C.

We can consider the vector space of moving conics following the parameterization
Φ of degree ν and, similarly to what we did with moving lines, build a coefficient
matrix from them. However, such a matrix is useless in general because its entries are
exclusively quadratic forms in k[x0, x1, x2] and hence the determinants of its minors
are always polynomials of even degree. Having in mind the (hybrid) Bézout matrix
that we previously mentioned, a better option is to combine both moving lines and
moving conics in a same coefficient matrix. We proceed as follows.

Pick an integer ν > 0. As explained in §2.1.1, choosing a basis of the vector space
of moving lines following Φ of degree ν, denoted 〈L1, . . . , Lrν 〉, one can build the
matrix Mν . Now, one can consider the vector space Wν of moving conics following
Φ of degree ν. As it turns out, each moving lines Lj gives the three moving conics
x0Lj , x1Lj and x2Lj that all follow the parameterization Φ. Therefore, these 3rν
moving conics obtained from the moving lines, generate a sub-vector space Vν of Wν .
By solving a linear system and computing a nullspace, one can compute a basis of
the quotient vector space Wν/Vν that we denote by 〈Q1, . . . , Qcν 〉. Then, we define
the matrix MQν(Φ), or simply MQν , as the matrix satisfying to the equality

(L1 L2 · · · Lrν Q1 · · · Qcν ) = (sν sν−1t · · · tν) ·MQν . (2.4)

It is a matrix of size (ν + 1)× (rν + cν). By definition, its first rν columns is simply
the matrix Mν whose entries are linear forms in k[x0, x1, x2], and its last cν columns
are built from moving conics, so its entries are quadratic forms in k[x0, x1, x2].

We recall that µ1 and µ2 denote the degrees of a µ-basis of Φ. Without loss of
generality we assume that µ1 6 µ2.
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Proposition 2.1.3. If ν > µ2 − 1 then rν + cν > ν + 1 and

rankMQν(p) < ν + 1 ⇐⇒ p ∈ C.

In addition,

• if µ2 − 1 6 ν 6 d − 1 then rν = 2(ν + 1) − d, cν = d − 1 − ν and the matrix
MQν is a square matrix whose determinant is an implicit equation of C, raised
to the power the degree of Φ,

• if ν > d− 1 then cν = 0 and MQν = Mν .

Proof. The proof can be done via an identification with the classical Sylvester and
hybrid Bézout matrices, relying on their well-known properties. Indeed, it is a classical
result that their determinants are all equal to the resultant of a µ-basis (see [35]) and
that this latter is equal to an implicit equation of the parameterized curve C (raised
to the power the degree of the corresponding parameterization). These results will
be recovered in the next section §2.1.1 by interpreting the matrices MQν as resultant
matrices. See also [74].

In the case where µ1 = µ2 = h, hence d = 2h, the matrix MQh−1 is a h×h-matrix
whose entries are all quadratic forms, and whose determinant is an implicit equation
of C, raised to the power the degree of Φ. This is the only setting where such a fully
quadratic matrix appears in the family of matrices of moving lines and conics. Notice
that a general curve Φ such that d = 2h satisfies to µ1 = µ2 (see [26]).

Sylvester forms

We already mentioned that the definition of the family of matrices MQν is inspired by
the more classical family of (hybrid) Bézout matrices of a µ-basis p1, p2 of Φ. In what
follows, we make explicit this comparison and exhibit in the same time a structure
for the matrices MQν . For that purpose we need to introduce the Sylvester forms.

Let p1, p2 be a µ-basis of the parameterization Φ and denote by µ1 6 µ2 their
respective degrees. We recall that µ1 + µ2 = d. Let α := (α1, α2) be any couple
of non-negative integers such that |α| := α1 + α2 6 µ1 − 1. Since p1 and p2 are
homogeneous polynomials in the variables s, t, one can decompose them as

p1 = sα1+1h1,1 + tα2+1h1,2,

p2 = sα1+1h2,1 + tα2+1h2,2,

where hi,j(s, t;x0, x1, x2) are homogeneous polynomials of degree µi − αj − 1 with
respect to the variables s, t and linear forms with respect to the variables x0, x1, x2.
Then, we define the polynomial

sylα(p1, p2) := det

(
h1,1 h1,2

h2,1 h2,2

)
and call it a Sylvester form of p1, p2.

Lemma 2.1.1. For any α such that |α| 6 µ1− 1, the Sylvester form sylα(p1, p2) is a
moving conic of degree d− 2− |α| following the parameterization Φ. Moreover, it is
independent of the choice of the polynomials hi,j modulo the µ-basis p1, p2, equivalently
modulo the vector space of moving conics Vd−2−|α|.
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Proof. The first assertion follows by construction and by the Cramer’s rules for solving
a linear system. For the rest, we refer to [55, §3.10].

It turns out that the Sylvester forms generate all the moving conics following Φ
of degree greater or equal to µ2 − 1. Taking again the notation of §2.1.1, here is the
precise result.

Proposition 2.1.4. Let ν be an integer such that µ2 − 1 6 ν 6 d− 2. Then the set
of d− 1− ν Sylvester forms

{sylα(p1, p2)}|α|=d−2−ν =
{

syl(d−2−ν,0)(p1, p2), . . . , syl(0,d−2−ν)(p1, p2)
}

form a basis of the quotient vector space Wν/Vν of moving conics of degree ν following
Φ and not generated from their corresponding moving lines, so that we have cν =
d− 1− ν. In addition, Wd−1 = Vd−1 and hence cd−1 = 0.

Proof. These results follows from a duality property that we study in depth for general
space curves in §2.3.

As a consequence of this proposition, the construction of the matrices MQν , ν >
µ2 − 1, following (2.1) can be done with more specific choices of the bases of moving
lines and moving conics of degree ν. As we already used in §2.1.1, the space of moving
lines can be chosen such that

〈L1, . . . Lrν 〉 = 〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉.

Moreover, by Proposition 2.1.4 the space of moving conics can be chosen as

〈Q1, . . . Qcν 〉 = 〈syl(d−2−ν,0)(p1, p2), syl(d−3−ν,1)(p1, p2), . . . , syl(0,d−2−ν)(p1, p2)〉.

In this way, the matrix MQν , ν > µ2 − 1, exhibits a very particular structure: its
first block of rν = 2(ν + 1) − d columns is the matrix Mν , which is a Sylvester
block built from the µ-basis p1, p2, and each of its last cν = d − 1 − ν columns are
filled with Sylvester forms of p1 and p2. This interpretation of the matrices MQν ,
ν > µ2−1, allows us to identify them with the family of (hybrid) Bézout matrices that
are precisely defined in this way in the literature (see e.g. [35, 74]). The determinant
of these Bézout matrices is known to be equal to the resultant of the µ-basis p1, p2

(see [55]). Therefore, we obtain the main property of these square matrices MQν ,
µ2 − 1 6 ν 6 d − 1: their determinants are all equal to an implicit equation of the
curve C, raised to the power the degree of Φ, as stated in Proposition 2.1.3.

In summary, the family of matrices MQν(Φ), ν > µ2 − 1, gives implicit matrix
representations of the rational curve C. It is an extension of the family of matrices
Mν(Φ), ν > d − 1 with more compact matrices obtained by introducing moving
conics. The more compact matrix, namely MQµ2−1, is made of a Sylvester block
built from the polynomial p1, possibly empty if µ1 = µ2, and then filled by columns
with Sylvester forms.

In the next section, we will generalize the above results to the case of rational
curves in arbitrary dimension. The family of matrices Mν(Φ) built solely with moving
lines, i.e. such that ν > d − 1, has already been extended to this setting in [16]; we
will review it briefly. One of the main contribution in this thesis is the generalization
of the matrices built with moving conics, i.e. the matrices MQν(Φ) such that µ2−1 6
ν 6 d− 2 to the case of rational curves in arbitrary dimension.
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2.1.2 Maps from P1 to Pn with n > 3

Let R := k[s, t] and R′ = k[x0, · · · , xn] be a standard graded polynomial rings over a
field k. Assume we are given a rational map

Φ : P1
k → Pnk

(s : t) 7→ (f0(s, t) : · · · : fn(s, t)) , (2.5)

where f0, · · · , fn are homogeneous polynomials in s and t of the same degree d greater
or equal to 1. Assume that f0, . . . , fn do not have a common factor, then the image of
Φ, denoted by Im(Φ), defines the curve C in Pnk . Let I := (f0, · · · , fn) be the ideal in
R, m := (s, t) be the irrelevant ideal of R. Let S := k[s, t, x0, · · · , xn] be the bi-graded
polynomial ring over the field k with canonical grading deg(s) = deg(t) = (1, 0) and
deg(xi) = (0, 1) for i = 0, · · ·n.

Moving hyperplanes and µ-basis

As a straightforward generalization of the concept of moving lines described in §2.1.1
for plane curves, a moving hyperplane of degree ν ∈ N is a polynomial of the form

H(s, t;x0, . . . , xn) = g0(s, t)x0 + · · ·+ gn(s, t)xn

where g0, . . . , gn are homogeneous polynomials in k[s, t] of degree ν. Thus, for any
point (s0 : t0) ∈ P1

k, H(s0, t0;x0, . . . , xn) can be interpreted as the defining equation
of a hyperplane in Pnk that moves when the point (s0 : t0) varies in P1

k. The moving
hyperplane H is said to follow the parameterization Φ if

H(s, t; f0(s, t), . . . , fn(s, t)) = g0f0 + · · ·+ gnfn = 0,

which means geometrically that this hyperplane of equation H = 0 goes through the
point Φ(s : t) ∈ C.

For any integer ν, one can compute a basis H1, . . . ,Hrν of the vector space (over k)
of the moving hyperplanes of degree ν following Φ. Then, one can define a coefficient
matrix Mν by means of the following equality:(

sν sν−1t · · · tν
)
·Mν =

(
H1 · · · Hrν

)
.

The matrix Mν is of size (ν + 1)× rν and its entries are linear forms in k[x0, . . . , xn],
so it makes sense to evaluate it at a point in Pnk . For instance, by definition we have
that for all point (s0 : t0) ∈ P1

k this matrix satisfies to(
sν0 sν−1

0 t0 · · · tν0
)
·Mν(Φ(s0, t0)) =

(
0 · · · 0

)
. (2.6)

This property implies that for any integer ν and any point p ∈ C the cokernel (or left
nullspace) of Mν(p) has positive dimension. Actually, one can show that if ν > d− 1
then rν > ν + 1 and we have that

rankMν(p) < ν + 1 ⇐⇒ p ∈ C

(see [11, §2],[73]). However, this first generalization of Proposition 2.1.1 can be im-
proved, but in order to state it we first need to introduce the concept of µ-basis
for a parameterized curve in Pn, n > 2, that has been introduced in [31] and then
extensively studied (see e.g. [77] and [52, §4]).



22 Chapter 2. Curve implicitization

Proposition 2.1.5. There exist n moving hyperplanes p1, . . . , pn following Φ such
that any moving hyperplane H following Φ can be written in the form

H = h1p1 + h2p2 . . .+ hnpn,

where h1, . . . , hn are homogeneous polynomials in k[s, t]. Such an n-tuple of moving
hyperplanes p1, · · · , pn are called a µ-basis of the parameterization Φ. In addition,
let µ1, . . . , µn be the degrees of the polynomials p1, . . . , pn respectively and assume
without loss of generality that µ1 6 µ2 6 . . . 6 µn. Then, the sequence (µ1, . . . , µn)
only depends on the parameterization Φ and

∑n
i=1 µi = d.

Proof. Let Φ be a parameterization as in (2.5). By Hilbert-Burch Theorem [9, The-
orem 1.4.16], the ideal I = (f0, . . . , fn) has a free resolution

0→ ⊕ni=1k[s, t](−d− µi)
M−→ ⊕ni=0k[s, t](−d)

[f0···fn]−−−−−→ I → 0,

where [f0 · · · fn] is a row matrix and M = (mij)16i6n
16j6n

is a (n + 1) × n-matrix of

polynomials over k[s, t] of degree at most d such that [f0 · · · fn] · M = 0. Then,
p1, . . . , pn is a µ-basis of the parameterization Φ such that

pj(s, t, x0, . . . , xn) =
n∑
i=0

(s, t)xj ∈ k[s, t, x0, . . . , xn],

(see e.g. [77, §2] and [31, §5]).

Coming back to the family of matrices Mν , they have a Sylvester block structure
inherited from the existence of µ-basis. In particular,

rν =

n∑
i=1

max(0, ν − µi + 1). (2.7)

Moreover, we have the following generalization of Proposition 2.1.1.

Proposition 2.1.6. For all integer ν > µn + µn−1 − 1 we have rν > ν + 1 and

rankMν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. See [16].

As in the case of plane curves, the matrices Mν give implicit representations of the
curve C for all ν above a certain threshold (observe that if n = 2 then µ2 + µ1 − 1 =
d − 1). Indeed the point p on the curve C is characterized by the fact that the rank
of such a matrix evaluated at p is not maximal. Compared to an implicit polynomial
representation, this is much more efficient since only a single matrix is necessary.
Moreover, these matrices allow to recover the pre-images of such points p and they are
also adapted to numerical treatments by means of numerical linear algebra techniques
(see [16, 18]). In what follows, we extend this family of matrices in order to obtain
more compact matrices still providing an implicit representation of C.

Defining ideal in Pn

Let J := (p1, · · · , pn) be the ideal in S which is generated by all the moving planes
following Φ, hence generated by the µ-basis of the ideal I such that degR(pi) = µi
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and degR′(pi) = 1 for i = 1, · · · , n. Let B := S/J be the quotient ring which is the
symmetric algebra of I, denoted by Sym(I). Let sat and ( :S m∞) both denote the
saturation by the irrelevant ideal m in S. Without loss of generality, we can assume
that fi’s, i = 0, · · · , n do not have a common factor (otherwise, the fi’s can be
simplified by their common factor). Then, we deduce that the polynomials p1, . . . , pn
have no common root in P1

k as well, [16, Lemma 1]. Algebraically, this means that
they form a regular sequence [41, Chapter 17] outside of V (m) in S. Then we have

Jsat := (J :S m∞) = {s ∈ S : ∃n ∈ N smn ⊂ J},

where S/Jsat is the Rees algebra of I, denoted by Rees(I) (see §1.2). Moreover, J
and Jsat are both bi-graded ideals of S with respect to the grading of S. Let’s recall
that by definition (see §1.1)

H0
m(B) = {b ∈ B : ∃n ∈ N bmn = 0} ' (J :B m∞)/ '= Jsat/J. (2.8)

The graph ΓΦ of Φ (see §1.1) can be given as the zero locus of homogeneous
polynomials in coordinates x0, . . . , xn on Pnk , whose coefficients are polynomials in
s, t on P1

k. We have two canonical projections from ΓΦ, first one is onto the first
component, i.e. π1 : ΓΦ → P1

k, the second one is on the last component, i.e. π2 :=
ΓΦ → Pnk . In addition, we have the following diagram

ΓΦ

π1
��

π2

''

� � //P1
k × Pnk

P1
k

Φ //Pnk

(2.9)

Moreover π2(ΓΦ) can be interpreted as the set of points (x0 : · · · : xn) for which
the polynomials defining ΓΦ have non-trivial solutions in s and t, i.e. either s or t
value is non-zero. We would like to eliminate x0, . . . , xn, for that reason consider the
projective elimination ideal I in [28, Chapter8, §5]

I := {P ∈ R′ : ∃n ∈ N Pmn ⊂ J} ⊂ R′

= (J : m∞)
⋂
R′

= Jsat
⋂
R′ (see §1.1).

Here we notice that H0
m(B)0 is the projective elimination ideal I.

We consider the kernel of the ring homomorphism

h : k[x0, . . . , xn] → k[s, t]
xi 7→ fi(s, t), i = {0, . . . , n}

ker(h) which is the set of polynomials P (x0, . . . , xn) such that P (x0, . . . , xn) = 0 is
called the defining ideal IC of the curve C. It is an ideal of R′. In terms of algebraic
varieties, we have

V (IC) = {(x0 : · · ·xn) ∈ Pnk : P (x0, . . . , xn) = 0 for all P ∈ IC} = C.

Since the sequence p1, . . . , pn defines a regular sequence outside of V (m), Rees(I)
is projectively isomorphic to Sym(I) (see [14]). Moreover, the algebraic variety V
defined by zero locus of the µ-basis

V := {(s : t)× (x0 : · · · : xn) : p1 = · · · = pn = 0} ⊂ P1
k × Pnk



24 Chapter 2. Curve implicitization

is the graph of the rational map Φ and π2(V ) = C = V (IC) (see [16]). Also, by [14,
Corollary 3.8] the projective elimination ideal I and the defining ideal of the curve C
are the same.

2.2 The method of moving quadrics

2.2.1 Moving quadrics

Definition 2.2.1. A moving quadric of degree ν ∈ N is defined to be a polynomial of
the form

Q(s, t;x0, . . . , xn) =
∑

0≤i6j≤n
qij(s, t)xixj

where qi,j(s, t), 0 ≤ i 6 j ≤ n, are n(n+ 1)/2 homogeneous polynomials in k[s, t]. In
addition, a moving quadric is said to follow the parameterization Φ if

Q(s, t; Φ0(s, t), . . . ,Φn(s, t)) = 0.

Hence the polynomial Q defines a quadric in space that moves with the parameter
(s : t) ∈ P1

k and that goes through the point Φ(s, t) ∈ C.

Choose an integer ν and let 〈H1, . . . ,Hrν 〉 be a basis of the vector space of moving
hyperplanes following Φ. We can consider the vector space Wν of moving quadrics
following Φ. Each moving hyperplane Hj of degree ν following Φ generates n + 1
moving quadrics of the same degree ν, still following Φ, that are given by xiHj ,
0 ≤ i ≤ n. Observe that geometrically, such a moving quadric consists of the union
of the moving hyperplane of equation Hj = 0 and the static hyperplane of equation
xi = 0. We denote by Vν the sub-vector space of moving quadrics generated by these
moving quadrics obtained from moving hyperplanes. Now, let 〈Q1, . . . , Qcν 〉 be a
basis of the quotient vector space Wν/Vν . Then,

Definition 2.2.2. We define the matrix MQν(Φ) by

(H1 H2 · · · Hrν Q1 · · · Qcν ) = (sν sν−1t · · · tν) ·MQν .

It is a matrix of size (ν + 1)× (rν + cν), rν being given by (2.7).

Observe that this definition encapsulates the definition of the similar matrices we
considered in the case n = 2, §2.1.1. By definition, the first rν columns of MQν

correspond to the matrix Mν introduced in §2.1.2 and its entries are linear forms in
k[x0, . . . , xn]. On the other hand, its last cν columns are built from moving quadrics
and hence its corresponding entries are quadratic forms in k[x0, . . . , xn]. The defini-
tion of the matrices MQν is translated into Algorithm 1.
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Algorithm 1: Construction of the matrices MQν

Input : A parameterization Φ of a curve as defined in (2.5) and an integer
ν.

Output: The matrix MQν .

1. Compute a basis of the moving hyperplanes following Φ of degree ν and build
the matrix Mν .

2. Compute a basis 〈Q1, . . . , Qcν 〉 of the vector space Wν / Vν ; its k-th element is
of the form

Qk =
∑

06i6j6n

ν∑
l=0

ck,l,i,js
ν−ltlxixj

3. Define the matrices Mi,j = (ck,l,i,j)l,k and the matrix Qν =
∑

06i6j6nMi,jxixj .

4. Return the concatenated matrix

MQν =
(
Mν Qν

)
.

We recall that the sequence of increasing integers µ1 6 µ2 6 . . . 6 µn denote the
degrees of a µ-basis of Φ. Here is our first main result.

Theorem 2.2.1. Assume that ν > µn − 1. Then, rν + cν > ν + 1 and the degree
of the fiber at p ∈ C, i.e. deg(π−1

2 (p)) where π2 is as in (2.9), is equal to corank of
MQν(p). In particular,

rankMQν(p) < ν + 1 ⇐⇒ p ∈ C.

Moreover, we have that

cν =
∑

16i<j6n

max(0, µi + µj − 1− ν).

Also, if ν > µn + µn−1 − 1 then cν = 0 and it follows that MQν = Mν .

Proof. See §2.3.

Now, we discuss the shape of this matrix for some specific values of the degrees
of the µ-basis. We emphasize that unlike in the case of plane curves, the matrices
MQν will never be square matrices for space curves because a space curve cannot be
defined by a single equation over an algebraically closed field.

In the family of matrices MQν , ν > µn − 1, the matrix MQµn−1 is evidently
the one with the smallest number of rows. Moreover, the smallest possible value
for the integer µn is dd/ne because of the equality

∑n
i=1 µi = d. It corresponds to

the situation where the µi’s are evenly distributed. It turns out that this balanced
situation is the generic one when k is an algebraic closed field: fixing a degree d and
picking n random homogeneous polynomials in (s, t) of degree d, f0, . . . , fn using a
dense distribution of the coefficients such as Gaussian distribution, the degrees of
its µ-basis are evenly distributed with probability 1 (see [34, Theorem 1.2] for the
case n = 2 and [31, Section 3, Theorem 1] for a proof that generalizes to arbitrary
dimension n > 2).

Here are some further specific settings:
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• µ1 = 0: An element of degree 0 in the µ-basis corresponds to a (non-moving)
hyperplane containing the curve. In this situation, we have µ2 + . . . + µn = d
and the problem is reduced to examining a curve in Pn−1 whose µ-basis is
(p2, . . . , pn).

• µ1 = µ2 = 1: In this situation, the curve is contained in a (non-moving) quadric
whose equation is given by the resultant of p1 and p2.

• µi = d/n for all i: In this case, the degree d is a multiple of n and the matrix
MQd/n−1 is purely quadratic since there is no moving hyperplane of degree
d/n− 1 following the parameterization.

2.2.2 Sylvester forms

For any couple of integers 1 6 i < j 6 n and any α = (α1, α2) such that |α| 6
µi− 1, one can consider the Sylvester form sylα(pi, pj), as defined in §2.1.1. Similarly
to Lemma 2.1.1, one can show that it is a moving quadric following Φ of degree
µi + µj − 2 − |α| that is independent of the choice of decomposition modulo the
polynomials pi, pj .

Now, for any integer ν consider the vector space Sν that is generated by all the
Sylvester forms of degree ν, i.e.

Sν = 〈sylα(pi, pj) such that 1 ≤ i < j ≤ n and |α| = µi + µj − 2− ν〉 .

Taking again the notation of §2.2.1, it is a sub-vector space of the space Wν of moving
quadrics of degree ν following Φ. Here is our second main result.

Theorem 2.2.2. If ν ≥ µn − 1 then Wν = Vν ⊕ Sν . In other words, the moving
quadrics of degree ν following Φ are generated by the moving hyperplanes of degree ν
following Φ and by the Sylvester forms of degree ν. Moreover, these latter Sylvester
forms are linearly independent and hence

dimSν = cν =
∑

16i<j6n

max(0, µi + µj − ν − 1).

Proof. See §2.3.

Compared to Algorithm 1 described in §2.2.1, this theorem shows that the matrices
MQν can be computed in closed form in terms of the polynomials p1, . . . , pn defining a
µ-basis of Φ. We notice that, as far as we know, there is no known method that allows
to compute the degrees µ1, . . . , µn, or even the degree µn, efficiently without actually
computing a µ-basis. So, assuming the a µ-basis is computed, Theorem 2.2.2 gives
an optimal method to build an implicit matrix representation of the curve C since it
shows that the matrices MQν can be computed essentially at the cost of computing
a µ-basis. This is described with more details in Algorithm 2 for the smallest matrix
MQµn−1. Of course, a similar algorithm can be used to build the matrix MQν for
any integer ν > µn − 1, but we prefer to focus on the smallest matrix which is the
more useful in practice.
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Algorithm 2: Construction of MQµn−1

Input : A parametric curve Φ defined by (2.5)
Output: The matrix MQµn−1.

1. Compute a µ-basis (p1, . . . , pn) of Φ. Let µi be the degree of pi and assume
that µ1 6 · · · 6 µn.

2. Let B be a basis of the polynomial of degree µn − 1, for instance

B := {sµn−1, sµn−2t, . . . , tµn−1}.

3. Initialize the matrix MQµn−1 to the empty matrix. We build it by successively
adding columns as follows.

4. For i from 1 to n− 1 add a block of µn − µi columns to the matrix MQµn−1

corresponding to the coefficients of the polynomials

{sµn−µi−1pi, s
µn−µi−2tpi, . . . , t

µn−µi−1pi}

with respect to the polynomial basis B.

5. For i from 1 to n− 1 do
for j from i+ 1 to n do
if νi,j := µi + µj − µn − 1 > 0 then add a block of νi,j + 1 columns to the

matrix MQµn−1 corresponding to the coefficients of the Sylvester forms

{sylα(pi, pj) : |α| = νi,j}

with respect to the polynomial basis B.

6. Return the matrix MQµn−1.

2.3 Proofs of the main theorems

In this section, we prove Theorem 2.2.1 and Theorem 2.2.2.
With the notation of §2.1.2, the ideals J and Jsat are both bi-graded ideals. They

have a grading with respect to the variables s, t and with respect to the variables
x0, . . . , xn. We denote by Jν and (Jsat)ν the graded slices of degree ν ∈ N with
respect to the variables s, t. They are k[x0, . . . , xn]-modules. For instance,

(Jsat)0 = Jsat ∩ k[x0, . . . , xn] = IC .

2.3.1 Elimination and matrices

We have previously built matrices by columns with the coefficients with respect to
s, t of some moving hyperplanes and quadrics following Φ of a given degree ν. Ex-
tending this approach, we could consider similar matrices built by columns with the
coefficients of all the moving hypersurfaces following Φ in a given degree ν. Call these
matrices MHν . Their entries are homogeneous polynomials in k[x0, . . . , xn]. They
are defined up to a choice of basis of the polynomials in s, t of degree ν, and up to a
choice of a set of generators of the set of moving hypersurfaces following Φ of degree
ν.
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Lemma 2.3.1. For any integer ν > 0 and any p ∈ Pn,

rankMHν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. Because of (2.8), we get that the annihilator annR′(Sν/(J
sat)ν) is equal to the

defining ideal IC of the curve C for all integer ν > 0 [16, §2.3]. Then, by classical
properties of Fitting ideals [41, Chapter 20], we obtain that any free presentation of
Sν/(J

sat)ν , as a A-module, has the claimed property. As Jsat is generated by all the
moving hypersurfaces following Φ, the conclusion follows.

Although interesting, this property is not of practical interest because it is a
difficult task to compute moving hypersurfaces in general. For instance in the extreme
case ν = 0, the matrix MH0 is a row matrix filled by columns with a generating
set of IC . Nevertheless, with this interpretation, the main idea of the method of
moving hyperplanes, resp. moving quadrics, is to tune the integer ν in order to have
a control on the moving hypersurfaces that are needed. Typically, one may wonder
for which integer ν the moving hyperplanes, resp. quadrics, generate all the moving
hypersurfaces following Φ in this degree. Thus, Proposition 2.1.6 means that

∀ν > µn + µn−1 − 1 (Jsat)ν = Jν , (2.10)

i.e. above this threshold degree all the moving hypersurfaces following Φ are generated
by the moving hyperplanes of the same degree following Φ. In the same vain, to prove
Theorem 2.2.1, we have to show that

∀ν > µn − 1 (Jsat)ν = (Jsat〈2〉)ν (2.11)

where Jsat〈2〉 ⊂ Jsat denotes the ideal of S generated by all the moving planes and
moving quadrics following Φ. More precisely Jsat〈η〉 refers to the degree at most η
over k[x0, . . . , xn] part of Jsat.

Let K• be the Koszul complex (see Definition 1.3.2.) associated to the sequence
p1, · · · , pn which generates the ideal J . Since J has the bi-grading structure, so does
K•. In the sequel, [ ] and { } denote the shifting with respect to R = k[s, t] and
R′ = k[x0, · · · , xn] respectively. Let S = R⊗k R′. Then, K• is given as follows

K• : Kn
dn−→ Kn−1

dn−1−−−→ · · · d2−→ K1
d1−−−−−−→

(p1,··· ,pn)
K0 = S

d0−→ 0,

where Km := ⊕m16i1<···<im6nS[−µi1 − · · · − µim ]{−m}. For instance,

K1 := ⊕ni=1S[−µi]{−1}.

Moreover, since the differential d1 corresponds to row matrix
[
p1 · · · pn

]
and we

have
H0(K•) = S/J.

Proposition 2.3.1. We have the following isomorphism

H2(H2
m(K•)) ∼= H0

m(B) = Jsat/J.

Proof. Consider the double complex C •m(K•), where C •m denotes the Čech complex
with respect to m. The column filtered spectral sequences of C •m(K•) stabilizes in the



2.3. Proofs of the main theorems 29

second sheet as follows

H0
m(Hn(K•)) · · · H0

m(H2(K•)) H0
m(H1(K•))

zz

H0
m(H0(K•))

zz

0 · · · 0 0 H1
m(H0(K•))

0 · · · 0 0 H2
m(H0(K•))

The modules H i
m(Hj(K•)) = 0 for i > 0 and j > 0, because of the fact that J

annihilates the homology modules ofK• and the polynomials p1, · · · , pn form a regular
sequence outside of V (m). On the other hand, the row filtered spectral sequence of
C •m(K•) stabilizes also at the second sheet.

0 · · · 0 0 0

0 · · · 0 0 0

Hn(H2
m(K•)) · · ·

22

H2(H2
m(K•))

22

H1(H2
m(K•)) H0(H2

m(K•))

Then by the comparison theorem of spectral sequences [83, p. 5.2.12], we have the
desired isomorphism.

We recall that the local cohomology modules of the ring S are defined to be

H2
m(S) ∼= R′ ⊗k Ř, Ř :=

1

st
k[s−1t−1], (2.12)

and by Theorem 1.6.1 we have H i
m(S) = 0 for all i 6= 2.

Corollary 2.3.1. For all integers ν > µn − 1, we have the following exact sequence

⊕16i<j<k6nŘν−µi−µj−µk ⊗k R′{−3} →

⊕16i<j6nŘν−µi−µj ⊗k R′{−2} → (Jsat/J)ν → 0.

Proof. Consider the spectral sequences in the proof of the Proposition 2.3.1, in partic-
ular, last non-zero row of the first sheet of spectral sequences of C •m(K•) with respect
to the row filtration which is

H2
m(Kn)→ · · · d3−→ H2

m(K2)
d2−→ H2

m(K1)
d1−→ H2

m(K0).

Then, H2(H2
m(K2)) = kerd2/Imd3. Then by (2.12) and the fact that local cohomology

commutes with direct sum, for all ν > µn − 2, we have

H2
m(K1)ν = H2

m(⊕ni=1S[−µi]{−1})ν = ⊕ni=1Řν−µi ⊗k R′{−1} = 0.

If H2
m(K1)ν = 0, then ker(d2)ν = H2

m(K2)ν . Likewisely, for all ν > µn − 2, we have,

ker(d2)ν = H2
m(K2)ν

= H2
m(⊕16i<j6nS[−µi − µj ]{−2})ν

= ⊕16i<j6nŘν−µi−µj ⊗k R′{−2}.

Similarly we have,

H2
m(K3)ν = H2

m(⊕16i<j<k6nS[−µi − µj − µk]{−3})ν
= ⊕16i<j<k6nŘν−µi−µj−µk ⊗k R′{−3}.
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Hence, for ν > µn − 1, we have the following exact sequence

⊕16i<j<k6nŘν−µi−µj−µk ⊗k R′{−3} →

⊕16i<j6nŘν−µi−µj ⊗k R′{−2} → (Jsat/J)ν → 0.

Proof of Theorem 2.2.1. Except the result on degree of fiber at point p ∈ C,
Theorem 2.2.1 follows straightforwardly from Corollary 2.3.1. Indeed, it shows that
(Jsat)ν is generated by moving quadrics modulo the moving hyperplanes, i.e. modulo
Jν , and that the number of minimal generators, i.e. the dimension of the vector space
of moving quadrics modulo the vector space of moving hyperplanes both in degree ν,
is precisely given by cν . In particular, if ν > µn+µn−1−1 we get that (Jsat/J)ν = 0,
i.e. that (Jsat)ν = Jν . Hence, if ν > µn + µn−1 − 1, all the moving hypersurfaces are
generated by the moving planes and we have cν = 0.

Now let’s prove that the degree of the fiber at point p ∈ C is equal to corank of
MQν(p). For this, for any point p ∈ Pn by the Grothendieck-Serre formula, we have
the equality (see for instance [6, Proposition 4.26])

HPπ−1
2 (p)(ν) = HFπ−1

2 (p)(ν)−
∑
i>0

(−1)iHFHi
m(π−1

2 (p))(ν).

Proposition 2.3.1 and Corollary 2.3.1 give us the vanishing of H0
m(S/J). It remains to

look for the vanishing of H1
m(S/Jsat〈2〉). Using the spectral sequences associated to

the double complex C •m(K•) where K• is the Koszul complex of a µ-basis of Φ, (given
in Proof of Proposition 2.3.1), H2

m(H1(K1)) ' H1
m(B). We have already seen that for

all ν > µn − 2,

H2
m(K1)ν = H2

m(⊕ni=1S[−µi]{−1})ν = ⊕ni=1Řν−µi ⊗k R′{−1} = 0.

Let’s consider the cohomology long exact sequences obtained by the short exact se-
quence

0→ Jsat〈2〉/J → S/J → S/Jsat〈2〉 → 0.

Hence, we have

· · · → H1
m(S/J)ν → H1

m(S/Jsat〈2〉)ν → H2
m(Jsat〈2〉/J)ν → · · ·

and H1
m(S/Jsat〈2〉)ν vanishes where H1

m(S/J)ν and H2
m(Jsat〈2〉/J)ν simultaneously

vanish. By Proposition 2.3.1, we have H1
m(S/J)ν = 0 for all ν > µn − 1. Then,

H2
m(Jsat〈2〉/J)ν = 0, since a2(J) = a2(Jsat〈2〉) (we refer the reader to §1.6 for the

invariant ai of local cohomology modules.). �

2.3.2 Proof of Theorem 2.2.2

The proof of Theorem 2.2.2 can be seen as a particular case of an explicit construction
of duality isomorphism similar to the one we obtained in Proposition 2.3.1. Such an
explicit construction already appeared in [56] and [33]. Now, we prove Theorem 2.2.2.

First, by Koszul self-duality (see §1.3), we have a graded isomorphism

Hi(H
2
m(K•)) ' Hn−i(K•[

n∑
i=0

d− 2])∗
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where (−)∗ stands for the dual. Then, by the comparison theorem of the spectral
sequences given in the proof of Proposition 2.3.1 we have the diagonal isomorphisms,

Bi−2 := Hn−i(K•[
n∑
i=0

d− 2])∗
∼−→ H0

m(Hi−2(K•)), for i = 2, . . . , n,

which are known to be the Bezoutian maps given in [33, Theorem 1.3] as follows

H0
m(Hn(K•))

βn−−→ · · · β3−→ H0
m(H2(K•))

β2−→ H0
m(H1(K•))

β1−→ H0
m(H0(K•))

Hn(H2
m(K•))

Bn

44

αn−−→ · · ·
B3

33

α3−−→ H2(H2
m(K•))

B2

33

α2−−→ H1(H2
m(K•))

α1−−→ H0(H2
m(K•))

Here, the αi’s and the βi’s are dual Koszul and Koszul differentials (see Definition
1.3.2 and Definition 1.3.3) respectively for i = 1, . . . , n. We have also the following
commutative diagram and the same diagram for the homologies, for all integer i =
1, . . . , n

Ki−2
βi−→ Ki−3

K∗n−i

Bi

OO

αi−→ K∗n−i+1,

Bi−1

OO

which makes each cell of the above spectral sequences, βi◦Bi = Bi−1◦αi, commutative.

In [56, Section 3] the generalized Morley form gives following explicit construction
of the isomorphism denoted by Bn

Bn := 1 7→
∑

σ∈Sn such that
σ(1)<σ(2),

σ(3)<...<σ(n)

sign(σ)

∣∣∣∣pσ(1),1 pσ(1),2

pσ(2),1 pσ(2),2

∣∣∣∣ eσ(3) ∧ · · · ∧ eσ(n).

where pi(s : t) = sṗi,0(s, t) + tṗi,1(s, 1) for i = 1, . . . , n. Assume e∗σ(1) ∧ · · · ∧ e
∗
σ(i) be

an element of K∗i , then we have

Bi := (e∗σ(1)∧· · ·∧e
∗
σ(i)) 7→

∑
σ∈Sn such that

σ(i)<σ(i+1)<σ(i+2),
σ(i)<σ(i+3)<...<σ(n)

sign(σ)

∣∣∣∣pσ(i+1),1 pσ(i+1),2

pσ(i+2),1 pσ(i+2),2

∣∣∣∣ eσ(i+3)∧· · ·∧eσ(n).

Thus, B0 gives an explicit construction of the map in Proposition 2.3.1. Then, to
obtain Theorem 2.2.2 one has to show that for all degree ν > µn − 1 the graded
components of this Morley form coincide with Sylvester forms. This latter property
follows from [55, Proposition 3.11.13]. �

2.3.3 Koszul syzygies

For the sake of completeness, we discuss the link with the obvious moving hyperplanes
of the form (2.3) that are also called Koszul syzygies. Let us denote by JK the ideal
generated by these moving hyperplanes. We have JK ⊂ J ⊂ Jsat. As the polynomials
f0, . . . , fn have no common root in P1

k, we know that these three ideals coincide in
sufficiently high degrees. Here is a more precise result.

Proposition 2.3.2. For all integers ν > d+ µn + µn−1 − 1 we have (JK)ν = Jν .
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Proof. The quotient J/JK is canonically identified with the first homology group Hf
1

of the Koszul complex associated to the sequence f0, . . . , fn which is of the form

Kf
n+1 → · · · → Kf

2
d2−→ Kf

1
d1−→ Kf

0 .

Indeed, the kernel of d1 corresponds to the µ-basis of Φ and the image of d2 identifies
to the Koszul syzygies, i.e. syzygies of form fixj − xifj , for 0 6 i, j 6 n. Taking into

account the shifts in the grading, we get the isomorphism (Hf
1 )ν+d ' (J/JK)ν for all

integer ν.

Now, consider the sequence

0→ Zf2 ↪→ Kf
2

d2−→ Kf
1

d1−→ Kf
0

where Zf2 = ker d2. Then, from the two spectral sequences associated to the double
complex

0→ C •m(Zf2 ) ↪→ C •m(Kf
2 )

d2−→ C •m(Kf
1 )

d1−→ C •m(Kf
0 ),

we deduce that (Hf
1 )ν = 0 for any integer ν such that H2

m(Zf2 )ν = 0.

The two modules Zf2 and Zf1 are free graded k[s, t]-modules. Consider the canon-

ical map ∧2Zf1 → Zf2 . Since the fi’s have no common root in P1
k, we deduce that the

kernel and the cokernel of this map are supported on V (m), and therefore it must be
a graded isomorphism. To conclude, we notice that

Zf1 ' ⊕
n
i=1k[s, t](−d− µi),

and the claimed result follows by (2.12).

2.3.4 Summary of our results

To summarize, we have built a family of matrices MQν that provides implicit matrix
representations of a parameterized curve in arbitrary dimension for all ν > µn − 1,
where µn is the highest degree of a polynomial in a µ-basis of the parameterization
of this curve. They have the following shape:

• If µn−1 6 ν 6 µn+µn−1−2, then MQν is filled with moving planes and moving
quadrics. It is exclusively filled with moving quadrics if and only if ν = µn − 1
and µi = d/n for all i = 1, . . . , n.

• If ν > µn + µn−1 − 1, then MQν is filled with moving planes, and it coincides
with the family of matrices Mν introduced in [16].

• If ν > d+µn+µn−1−1, then MQν = Mν can be filled from the obvious moving
planes of the form (2.3) without relying on the computation of a µ-basis. This
is an improvement of [16, Proposition 26].

Example 2.3.1. Consider the following parameterization Φ of a curve C of degree 6:

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t− 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t+ 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.
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x0 0 x1 + 3x2 + 3x3

3
2x3

1
2x3 0

0 x0 − 9
2x3x1 + 3x2 − 3

2x3 −x3 1
2x3

−8x0 + x1 −3x0 2x1 − 9x3 −x1 − 6x3 x2 − x3 −x3
3x0 + 3x1 x0 + x1 3x1 − 3x3 3x1 − 3x3 0 x2 − x3


Figure 1. Matrix M3 of moving hyperplanes corresponding to the space curve

parameterization discussed in Example 2.3.1.

(
2x0x1 − x22 − 6x0x2 − 3x1x2 2x0x1 + 6x0z2 2x0z2 − 3x0x3 − x1x3
−8x0x1 + x21 + 12x0x2 + 3x1x2 2x0x1 − x21 − 6x0x2 − 3x1x2 −6x0x2 + 8x0x3 + 2x1x3

x0x3 2x1x2 + 6x22 − 5x1x3 − 3x2x3 −x1x3 − 3x2x3
2x0x2 − 3x0x3 − x1x3 −2x1x2 − 6x22 + 8x1x3 2x1x2 + 6x22 − 5x1x3 − 3x2x3

)
.

Figure 2. Matrix MQ1 of moving quadrics corresponding to the space curve

parameterization discussed in Example 2.3.1.

The computation of a µ-basis of Φ gives

p1 = (s2 − 3st+ t2)x+ t2y

p2 = (s2 − st+ 3t2)y + (3s2 − 3st− 3t2)z,

p3 = 2t2z + (s2 − 2st− 2t2)w,

so that we have µ1 = µ2 = µ3 = 2.

This example is taken from [53, Example 3.7] where the authors introduce three
quartic surfaces in order to get an implicit representation of the curve C. The equa-
tions of these quartic surfaces are given by the resultant of p1 and p2, of p1 and p3,
and of p2 and p3 with respect to the homogeneous variables s and t. Their intersection
always contains the curve C but it may also contains some extraneous components.
For instance, in this example the point q = (1 : 1 : 1 : 1) ∈ P3 is not on the curve C,
but it belongs to the intersection of these three quartic surfaces.

In [16, Example 8], this same parameterization is implicitized by means of the
matrix of moving hyperplanes M3 (µ2 + µ3 − 1 = 3), which is of size 4 × 6. This
matrix is proved to always give an implicit representation of the curve C. Indeed, its
rank is equal to 4 after evaluation at the point q, showing that q /∈ C. It is printed in
Figure 1.

Now, according to the new family of matrices we built in this chapter, the matrix
of MQ1 (µ3 − 1 = 1) also provides an implicit representation of the curve C. It is a
matrix of size 2× 6, more compact than M3, which is filled with the 6 Sylvester forms
syl(1,0)(pi, pj) and syl(0,1)(pi, pj) for 1 6 i < j 6 3. It is printed in Figure 2.

2.4 Computational aspects

In this section, we report on some experiments on the computation of the family of
matrices MQν we have introduced. In particular, we illustrate the gain we obtain with
the smallest matrix MQµn−1 for deciding whether a point belongs to a parameterized
curve.
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2.4.1 Computation of the matrices

In this paragraph we report on the size and the computation time of some implicit ma-
trix representations that are of particular interest, in the case n = 3. More precisely,
we retain the following matrices:

• Moving hyperplane matrices: both Md−1, in order to avoid the computation of
a µ-basis, and Mµn+µn−1−1, in which case (the degrees of) a µ-basis must be
computed, are considered.

• MQker: the matrix of moving planes and moving quadrics in degree µn − 1,
computed using kernel calculations by Algorithm 1.

• MQSyl: the matrix of moving planes and moving quadrics in degree µn − 1 are
built in closed form from a µ-basis, by means of Algorithm 2.

The results are reported below. The algorithms have been implemented in Sage-
Math and run using an Intel(R) Pentium(R) N3540 CPU @ 2.16GHz on a x64 ma-
chine with 4GB of RAM.

In Table 2.1, we give the computation time of a µ-basis and then our two options
to build an optimal implicit matrix representation: a matrix fully composed of moving
planes or a mixed matrix with moving planes and moving quadrics. For these two
matrices, the computation time excludes the computation of the µ-basis, which is
reported in the second column. It appears clearly that the matrix with moving
quadrics is more expensive to build, because its entries require calculations.

Degree d and
degrees (µi)i

µ-basis Mµn+µn−1−1 MQSyl

5 (2, 3)
230ms

5x5
57ms

3x3
417ms

10 (5, 5)
343ms

10x10
168ms

5x5
1503ms

10 (1, 9)
292ms

10x10
166ms

9x9
614ms

5 (1, 2, 2)
156ms

4x7
94ms

2x5
676ms

9 (3, 3, 3)
151ms

6x9
141ms

3x9
2194ms

9 (1, 4, 4)
292ms

8x15
268ms

4x9
1900ms

9 (1, 1, 7)
396ms

8x15
244ms

7x14
1132ms

15 (5, 5, 5)
281ms

10x15
332ms

5x15
5516ms

15 (1, 7, 7)
647ms

14x27
782ms

7x15
4663ms

15 (1, 1, 13)
1477ms

14x27
657ms

13x26
2810ms

Table 2.1: Computation time in milliseconds of a µ-basis and two
typical implicit matrix representations built from the µ-basis.

In the Table 2.2, we assume that a µ-basis is unknown and then compare the
computation time of the matrix Md−1, which does not require the computation of a
µ-basis, with the computation time of the matrix MQµn−1 via our two algorithms,
for which a µ-basis is computed. As expected, the faster matrix to compute is Md−1.
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Degree d and
degrees (µi)i

Md−1 MQker MQSyl

5 (2, 3) 74ms 305ms 431ms

10 (5, 5) 226ms 409ms 1113ms

10 (1, 9) 187ms 1055ms 614ms

5 (1, 2, 2) 120ms 319ms 663ms

9 (3, 3, 3) 312ms 458ms 1914ms

9 (1, 4, 4) 384ms 987ms 1912ms

9 (1, 1, 7) 304ms 2815ms 1150ms

15 (5, 5, 5) 931ms 1358ms 5989ms

15 (1, 7, 7) 701ms 2311ms 4363ms

15 (1, 1, 13) 946ms 8947ms 2526ms

Table 2.2: Comparison of the computation time to build the matrix
Md−1 with the computation times of the two algorithms corresponding
to build the moving quadric matrices either from kernel computation

or by instantiation of Sylvester forms.

In summary, it appears that the new matrix MQµn−1 is not easier to build com-
pared to the other matrices that are already known, but their computation time
remains acceptable. It turns out that these implicit matrix representations are only
computed once for a curve and is then stored. So in the end, the computation of
the matrix itself is not the most important feature, what is the most important is
the efficiency of a matrix when one computes intensively on the curve with it. In the
next paragraph, we illustrate this property with the point/curve intersection prob-
lem, i.e. by testing whether a given point belongs to the curve. As we will see, for
this use the matrices of moving quadrics we introduce behave much better than the
previously known matrices.

2.4.2 The drop-of-rank property

What makes the matrices MQν , ν > µn − 1, implicit representations is the drop-of-
rank property : evaluated at a point p, their rank drops, more precisely their rows are
linearly dependent, if and only if the point p is on the curve. This property gives a
very efficient method to decide whether a point belongs to a curve or not.

In Table 2.3, we compare the computation time for testing if a point belongs to
a curve by means of the two moving hyperplanes matrices, Md−1 which is computed
without µ-basis and Mµn+µn−1−1 that requires the computation of a µ-basis, and
by means of the smallest matrix of moving hyperplanes and quadrics we obtained,
namely MQµn−1. In all cases we tested, whatever the repartition of the degrees µi of
the µ-basis, this matrix MQµn−1 was always more efficient.



36 Chapter 2. Curve implicitization

Degree d and
degrees (µi)i

Md−1 Mµn+µn−1−1 MQµn − 1

5 (2, 3) 54ms 54ms 22ms

10 (5, 5) 230ms 230ms 62ms

10 (1, 9) 230ms 230ms 121ms

5 (1, 2, 2) 105ms 61ms 22ms

9 (3, 3, 3) 353ms 125ms 59ms

9 (1, 4, 4) 393ms 267ms 78ms

9 (1, 1, 7) 362ms 256ms 171ms

15 (5, 5, 5) 1139ms 377ms 167ms

15 (1, 7, 7) 1127ms 929ms 199ms

15 (1, 1, 13) 1086ms 894ms 534ms

Table 2.3: Average time over a hundred random points for testing if
a point belongs to the curve.

We notice that deciding whether a point in space belongs to a parameterized curve
can be done via a greatest common divisor (GCD) computation once a µ-basis is
known. Indeed, let p1, p2, p3 be a µ-basis of a curve parameterization, let q be a point
in space and denote by pi(q) the evaluation of pi at the point q. Then, the GCD of the
three homogeneous polynomials p1(q), p2(q) and p3(q) is a homogeneous polynomial
in the variables s, t whose degree is equal to the multiplicity of the point q with respect
to the curve, in particular this degree is nonzero if and only if the point q belongs to
the curve [82, Theorem 6.4]. However, this method requires exact computations and
hence it does not allow to deal with approximate input data. In addition, the use of
exact computations makes the computation time strongly dependent on the choice of
the point q. To be more concrete, we applied this method to the case of the degree
9 curve with µ-basis of type (3, 3, 3) that is used in Table 2.3. The points are chosen
on the curve with five significant digits and are cast to rational numbers for the GCD
computation. We observed an average time over a hundred random points of 66s
and especially a very high standard deviation of 67s (with a minimum of 15ms and
a maximum computation time of 176s). When the matrix MQ2 is used we observe a
standard deviation of 7ms, showing a computation time which is almost independent
of the point q. This difference is mostly due to the fact that the matrices of moving
hyperplanes and moving quadrics allow to rely on numerical linear algebra tools and
are thus capable to deal with approximate data and computations.

Later in Example 2.6.2, we illustrate that given a point p ∈ C, not only the rank
of MQν(p), ν > µn − 1, drops but also its cokernel (left nullspace) allows to recover
all the parameters (s0 : t0) ∈ P1 such that Φ(s0, t0) = p, following the approach
developed in [18, 16] with the matrices of moving hyperplanes.

2.5 Complexity estimation in terms of height

In order to estimate the complexity for our computations, in what follows a canonical
height bound of the terms which appear in the matrix MQν , is described in terms
of maximum height of the fi’s. We recall that matrix Mν of moving hyperplanes
at degree ν is computed as the null space of a linear system. Accordingly, we first
provide a height bound for an intermediate matrix Sν , of which null space is Mν ,
and for the null space of a given matrix based on Hermit Normal Form are described.
This section assumes the notation of §1.8.
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Suppose given an affine curve parameterization over the field of rational numbers

ϕ : A1
Cv → AmCv

s 7→
(
f1(s)

f0(s)
, . . . ,

fm(s)

f0(s)

)
, (2.13)

where the fi’s are the polynomials in s of degree d over Cv.

One can compute Mν as a null space of a linear system. Consider the matrix Sν as
an intermediate coefficient matrix of size (d+ν+1)× (m+1)(ν+1) matrix such that
its columns correspond to the polynomials fis

ν−j for 1 6 i 6 m with 0 6 j 6 ν and
its rows correspond to the monomial basis of degree d+ ν, b := {sd+ν , sd+ν−1, . . . , 1}.
Let hv(f) := max06i6m{0, hv(fi)} where v is either prime number p or ∞. Then, by
construction of Sν , it is clear that the height of the matrix Sν is

hv(Sν) = hv(f).

The matrix Sν is not a square matrix in general, it is square only for m = 1, it has
number of the columns, denoted by cν , greater and equal to the number of the rows,
denoted by rν . In order to follow the steps of kernel computation we consider Hermit
normal form over Z, denoted by HNF (see for instance [27, §2.4.2] or [68, Chapter 2,
§6]).

Definition 2.5.1 ([27, Definition 2.4.2.]). Let k be a field. A polynomial matrix
H ∈ Mm×n(k[s]) with m 6 n is in Hermit normal form, if there exist indices 1 6
j1 6 · · · 6 jm 6 n verifying

• H is an upper triangular form, i.e. hi,j = 0 for 1 6 j < ji and 1 6 i 6 r,

• hi,ji is monic for 1 6 i 6 m,

• in each column deg(hk,ji) < deg(hi,ji) for 1 6 k < i 6 m.

Proposition 2.5.1 ([27, Proposition 2.4.9]). Let A ∈ Mm×n(Z), B be its HNF of
form B = AU with U ∈ GLn(Z), and r be the first r zero columns of B. Then, a
Z-basis for the kernel of A is given by the first r columns of U .

Let’s write the matrix Sν in form of two submatrices S1 ∈ Mrν×rν (Cv) and
S2 ∈ Mrν×cν−rν (Cv) such that Sν = (S1|S2) and S1 is full rank. Then, the ad-
joint (adjugate) matrix of S1, denoted by adj(S1), is the transpose of the cofactor
matrix of S1. Consider the matrix U ,

U :=



0 · · · 0

adjS1
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
... Idcν−rν

0 · · · 0


,



38 Chapter 2. Curve implicitization

where Idcν−rν stands for (cν − rν × cν − rν) identity matrix. Then, we have

SνU = (S1|S2)U

=



detS1 0 0 · · · 0 0 · · · · · · 0

0 detS1 0 · · ·
...

...
. . .

...
...

. . .
. . . 0

...
. . .

...
0 · · · 0 detS1 0 · · · · · · 0

0 · · · 0
...

. . .
... K

0 · · · 0


,

where last cν − rν columns form a basis for the null space of Sν by the Proposition
2.5.1.

In order to give a bound for the height the matrix U , we need to give a bound for
the height of the matrix adjS1, which is bounded by the maximum height of ν × ν
minors of Sν . Since a minor of a matrix is just a determinant of one of its submatrices,
we start by studying the height of the determinant of any given matrix.

Proposition 2.5.2. Let M = (mij)16i,j6n ∈Mn×n(Cv) be a full rank matrix of which
all terms have the height less than given h. Let v denote either ∞ or prime number
p. The height of the determinant of M is bounded by

hv(det(M)) 6 max{0, log(n!hn).

Proof. Recall Leibniz formula

det(M) =
∑
σ∈Sn

(sign(σi)
n∏
i=1

mi,σi),

where Sn is symmetric group of degree n, mi,σi ∈ M and sign denotes the sign
function of permutation in Sn. Thus, one can compute a bound for the height where
v ∈ {∞, p : p is prime} as follows

hv(det(M)) = hv(
∑
σ∈Sn

(sign(σi)
n∏
i=1

mi,σi))

6 max{0, log(
∑
σ∈Sn

|
∏n
i=1miσi |v)}

6 max{0, log(
∑
σ∈Sn

∏n
i=1 |miσi |v)}

6 max{0, log(
∑
σ∈Sn

hn}

6 max{0, log(n!hn).

.

Corollary 2.5.1. Let M ∈Mn×n(Cv) be an invertible matrix of which all terms have
the height less than given h. Let v denote either ∞ or prime number p. The height
of the adjoint (adjugate) matrix of M , denoted by adj(M), is bounded by

hv(adj(M)) 6 max{0, log((n− 1)!hn−1)}.
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It remains to find a bound for multiplication of matrices to give a bound for the
null space of Sν based on Hermit normal form as in Proposition 2.5.1.

Proposition 2.5.3. Let A = (aij)16i6m
16j6n

∈Mm×n(Cv) of height h1v and B = (bij)16i6n
16j6r

∈

Mn×r(Cv) of height h2v , and let v denote either ∞ or prime number p. Then, the
height of AB ∈Mm×r(Cv) has the following upper bound

hv(AB) 6 max{0, log(nh1vh2v)}.

Proof. We have

hv(
n∑
i=1

aijbjk) = max{0, log(|
n∑
i=1

aijbjk|v)}

6 max{0, log(
n∑
i=1
|aijbjk|v)}

6 max{0, log(
n∑
i=1
|aij |v|bjk|v)}

6 max{0, log(nh1vh2v)}.

Corollary 2.5.2. Let v denote either∞ or prime number p, hv := hv(Sν). The height
of the matrix SνU , and the height of the null space of Sν are bounded as follows

hv(SνU) 6 max{0, rνhvlog((rν − 1)!hrν−1
v )}.

Proof. It is direct consequence of Proposition 2.5.3 and Corollary 2.5.1.

The ker(SνU) corresponding to the parameterization ϕ in (2.5), consists of m+ 1
blocks of matrices Mi for 0 6 i 6 m having ν+1 rows. The matrix which corresponds
to an implicit representation of the curve defined by the image of ϕ is of the form

M(ϕ)ν(x1, . . . , xm) = M0 + x1M1 + x2M2 + . . .+ xmMm (2.14)

where Cv[x1, . . . , xm] is the coordinate ring of AmCv .

Proposition 2.5.4. The height of implicit matrix representation of the curve in
AmCv given by the parameterization ϕ at degree ν, M(ϕ)ν is bounded by hv(M(ϕ)ν) 6
hv(SνU) where v is either prime number p or ∞.

Proof. Since M(ϕ)ν(x1, . . . , xm) is in the form (2.14) and the matrices Mi for i =
0, . . .m are coefficient matrices, the entries of Mν are the linear polynomials in xi’s for
i = 1, . . . ,m. By definition of height of a polynomial, the height M(ϕ)ν(x1, . . . , xm)
is bounded by the height of max06i6n{hv(Mi)}, where v denotes either ∞ or a given
prime number p. Hence it is also bounded by the height of SνU .

In what follows in order to give a bound for the matrix MQν , we will give a bound
for the height of Sylvester forms of µ-basis p1, . . . , pm of the ideal I := (f0, . . . , fm)
such that deg(pi) = µi for i = 1, . . . ,m. We assume that µ1 6 · · · 6 µm. We
recall that MQν contains also columns coming from Mν . However, since height is
non-negative by definition, the height of MQν is bounded by the height of Sylvester
forms.
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Proposition 2.5.5. The height of MQν for all µm−1 6 ν 6 µm+µm−1−1 is bounded
by the maximum height of sylvester forms of degree vij = µi+µj−µm−1 6 0, denoted
by hv(syl), where v denotes either ∞ or prime number p. Then,

hv(MQν) 6 max{0, log(2hv(Sµm+µm−1−1U))}.

Proof. The proof is immediate using Proposition 2.5.3 and the structure of sylvester
forms defined in §2.2.2, more precisely determinant of two-by-two matrices obtained
via corresponding µ-basis. In order to find an upper bound for µ-basis we used
an upper bound for Mµm+µm−1−1 using hv(Sµm+µm−1−1U) (see Proposition 2.1.6).
Also, hv(MQν)) 6 hv(MQµm+µm−1−1) for all µm − 1 6 ν 6 µm + µm−1 − 1, since
MQµm+µm−1−1 is the biggest possible.

2.5.1 Experiments on height computation

I considered random 15 × 15 matrices of coefficients over Z having standard abso-
lute value of around 360 digits. The experiments over 100 examples showed that the
bounds for the standard height of the determinant in Proposition 2.5.2, for the stan-
dard height of the multiplication of two such matrices in Proposition 2.5.3 and for the
standard height of the multiplication of a matrix with its adjoint in Corollary 2.5.2
are sharp. More precisely, the ratio of the standard height bound for determinant for-
mula by the standard height of the determinant by computation is 1.06211687282368
over 100 examples. Similarly, the ratio of the standard height bound for the multi-
plication of two such matrices by the standard height of the multiplication matrix is
1.00258054192892 over 100 examples.

With the similar matrices, the ratio of the standard height bound for the multi-
plication of a matrix with its adjoint by the standard height of their multiplication is
1.02168229040873 over 100 examples. For the reason of the computation time, I did
not consider the matrices of size more then 15× 15.

Lastly, in order to validate Corollary 2.5.2, I considered 100 random curve pa-
rameterizations of degree 6 in three-dimensional space given by random polynomials
having standard absolute value of around 360 digits. Then, the ratio of the standard
height bound for SνU in Corollay 2.5.2 by standard height of Sν is 1.10820622054175
over 100 examples. We can see that it is slightly more than for general matrices (
which is 1.02168229040873 for a matrix having the same number of columns as Sν
under consideration.) as we have previously explained. It is because Sν consists of 4
blocks of Sylvester matrix. Moreover, in this section we used Hermit normal form in
order to give a bound for the null space of a given matrix, which is eventually bigger
than what the height of the null space of Sν via SageMath command of kernel, for
which the ratio is 9.03771875205243 over 100 examples.

2.6 Applications

We emphasize that all the applications that are discussed in [16] with the matrices of
moving hyperplanes also apply with our extended family of matrices MQ built with
moving hyperplanes and moving quadrics. For instance, the curve/curve intersection
problem and the computation of the self-intersection locus of a parameterized curve,
computation of multiplicity of singular points on a parameterized curve can be solved
with these new matrices following essentially the same algorithms; we refer the reader
to [16] for more details. We also give an equivalent distance notion for distance from
a point to a parameterized curve in terms of MQ.
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2.6.1 Curve/curve intersection

Let’s consider two rational algebraic curves given by parameterizations Φ1 and Φ2

defined by polynomials of degree d1 and d2 respectively. Let’s assume that a µ-
basis of the ideal generated by the coordinates of Φ1 is of degrees (µ1, µ2, µ3) with
µ1 6 µ2 6 µ3. In order to compute the intersection of C1 and C2, we substitute
the parameterization Φ2 into MQµ3−1(Φ1). Let’s denote this substitution matrix as
MQµ3−1(Φ1; Φ2). Since MQµ3−1(Φ1) has entries both linear and quadratic, the entries
of MQµ3−1(Φ1; Φ2) are of degree at most 2× d2. Moreover, by Proposition 2.2.1 and
equation (2.7), the matrix MQµ3−1(Φ1) has max(0, µ1 +µ2−µ3) +µ1 +µ2 quadratic
columns and 2µ3− µ1− µ2 linear columns, hence in total max(0, µ1 + µ2− µ3) + 2µ3

columns (see Definition 2.2.2). In addition, for a degree d general curve in three
dimensional space, i.e. µi ≈ d

3 for i = 1, 2, 3, the corresponding MQµ3−1 has almost
d columns.

Let us recall companion matrices of a given r × c polynomial matrix M whose
entries are at most degree d in k[s, t]. We can write a polynomial in k[s, t] with matrix
coefficients of size r × c, such that

M(s, t) = Mds
d +Md−1s

d−1t+ · · ·+M0t
d,

where Mi is a matrix of coefficients in k of the same size as M for all i = 0, . . . , d.
Let Id denotes the d× d identity matrix. Then, we the following matrices are called
companion matrices of M

0 Id · · · 0
...

. . .
. . .

...
0 · · · 0 Id
MT

0 MT
1 · · · MT

d−1

 ,

Id 0 · · · 0

0
. . .

. . .
...

...
. . . Id 0

0 · · · 0 −MT
d

 .
Then the companion matrices of MQµ3−1(Φ1; Φ2) are of size µ3 ×max(0, µ1 + µ2 −
µ3) + 2µ3.

One may consider two companion matrices of MQµ3−1(Φ1; Φ2) which are not
square matrices (see for instance [16]). We use Kronecker form in order to reduce
the companion matrices into the smallest full rank square matrices (see [63]). We
call these reduced forms as regular part of the companion matrices. Also, we recall
that MQµ3−1 has always less or equal number of columns than Mµ3+µ2−1 (see for
instance 2.1). Then, the companion matrices of the smallest matrix representations
MQµ3−1 and Mµ3+µ2−1 have d2 ·µ3 and d2(µ2 +µ3) rows respectively. The bigger the
difference between µ2 and µ3 we have, the smallest pencil of companion matrices we
need to consider by using MQµ3−1 which is almost the half size of the pencil of com-
panion matrices obtained via Mµ3+µ2−1. Then generalized eigenvalues computation
of pencil of reduced companion matrices allow us to compute the parameter value
of the intersection of C1 and C2. We call the procedure of computing the parameter
values from a matrix representation the inversion process. Here, we discussed in a
three dimensional space, however it is also true for higher dimensions.

Example 2.6.1. Let us consider the rational curve C1 given in Example 2.3.1 and
denote its parameterization as Φ1, and the twisted cubic which is parameterized by
the rational map

Φ2(s, t) 7→ (s3 : s2t : st2 : t3),
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where µ-basis of ideal I = (s3, s2t, st2, t3) are in degrees µ1 = µ2 = µ3 = 2. We
compute MQν(Φ1) for ν = µ3 − 1 = 2− 1 = 1.

MQ1(Φ1) =(
x0x1 − 1

10x
2
1 + 9

10x
2
2 + 3

5x0x3 − 9
2x1x3 − 9

4x2x3

− 3
10x

2
1 + 27

10x
2
2 − 9

10x0x3 − 3
2x1x3 − 9

5x2x3

1
10x

2
1 − 9

10x
2
2 + 9

10x0x3 + 6
5x1x3 x0x2 − 1

2x1x3

x0x1 − 1
5x

2
1 + 9

5x
2
2 − 21

10x0x3 − 9
4x1x3 − 9

20x2x3 −1
2x0x3 − 1

2x1x3

1
2x0x3 x1x2 + 3x2

2 − 3x2x3 − 3x2x3 −1
2x1x3 − 3

2x2x3

x0x2 − 3
2x0x3 − 1

2x1x3
3
2x1x3 − 3

2x2x3 x1x2 + 3x2
2 − 5

2x1x3 − 3
2x2x3

)
.

is a 2 × 6 matrix of rank having both linear and quadratic entries in x, y, z, w. This
example is taken from [16, Example 24]. In order to compute the intersection of C1

and C2, we substitute the parameterization Φ2 into MQ1(Φ1), i.e. we substitute x =
s3, y = s2t, z = st2, w = t3 into MQ1(Φ1). Then, the substitution matrix MQ1(Φ1; Φ2)
has entries of degree 2 × 3 = 6, where 2 is coming from the fact that MQ1(Φ) has
quadratic entries, and 3 is the degree of the polynomials defining the parameterization
Φ2. The companion matrices of MQ1(Φ1; Φ2) are of size 6 × 36. One may also
consider the substitution matrix obtained only by the moving hyperplanes following
Φ1 for ν = 3, denote it as M3(Φ1). In this case according to [16, Example 24] the
companion matrices of M3(Φ1; Φ2) of size 12× 18, before Kronecker reduction.

2.6.2 Multiplicity of singular points and inversion

Let C be a rational algebraic curve in P3
k given by the parameterization Φ. Let µi be

the degrees of a µ-basis of ideal generated by the coordinates of Φ. With the previous
notation, for a point p ∈ P3

k, one may use MQν such that ν > µ3 − 1 in order to
compute the multiplicity of p on C. This computation is quicker than dealing with
the matrix of hyperplanes Mµ3+µ2−1, see Table 2.1.

Theorem 2.6.1 ([16, Theorem 13]). Given a point p ∈ P3
k. Let’s denote the multi-

plicity of p on C by mp(C). Then for all integer ν > µn − 1, we have

rank(MQν(p)) = ν + 1−mp(C),

or equivalently the drop-of-rank at p is equal to mp(C).

Let us take ν = µn − 1. If rank(MQν(p)) = µn − 1, then the curve C passes
once through the point p whose pre-image can be computed by using the suitable
proportion in the basis in which MQν is constructed. For instance, if we consider
MQν in monomial basis {sν , sν−1t, . . . , tν}, then the proportion of first two terms of
coker(MQν) gives us s

t coordinate of p. If rank(MQν(p)) 6 µn − 2, then the curve C
passes more than once through the point p and we need to do generalized eigenvalues
computation by considering again similar proportions as in the case where C passes
through the point p only once. We refer the reader for instance to [18, §3.3] for further
details about inversion.
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Example 2.6.2. Consider the lemniscate-like space curve C given by

F0(s, t) = (t2 + s2)(t4 + s2),

F1(s, t) = t(t2 − s2)2,

F2(s, t) = t(t4 − s4),

F3(s, t) = 3s4 + t4.

This curve has a self-intersection point at p := (1 : 0 : 0 : 1). The matrix of moving
quadrics MQ2 is of size 3× 6 and, when evaluated at p, has a cokernel given by

v1 = (v1,1, v1,2, v1,3) = (1, 0, 1)

and
v2 = (v2,1, v2,2, v2,3) = (0, 1, 0).

None of these vectors are of the form v = (s2, st, t2) but they are linear combinations
of the two vectors corresponding to the evaluation of the form v at the two pre-images
parameters of p. Therefore, to retrieve these two pre-images one can solve the eigen-
value problem

rank(t∆0 − s∆1) < 2

where

∆0 =

(
v1,1 v1,2

v2,1 v2,2

)
, ∆1 =

(
v1,2 v1,3

v2,2 v2,3

)
.

We deduce that the pre-images of p correspond to the parameters (s0 : t0) = (1 : 1)
and (s1 : t1) = (1 : −1).

Finally, we notice that the matrix MQ1 is of size 2× 6 and satisfies to the drop-
of-rank property. Its rank drops by 2 after evaluation at p, thus it is equal to the null
matrix when evaluated at p. Therefore, in this case the matrix is too small to allow
the inversion of a multiple point and hence it is necessary to increase the degree ν by
one. In general a matrix MQν allows to invert points having at most ν pre-images.

The curve C has a self-intersection at the point p := (1, 0, 0, 1). The matrix
MQ1(Φ) is of size 1 × 6 The rank of MQ1(Φ)(1 : 0 : 0 : 1) drops 2. Hence, C passes
twice through p, i.e. mp(C) = 2.

2.6.3 Singular factors

Given an algebraic rational curve in Pnk with a parameterization Φ. We compute the
matrix representation MQµn−1(Φ). Then substitute the parameterization of Φ into
MQµn−1(Φ). Let’s denote this substitution matrix as MQΦ. Then for all points on
C, MQΦ verifies the drop-of-rank property. According to the results in [18, §5.2], we
can write the singular factors of the parameterization Φ, using the Smith form of
MQΦ(s, 1) and MQΦ(1, t) as follows.

Example 2.6.3 ([18, Example 23]). Let consider the curve C given with the param-
eterization

Φ(s : t) 7→ (s5 : s3t2 : s2t3 : t5).

The µ-basis of I = (s5, s3t2, s2t3, t5) has µ1 = 1, µ2 = 2, µ3 = 2. Then,

MQ1(Φ) =

[
−x2

2 −x2
1 −x1x2 + x0x3 −x2

2 x1x3

x1 x0x2 0 x0x3 −x2
2

]
.
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Then we substitute the parameterization Φ into MQ1(Φ), and we obtain[
−s2t3 −s6t4 0 −s4t6 s3t7

s3t2 s7t3 0 s5t5 −s4t6

]
The Smith form of MQ1(Φ)(s : 1) and MQ1(Φ)(1 : t) are respectively[

s2 0 0 0 0
0 0 0 0 0

] [
t2 0 0 0 0
0 0 0 0 0

]
.

Then the singular factors of C is given by s2t2 and C has two singular points (0 : 0 :
0 : 1) and (1 : 0 : 0 : 0) of multiplicity 2. Since we have almost half size implicit
matrix than in [18, Example 23], we need to deal with half size Smith forms.

2.6.4 Distance function

We have mentioned that the implicitization of parameterized space curves is much
more delicate since a space curve is not given by a single equation in C. However we
can give a single implicit equation defining the curve over field of real numbers (see
[18, §11]). For this reason, we will define the real evaluation function of MQν and in
the sequel we will follow the notation of [18]. Consider a space curve C given by a
parameterization Φ.

Definition 2.6.1 ([18, Definition 2]). To any point p ∈ R3, we associate the real
evaluation function of MQν , ν ∈ N

δMQν : R3 → R>0

p 7→ δMQν (p) :=
∏ν+1
i=1 σi(MQν(p)),

where σi(MQν(p))’s are the singular values of MQν(p).

Since, the singular values are non-negative and the rank of a matrix is the positive
integer i giving the maximum nonzero singular value of the given matrix, we have

δMQν (p) = 0⇐⇒p ∈ Im(Φ).

Thus, the real evaluation function behaves like a distance function between the point
p and the curve C. Now we will define the square of the real evaluation function which
yields a real implicit equation defining Im(Φ) (see [18, §4.3]). Consider,

δMQν (p)2 =
ν+1∏
i=1

σi(MQν(p))2 = det(MQν(p)MQν(p)T ).

Here, we remark that MQν(p)MQν(p)T is a real valued square matrix.

Theorem 2.6.2 ([18, Theorem 1]). The real algebraic set

{(x, y, z) ∈ R3 : δMQν (x, y, z) = 0} ∈ R3

is a degree 2(ν + 1) real implicit equation of the curve C.

With respect to the smallest matrix representations MQµ3−1 and Mµ3+µ2−1, we
can write degree 2 · µ3 and respectively degree µ2 + µ3 real implicit equations. For
a general space curve, these two equations are almost the same degree. However, as
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much as the difference between µ2 and µ3 increases then the degree of δMQµ3−1 is
much bigger then the degree of δMµ3+µ2−1 .

By [18, Theorem 2 in §4.4], more precisely using  Lojasiewicz inequality we can
show that the square of real evaluation function behaves similar to a distance function.
Hence, it defines an equivalent distance to Euclidean distance.

In the sequel of this thesis mainly the distance problem is studied. More precisely,
in the next chapter, a new algebraic method to compute the Euclidean distance be-
tween a point and a rational algebraic surface in three dimensional space is introduced.
For that purpose, similar implicit matrices built from some certain syzygies will be
used.
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CHAPTER 3

Rational maps in three dimensional space

Figure 1. Orthogonal projections of a point onto a bi-quadratic rational tensor-product Bézier surface

patch.

Algebraic methods to orthogonally project points onto rational algebraic surfaces
already appeared in the literature [38, 62], including by means of congruence of normal
lines [78, 76], but they are facing computational efficiency problems very quickly as
the defining degree of surface parameterizations is increasing, because of the intrinsic
complexity of the problem. A good measure of this complexity is provided by the
Euclidean distance degree introduced in [38] (see also [54]); for instance, in general
a point has 94 orthogonal projections onto a rational bi-cubic surface (a surface in
P3 parameterized over P1 × P1 by bi-homogeneous polynomials of bi-degree (3, 3)).
In order to push these limits, this chapter introduces a preprocessing step in which
an elimination matrix dedicated to a given rational surface, and depending linearly
in the space coordinates, is generated. The effective computation of the orthogonal
projections of a point p on this surface is then highly accelerated in comparison to
other methods without preprocessing step ([78]), since it consists in the instantiation
of this elimination matrix at p and the use of fast and robust numerical linear algebra
methods, such as singular value decompositions, eigenvalue and eigenvector numerical
calculations.

The methodology we develop in this chapter is based on matrix representations
of rational maps and their fibers. These representations have already been studied in
various settings, see e.g. [3, 75, 2, 5, 16, 4, 13, 12, 73]. Roughly, they correspond to
a presentation matrix of certain graded slices of the symmetric algebra of the ideal
I generated by the defining equations of the map under consideration. The determi-
nation of the appropriate graded slices is the main difficulty in this approach and it
requires a thorough analysis of the syzygy modules of I. In this chapter, guided by
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our application to orthogonal projection onto rational surfaces, we consider trivari-
ate maps whose source space is equal to P2 × P1, a bi-graded algebraic structure, or
P1 × P1 × P1, a tri-graded algebraic structure. In addition we also need to consider
maps that have a one-dimensional base locus, because general congruences of normal
lines to rational surfaces have positive dimensional base loci. This latter requirement
is definitely the more challenging one. To the best of our knowledge, only [23] studied
rational maps with one-dimensional base locus, and all the previous published re-
lated works considered multi-graded rational maps with a base locus of dimension at
most zero, i.e. the base locus consists in finitely many points or is empty. The main
results are Theorem 3.2.1 and Theorem 3.2.2. They provide the expected matrix
representations under some assumptions on the curve component of the base locus,
namely either being globally generated by three linear combinations of the four defin-
ing equations of I up to saturation, or either being a complete intersection. Coming
back to our application, these theorems provide the theoretical foundations of a new
methodology for computing orthogonal projections onto a rational algebraic surface.

This chapter is organized as follows. In Section 3.1 we introduce congruences of
normal lines to a rational surface, provide corresponding Macaulay2 code, give some
examples and explain why it is useful for computing orthogonal projections of points.
Then, in Section 3.2 the matrix representations of these congruences of normal lines
are defined and the main results are stated. Their proof requires a fine analysis of the
vanishing of certain local cohomology modules which is presented in Section 3.3. In
Section 3.4 we give some technical results on global sections of curves in a product of
projective spaces in order to shed light on some assumptions that appear in Theorem
3.2.1 and Theorem 3.2.2. Finally, Section 3.5 is devoted to the description of an
algorithm for computing the orthogonal projections of a point onto a rational surface
which is parameterized by either P2 (triangular surface) or P1 × P1 (tensor-product
surface).

Lastly, this worked has been accepted for publication in SIAM Journal on Applied
Algebra and Geometry, and preprint can be found at https://arxiv.org/abs/1903.
08107v2.

3.1 Congruence of normal lines to a rational surface

In this section, we introduce congruences of normal lines to a rational surface S,
i.e. parameterizations of the 2-dimensional family of normal lines to S. Given a point
p in space, it allows us to translate the computation of the orthogonal projections of
p onto S as the computation of the pre-images of p via these congruences. In order
to use algebraic methods, in particular elimination techniques, we first describe the
homogenization of these congruence maps, as well as their base loci, for two classes
of rational surfaces that are widely used in CAGD: triangular and tensor-product
rational surfaces.

3.1.1 Congruences of normal lines

We assume that we are given the following affine parameterization of a rational surface
S in the three dimensional space

φ : R2 99K R3

(u, v) 7→
(
f1(u, v)

f0(u, v)
,
f2(u, v)

f0(u, v)
,
f3(u, v)

f0(u, v)

)
, (3.1)

https://arxiv.org/abs/1903.08107v2
https://arxiv.org/abs/1903.08107v2
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where f0, f1, f2, f3 are polynomials in the variables u, v. At each nonsingular point p
on S one can define a normal line which is the line through p spanned by a normal
vector ∇(p) to the tangent plane to S at p. The congruence of normal lines to S is
then the rational map

ψ : R3 99K R3

(u, v, t) 7→ φ(u, v) + t∇(φ(u, v)). (3.2)

If the parameterization φ is given, then there are many ways to formulate explicitly
the above parameterization, depending on the choice of the expression of ∇(φ(u, v)).
The more commonly used one is the cross product of the two vectors ∂φ

∂u and ∂φ
∂v that

are linearly independent at almost all points in the image of φ. Thus, we get

ψ(u, v, t) = φ(u, v) + t · ∂φ
∂u
∧ ∂φ
∂v

(u, v).

Nevertheless, with the following example we emphasize that depending on φ, a more
specific and simple (for instance in terms of degree) expression of ψ may be used.

Example 3.1.1. The unit sphere can be parameterized by

φ(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
.

Since φ(u, v) is also a normal vector to the unit sphere at the point φ(u, v), a simpler
expression than (3.2) for the congruence of normal lines is

ψ(u, v, t) = tφ(u, v).

The main interest of the congruence of normal lines is that it allows to translate
the computation of orthogonal projection onto the surface S as an inversion problem.
More precisely, given a point p ∈ R3, its orthogonal projection on S can be obtained
from its pre-images via ψ. Indeed, if φ(u0, v0) is an orthogonal projection of p on S for
some parameters (u0, v0) ∈ R2, then that means that p belongs to the normal line to
S at the point φ(u0, v0). Therefore, there exists t0 such that the point (u0, v0, t0) ∈ R3

is a pre-image of p via ψ.

In general, the computation of the orthogonal projections of a point onto a rational
surface is a difficult and computationally expensive task. A measure of its complexity
is given by the expected number of orthogonal projections of a general point p. This
number is called the Euclidean distance degree of the surface; it has been introduced
and carefully studied in [38] (see also [54]). In Table 3.1 the Euclidean distance degree
of surfaces we consider in this chapter are recalled.

3.1.2 Homogenization to projective spaces

The geometric approach we propose for computing orthogonal projections of points
onto a rational surface via the“fibers”of the corresponding congruence of normal lines
relies on algebraic methods that require to work in an homogeneous setting. Thus, it
is necessary to homogenize the parameterizations φ and ψ defined by (3.1) and (3.2)
respectively.

Regarding the homogenization of the map φ, the canonical choice is to homogenize
its source to the projective plane P2, but there are other possible choices depending
on the support of the polynomial fi. We focus on the two main classes of rational
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surfaces that are used in Computer-Aided Geometric Design (CAGD). The first class
is called the class of rational triangular surfaces. It corresponds to polynomials of the
form

fk(u, v) =
∑

06i,j6d
06i+j6d

ck,i,ju
ivj , k = 0, . . . , 3

where d is a given positive integer, the degree of the polynomials fk(u, v). The
canonical homogenization of the map φ is then of the form

Φ : P2 99K P3

(w : u : v) 7→ (F0 : F1 : F2 : F3)

where the Fi’s are homogeneous polynomials in R[u, v, w] of degree d. If F0 = wd,
equivalently if f0(u, v) = 1 in (3.1), then one speaks of non-rational triangular sur-
faces. This terminology refers to the fact that in this case the parameterization φ is
defined by polynomials and not by rational functions as in the general case.

The second class of rational surfaces is called the class of rational tensor-product
surfaces. It corresponds to polynomials of the form

fk(u, v) =
∑

06i6d1, 06i6d2

ck,i,ju
ivj , k = 0, . . . , 3

where (d1, d2) is a couple of positive integers, the bi-degree of the polynomials fk(u, v).
In this case, the canonical homogenization of the map φ is of the form

Φ : P1 × P1 99K P3

(u : u)× (v : v) 7→ (F0 : F1 : F2 : F3)

where the Fi’s are here bi-homogeneous polynomials in R[u, u; v, v] of bi-degree (d1, d2).
If F0 = ud1vd2 , equivalently if f0(u, v) = 1 in (3.1), then one speaks of non-rational
tensor-product surfaces.

From now on we set the following notation. The map Φ is a rational map from
the projective variety X to P3, where X stands either for either P2 or P1×P1. Thus,
when we use the notion of degree over X, it has to be understood with respect to
these two possibilities, i.e. either the single grading of P2 or the bi-grading of P1×P1.
The homogeneous polynomials F0, F1, F2, F3 defining the map Φ are homogeneous
polynomials in the coordinate ring of X of degree d, this latter being either a positive
integer or a couple of positive integers, depending on X.

For the sake of completeness, we recall from [38] the Euclidean distance degree of
Φ In Table 3.1. As we already mentioned, it is closely related to our problem.

Triangular surface Tensor-product surface

Non-Rational (2d− 1)2 8d1d2 − 2(d1 + d2) + 1

Rational 7d2 − 9d+ 3 14d1d2 − 6(d1 + d2) + 4

Table 3.1: Euclidean distance degree of non-rational and ratio-
nal triangular surfaces of degree d > 1 and tensor-product surfaces

(d1, d2) > (1, 1), respectively.
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Once the choice of homogenization of Φ from X to P3 is done, it is natural to
homogenize ψ as a rational map from X × P1 to P3, which means geometrically that
the congruence of normal lines to the surface is seen as a family of projective lines
parameterized by X. This map is hence of the form

Ψ : X × P1 99K P3

ξ × (t : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) (3.3)

where the polynomials Ψi’s are bi-graded: they are graded with respect to X and to
P1. Observe that these polynomials are actually linear forms with respect to P1.

3.1.3 Explicit homogeneous parameterizations

To describe the rational map Ψ more explicitly, we need to consider projective tangent
planes to the surface S and projective lines that are orthogonal to them.

Let ξ ∈ X and p = Φ(ξ) be a smooth point on S ⊂ P3. An equation of the
projective tangent space to S at p, denoted TpS, can be obtained from the Jacobian
matrix of the polynomials F0, F1, F2, F3 (see [46, Chapter 14]). If X = P2, i.e. for
rational triangular surfaces, then this equation is given by∣∣∣∣∣∣∣∣

∂uF0 ∂uF1 ∂uF2 ∂uF3

∂vF0 ∂vF1 ∂vF2 ∂vF3

∂wF0 ∂wF1 ∂wF2 ∂wF3

x0 x1 x2 x3

∣∣∣∣∣∣∣∣ = x0∆0(ξ) + x1∆1(ξ) + x2∆2(ξ) + x3∆3(ξ) = 0.

Observe that the signed minors ∆i(u, v, w) are homogeneous polynomials of degree
D := 3(d − 1), as the Fi’s are supposed to be of degree d.Similarly, If X = P1 × P1,
i.e. for rational tensor-product surfaces, then an equation of TpS is given by the
vanishing of the determinant∣∣∣∣∣∣∣∣

∂uF0 ∂uF1 ∂uF2 ∂uF3

∂uF0 ∂uF1 ∂uF2 ∂uF3

∂vF0 ∂vF1 ∂vF2 ∂vF3

x0 x1 x2 x3

∣∣∣∣∣∣∣∣ = 0.

Compared to the previous case, there is here a redundancy because two Euler equal-
ities hold, one with respect to (u, u) and the other with respect to (v, v). Actually,
this redundancy implies that the above determinant vanishes if v = 0. Therefore, an
equation of TpS is given by the formula

∣∣∣∣∣∣∣∣
∂uF0 ∂uF1 ∂uF2 ∂uF3

∂uF0 ∂uF1 ∂uF2 ∂uF3

∂vF0 ∂vF1 ∂vF2 ∂vF3

x0 x1 x2 x3

∣∣∣∣∣∣∣∣ = v(x0∆0(ξ) + x1∆1(ξ) + x2∆2(ξ) + x3∆3(ξ)) = 0

where the signed (and reduced) minors ∆i(u, u; v, v) are bi-homogeneous polynomials
of bi-degree D := (3d1 − 2, 3d2 − 2).

Example 3.1.2. The following Macaulay2 code computes the signed minors of the
Jacobian matrix of the homogeneous polynomials F0, F1, F2, F3 of bidegree (d1, d2) in
P1 × P1 over the field of rational numbers.
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S=QQ[u,uu,v,vv,Degrees=>{{1,0},{1,0},{0,1},{0,1}}]

f=random(S^{{d1,d2}},S^{{0,0},{0,0},{0,0},{0,0}});\\

JMfull=jacobian f;

JM=JMfull^{0,1,2};

df0 = determinant(JM_{1,2,3}) // vv;

df1 = (-1)*determinant(JM_{0,2,3}) // vv;

df2 = determinant(JM_{0,1,3}) // vv;

df3 = (-1)*determinant(JM_{0,1,2}) // vv;

J = ideal (df0,df1,df2,df3);

Now, to characterize normal lines to S we use the following property.

Lemma 3.1.1. Let H be a hyperplane in P3 of equation a0x0 +a1x1 +a2x2 +a3x3 = 0
and L be a line in P3 that are not contained in the hyperplane at infinity V (x0) ⊂ P3.
Then, L is orthogonal to H, in the sense that their restrictions to the affine space
P3 \ V (x0) are orthogonal, if and only if the projective point (0 : a1 : a2 : a3) belongs
to L.

Proof. Let H1, H2 be two hyperplanes of equations
∑3

i=0 αixi = 0 and
∑3

i=0 βixi = 0
respectively, and suppose that their intersection is exactly the line L. After restriction
to the affine space P3 \ V (x0), we have that the direction of L is given by the cross
product of the two vectors (α1, α2, α3) and (β1, β2, β3). Therefore, we deduce that L
is orthogonal to H if and only if the vector (a1, a2, a3) is orthogonal to both vectors
(α1, α2, α3) and (β1, β2, β3), which precisely means that the projective point (0 : a1 :
a2 : a3) belongs to the hyperplanes H1 and H2, hence to L.

From the above property, we deduce that there are two points that belong to S,
namely the point Φ(x) = (F0(ξ) : F1(x) : F2(x) : F3(x)) and the point (0 : ∆1(x) :
∆2(x) : ∆3(x)). Therefore, we can derive explicit rational parameterizations of the
congruence of normal lines (3.3) as follows.

If X = P2 and d > 2, we get the following parameterization for the congruence of
normal lines of a triangular rational surface

Ψ : P2 × P1 99K P3

(w : u : v)× (t : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) (3.4)

where

Ψ0 = tw2d−3F0(u, v, w), Ψi = tw2d−3Fi(u, v, w) + t∆i(u, v, w), i = 1, 2, 3

are bi-homogeneous polynomials of bi-degree (3d− 3, 1) over P2 × P1.

If X = P1 × P1 and d1 > 1 and d2 > 1 we get the following parameterization for
the congruence of normal lines of a tensor-product rational surface

Ψ : P1 × P1 × P1 99K P3

(u : u)× (v : v)× (t : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) (3.5)

where

Ψ0 = tu2d1−2v2d2−2F0(u, u; v, v),

Ψi = tu2d1−2v2d2−2Fi(u, u; v, v) + t∆i(u, u; v, v), i = 1, 2, 3
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are tri-homogeneous polynomials of degree (3d1 − 2, 3d2 − 2, 1) over P1 × P1 × P1.

Example 3.1.3. The following Macaulay2 code computes the homogeneous pa-
rameterization of the congruence of normal lines to the given rational tensor-product
surface of bidegree (d1, d2) over Q, where J denotes the Jacobian matrix of the ho-
mogeneous polynomials F0, F1, F2, F3.

S=QQ[u,uu,v,vv,t,tt,Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},

{0,0,1},{0,0,1}}]

Psi0=tt*uu^(2*d1-2)*vv^(2*d2-2)*F_(0,0);

for i from 1 to 3 list tt*uu^(2*d1-2)*vv^(2*d2-2)*F_(0,i)+t*J_i;

We emphasize that the above parameterizations hold for general triangular and
tensor-product rational surfaces, so that some simplifications may appear in some
particular cases. For instance, such simplifications are obtained with the so-called
non-rational triangular and tensor-product surfaces. These surfaces are characterized
by the fact that their affine parameterizations in space can be given by polynomials
after de-homogenization. Equivalently, this means that the homogeneous polynomial
F0 is independent of the variables u and v. Thus, if X = P2 then F0 = wd and if
X = P1 × P1 then F0 = ud1vd2 . Under this assumption, the polynomials ∆1,∆2 and
∆3 have a common factor, namely wd−1 if X = P2, and ud1−1vd2−1 if X = P1 × P1.
Therefore, this common factor propagates to the polynomials Ψ0, . . . ,Ψ3 and hence
the corresponding parameterization Ψ of the congruence of normal lines is given by
polynomials of bi-degree (2d− 2, 1) if X = P2 and of tri-degree (2d1− 1, 2d2− 1, 1) if
X = P1 × P1. We summarize all these considerations in Table 3.2.

deg(Ψi) Triangular surface Tensor-product surface

Non-rational (2d− 2, 1) (2d1 − 1, 2d2 − 1, 1)

Rational (3d− 3, 1) (3d1 − 2, 3d2 − 2, 1)

Table 3.2: Degree of the parameterizations of the congruence Ψ
of normal lines associated to non-rational/rational triangular/tensor-

product surfaces.

3.1.4 Base locus

Consider the map Ψ defined by (3.3). Its base locus B is the subscheme of X × P1

defined by the polynomials Ψ0,Ψ1,Ψ2,Ψ3. As we will see in the next section, this locus
is of particular importance in our syzygy-based approach for studying the “fibers” of
Ψ.

Without loss of generality, B can be assumed to be of dimension at most one by
simply removing the common factor of the polynomials Ψ0, . . . ,Ψ3, if any. It is clear
from (3.4) and (3.5) that B is always one-dimensional. In the following lemma we
describe the curve component of B when the corresponding surface parameterization
Φ is sufficiently general. Below, inequalities between tuples of integers are understood
component-wisely.

Lemma 3.1.2. For a general rational surface parameterization Φ, the curve compo-
nent of the base locus B of its corresponding congruence of normal lines Ψ as defined
in (3.4) and (3.5), is given by
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• the ideal (w2d−3, t) if X = P2 and d > 2,

• the ideal (u2d1−2v2d2−2, t) if X = P1 × P1 × P1 and (d1, d2) > (1, 1).

Similarly, for a general non-rational surface parameterization Φ, the base locus B
of Ψ is a one-dimensional subscheme of X ×P1 whose curve component is defined by

• the ideal (wd−2, t) if X = P2 and d > 2,

• the ideal (ud1−1vd2−1, t) if X = P1 × P1 × P1 and (d1, d2) > (1, 1).

Proof. We only consider the case X = P2 and Φ rational, the other cases are similar.
By (3.4), we have the matrix equality

(
Ψ0 Ψ1 Ψ2 Ψ3

)
=
(
tw2d−3 t

)
·
(
F0 F1 F2 F3

0 ∆1 ∆2 ∆3

)
so that the ideal (Ψ0, . . . ,Ψ3) : (tw2d−3, t) is contained in the ideal generated by
Ψ0, . . . ,Ψ3 and the 2-minors of the matrix

F :=

(
F0 F1 F2 F3

0 ∆1 ∆2 ∆3

)
.

Then, the first row of F vanishes at base points of the surface paramaterization
Φ, which are assumed to be finitely many. The second row of F vanishes at the
singular points of the image of Φ and at the points where the tangent plane is of
equation x0 = 0; if Φ is sufficiently general then these latter points are also finitely
many. Finally, the two rows of F are proportional at finitely many points such that
F0 = 0, always assuming that Φ is sufficiently general. Therefore, we deduce that the
curve component of the ideal defined by the Ψi’s is defined by the ideal (w2d−3, t) in
P2 × P1.

Remark 3.1.1. If X = P1×P1 and (d1, d2) = (1, 1) then there is no curve component
in the base locus B for both non-rational and rational surface parameterizations. The
same holds if X = P2 and d = 2 for non-rational surface parameterizations.

3.2 Fibers and matrices of syzygies

In this section, we extend our framework and suppose that we are given an homoge-
neous parameterization

Ψ : X × P1 99K P3

ξ × (t : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) , (3.6)

where X stands for P2 or P1 × P1 and the Ψi’s are homogeneous polynomials in
the coordinate ring of X × P1 for all i = 0, 1, 2, 3. The coordinate ring RX of X
is equal to k[u, v, w] or k[u, u; v, v], respectively, depending on X where k is a field.
The coordinate ring of P1 is denoted by R1 = k[t, t] and hence the coordinate ring of
X × P1 is the polynomial ring R := RX ⊗k R1. Thus, the polynomials Ψ0,Ψ1,Ψ2,Ψ3

are multi-homogeneous polynomials of degree (δ, e), where δ refers to the degree with
respect to X, which can be either an integer if X = P2, or either a couple of integers
if X = P1 × P1.

In what follows, we assume that Ψ is a dominant map. We denote by I the ideal
generated by Ψ0,Ψ1,Ψ2,Ψ3 in R. The base locus B of the map Ψ is the subscheme
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of X × P1 defined by I. Without loss of generality, we assume that B is of dimension
at most one. Our aim is to provide a matrix-based representation of the finite fibers
of Ψ, by means of the syzygies of the ideal I.

3.2.1 Fiber of a point

The map Ψ being a rational map, its fibers are not well defined. To give a proper
definition of the fiber of a point under Ψ, we need to consider the graph of Ψ that we
denote by Γ ⊂ X × P1 × P3. The defining equations of this graph are known to be
the equations of the multi-graded Rees algebra of the ideal I of R, denoted Rees(I).
It has two canonical projections π1 and π2 onto X × P1 and P3 respectively:

Γ

π1
��

π2

))

� � //X × P1 × P3

X × P1 Ψ //P3

Thus, the fiber of a point p ∈ P3 is defined through the regular map π2. More
precisely, if κ(p) denotes the residue field of p, the fiber of p ∈ P3 is the subscheme

Fp := Proj(Rees(I)⊗ κ(p)) ⊂ X × P1. (3.7)

From a computational point of view, the equations of the Rees algebra Rees(I) are
very difficult to get. Therefore, it is useful to approximate the Rees algebra Rees(I)
by the corresponding symmetric algebra of the ideal I (see §1.2.), that we denote
by Sym(I). This approximation amounts to keep among the equations of the Rees
algebra only those that can be generated, as an ideal, by those that are linear with
respect to the third factor P3. Thus, as a variation of the standard definition (3.7) of
the fiber of a point p ∈ P3, we consider the subscheme

Lp := Proj(Sym(I)⊗ κ(p)) ⊂ X × P1 (3.8)

that we call the linear fiber of p. We emphasize that the fiber Fp is always contained
in the linear fiber Lp of a point p, and that they coincide if the ideal I is locally a
complete intersection at p.

3.2.2 Matrices built from syzygies

Given a point p in P3, the dimension and the degree of its linear fiber Lp can be read
from its Hilbert polynomial. The evaluation of this polynomial, and more generally of
its corresponding Hilbert function, can be done by computing the rank of a collection
of matrices that we introduce. They are built from the syzygies of the ideal I. An
additional motivation to consider these matrices is that they also allow to compute
effectively the points defined by the linear fiber Lp, hence the pre-images of p via Ψ,
if Lp is finite. This property will be detailed in Section 3.5.

Let k[x0, x1, x2, x3] be the coordinate ring of P3. The symmetric algebra Sym(I) of
the ideal I = (Ψ0, . . . ,Ψ3) of R is the quotient of the polynomial ring R[x0, x1, x2, x3]
by the ideal generated by the linear forms in the xi’s whose coefficients are syzygies
of the polynomials Ψ0, . . . ,Ψ3 of degree (d, e). More precisely, consider the graded
map

R(−δ,−e)4 → R
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(g0, g1, g2, g3) 7→
3∑
i=0

giΨi (3.9)

and denote its kernel by Z1, which is nothing but the first module of syzygies of I.
Setting Z1 := Z1(δ, e) ⊗ R[x0, . . . , x3] and Z0 = R[x0, . . . , x3], then the symmetric
algebra Sym(I) admits the following multi-graded presentation

Z1(−1)
ϕ−→ Z0 → Sym(I)→ 0

(g0, g1, g2, g3) 7→
3∑
i=0

gixi. (3.10)

where the shift in the grading of Z1 is with respect to the grading of k[x0, . . . , x3].

Definition 3.2.1. The graded part of the map ϕ in any degree (µ, ν) with respect to
R = RX ⊗R1 gives a map of free k[x0, . . . , x3]-modules. Its matrix, which depends on
a choice of basis, is denoted by M(µ,ν)(Ψ), or simply by M(µ,ν). Its entries are linear
forms in k[x0, . . . , x3].

As a consequence of (3.10), for any point p ∈ P3 the corank of the matrix M(µ,ν)

evaluated at p, that we denote by M(µ,ν)(p), is equal to the Hilbert function of the
linear fiber Lp in degree (µ, ν). Because the Hilbert function is equal to its corre-
sponding Hilbert polynomial for suitable degrees (µ, ν) (see [9, Theorem 4.1.3]), the
corank of the matrix M(µ,ν)(p) is expected to stabilize to a constant value if Lp is
finite. In what follows, we provide effective bounds for this stability property under
suitable assumptions.

Consider M(µ,0)(Ψ) where µ is a degree over X and Ψ is a parameterization of
congruence of normal lines to a given parametric surface of degree δ as in (3.3), hence
δ is a degree over X. Lastly, as previously described in §2.5, M(µ,0)(Ψ), can be also
computed via the null space of the intermediary coefficient matrix S(µ,1) as follows.

• If X = P2, then S(µ,1) is a (µ+δ+1)(µ+δ+2)×2(µ+1)(µ+2) matrix such that

its columns correspond to the polynomials Fiu
µ−ivkwi−k with 0 6 k 6 i 6 µ,

and its rows correspond to the homogeneous monomial basis of degree δ + µ,
b := {wδ+µ, uwδ+µ−1, u2wδ+µ−2, . . . , uδ+µ, vwδ+µ−1, vuwδ+µ−2, vu2wδ+µ−3,
. . . , vuδ+µ−1, . . . , vδ+µ}.

• If X = P1×P1, then µ = (µ1, µ2), δ = (δ1, δ2) and S(µ,1) is a 2(µ1 +δ1 +1)(µ2 +
δ2+1)×4(µ1+1)(µ2+1) matrix such that its columns correspond to the polyno-
mials Fiu

µ1−iūivµ2−j v̄j with 0 6 i 6 µ1 and 0 6 j 6 µ2 and its rows correspond
to the homogeneous tensor-product monomial basis of degree δ+µ (component
wisely addition), b := {ūδ1+µ1 v̄δ2+µ2 , uūδ1+µ1−1v̄δ2+µ2 , u2ūδ1+µ1−2v̄δ2+µ2 , . . . ,
ūδ1+µ1vv̄δ2+µ2−1, uūδ1+µ1−1vv̄δ2+µ2−1, . . . , uδ1+µ1vδ2+µ2}.

We will denote M(µ,0)(Ψ) as M for the simplicity. By construction, the null space of
S(µ,1) consists of four blocks of matrix M0,M1,M2,M3 along its rows in basis b such
that

• if X = P2, then b := {wµ, uwµ−1, u2wµ−2, . . . , uµ, vwµ−1, vuwµ−2, vu2wµ−3,
. . . , vuµ−1, . . . , vµ}, and

• if X = P1 × P1, then b := {ūµ1 v̄µ2 , uūµ1−1v̄µ2 , u2ūµ1−2v̄µ2 , . . . , ūµ1vv̄µ2−1,
uūµ1−1vv̄µ2−1, . . . , uµ1vµ2}.
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Then,
M = M0x0 + M1x1 + M2x2 + M3x3.

Example 3.2.1. We give Macaulay2 code to compute the matrix M(µ,0) of a pa-
rameterization of the congruence of normal lines to a given rational tensor-product
surface Ψ and at given degree (µ, 0) (see Corrollary 3.5.1 for this degree choice). For
the parameterization Ψ see Example 3.1.3, the bidegree (D1, D2) see Table 3.2, and
lastly for bidegree µ = (µ1, µ2) see Table 3.3.

S=QQ[u,uu,v,vv,t,tt,Degrees=>{{1,0,0},{1,0,0},{0,1,0},{0,1,0},{0,0,1},

{0,0,1}}]

P=matrix{{Psi0,Psi1,Psi2,Psi3}}

D1=3*d1-2, D2=3*d2-2

B=basis({mu1,mu2,0},S)

SM=B*P_(0,0)|B*P_(0,1)|B*P_(0,2)|B*P_(0,3)

(smu,Smu)=coefficients(SM,Variables=>{u_S,uu_S,v_S,vv_S,t_S,tt_S},

Monomials=>basis({mu1+D1,mu2+D2,1},S))

Smu

rank Smu

MM=syz Smu

Example 3.2.2. Let’s consider the parameterization of Segre variety as non-rational
(1, 1) tensor-product surface S, i.e.

Φ := P1 × P1 → P3

(ū : u)× (v̄ : v) 7→ (ūv̄ : uv̄ : vū : uv). (3.11)

Then, at non singular point ξ, the determinant of the Jacobian matrix of the coordi-
nates of Φ gives∣∣∣∣∣∣∣∣

0 v̄ 0 v
v̄ 0 v 0
0 0 ū u
x0 x1 x2 x3

∣∣∣∣∣∣∣∣ = v̄(x0∆0(ξ) + x1∆1(ξ) + x2∆2(ξ) + x3∆3(ξ)),

where ∆0 = −uv, ∆1 = ūv, ∆2 = uv̄ and ∆3 = −ūv̄. Hence, the parameterization Ψ
of the congruence of normal lines is

Φ := P1 × P1 × P1 → P3

(ū : u)× (v̄ : v)× (t̄, t) 7→ (t̄ūv̄ : t̄uv̄ + tūv : t̄vū+ tūv̄ : t̄uv − tūv̄) (3.12)

of degree (1, 1, 1) on P1 × P1 × P1. Then the corresponding matrix representation
M(2,2,0) of the finite fiber of Ψ at point p = (p0 : p1 : p2 : p3) in P3 is

M(2,2,0) :=



0 −p0 0 0 0
0 0 −p0 p1 0
p0 −p0 0 −p3 0
0 0 0 −p2 −p0

0 p3 0 0 0
−p1 p1 p3 −p2 −p0

−p0 0 0 p3 0
p2 0 −p0 p1 p3

0 0 p2 0 p1


.
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3.2.3 Main results

We recall that I is the ideal of R = RX ⊗ R1 generated by the defining polynomials
of the map Ψ, i.e. I := (Ψ0,Ψ1,Ψ2,Ψ3). The irrelevant ideal of X × P1 is denoted
by B; it is equal to the product of ideals (u, v, w) · (t, t) if X = P2, or to the product
(u, u) · (v, v) · (t, t) if X = P1 × P1. The notation Isat stands for the saturation of the
ideal I with respect to the ideal B, i.e. Isat = (I : B∞). The homogeneous polynomials
Ψ0,Ψ1,Ψ2,Ψ3 are of degree (δ, e), where δ denotes the degree with respect to X and
e denotes the degree with respect to P1. We recall that inequalities between tuples
of integers are understood component-wisely.

The base locus of Ψ is the subscheme of X×P1 defined by the ideal I; it is denoted
by B. Without loss of generality, B is assumed to be of dimension at most one; if
dim(B) = 1 then we denote by C its top unmixed one-dimensional curve component.

Definition 3.2.2. The curve C ⊂ X×P1 is said to have no section in degree < (a, b)
if H0(C,OC(α, β)) = 0 for any degree (α, β) such that α < a and β < b, i.e. if C has
no global section in degree < (a, b).

For the sake of simplicity in what follows we introduce the following notation.

Notation 3.2.1. Let r be a positive integer. For any α = (α1, . . . , αr) ∈ (Z∪{−∞})r
we set

E(α) := {ζ ∈ Zr | ζi > αi for all i = 1, . . . , r}.

It follows that for any α and β in (Z ∪ {−∞})r we have that E(α) ∩ E(β) = E(γ)
where γi = max{αi, βi} for all i = 1, . . . , r, i.e. γ is the maximum of α and β
component-wisely.

We are now ready to state our main results.

Theorem 3.2.1. Assume that we are in one of the two following cases:

(a) The base locus B is finite, possibly empty,

(b) dim(B) = 1, C has no section in degree < (0, e) and Isat = I ′sat where I ′

is an ideal generated by three general linear combinations of the polynomials
Ψ0, . . . ,Ψ3.

Let p be a point in P3 such that Lp is finite, then

corankM(µ,ν)(p) = deg(Lp)

for any degree (µ, ν) such that

• if X = P2,

(µ, ν) ∈ E(3δ − 2, e− 1) ∪ E(2δ − 2, 3e− 1). (3.13)

• if X = P1 × P1,

(µ, ν) ∈ E(3δ1 − 1, 2δ2 − 1, e− 1) ∪ E(2δ1 − 1, 3δ2 − 1, e− 1)
∪E(2δ1 − 1, 2δ2 − 1, 3e− 1). (3.14)
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Figure 3.2: (µ, ν) degrees with respect to X = P2 and X = P1 ×
P1 respectively are given. For X = P2, blue, pink and purple area
correspond to E(2δ − 2, 3e − 1), E(3δ − 2, e − 1) and E(2δ − 2, 3e −
1) ∩ E(3δ − 2, e− 1) respectively. For X = P1 × P1, (µ, ν) degrees are
chosen in the complementary of the colored volumes, i.e. the union

(3.14).

Proof. By (3.10), the corank of the matrix M(µ,ν)(p) is equal to the Hilbert func-
tion of Sym(I) ⊗ κ(p) at (µ, ν), that we denote by HFSym(I)⊗κ(p)(µ, ν). Moreover,
since Lp is assumed to be finite, the Hilbert polynomial of Sym(I) ⊗ κ(p), denoted
HPSym(I)⊗κ(p)(µ, ν), is a constant polynomial which is equal to the degree of Lp.
Now, the Grothendieck-Serre formula shows that for any degree (µ, ν) we have the
equality (see for instance [6, Proposition 4.26])

HPSym(I)⊗κ(p)(µ, ν) = HFSym(I)⊗κ(p)(µ, ν)−
∑
i>0

(−1)iHFHi
B(Sym(I)⊗κ(p))(µ, ν).

Therefore, the theorem will be proved if we show that the Hilbert functions of the
local cohomology modules H i

B(Sym(I)⊗κ(p)) vanish for all integers i and all degrees
(µ, ν) satisfying to the conditions stated in the theorem. This property is the content
of Theorem 3.3.1 whose proof is postponed to Section 3.3.

In the case where the base locus B has dimension one, the assumption Isat = I ′sat

in Theorem 3.2.1, item (b), can be a restrictive requirement, in particular in our
targeted application for computing orthogonal projections onto rational surfaces. The
next result allows us to relax this assumption to the case where the curve component
C of the base locus is a complete intersection.

Theorem 3.2.2. Assume that dim(B) = 1 and that C has no section in degree <
(0, e). Moreover, assume that there exists an homogeneous ideal J ⊂ R generated by
a regular sequence (g1, g2) such that I ⊂ J and (I : J) defines a finite subscheme in
X × P1. Denote by (m1, n1), resp. (m2, n2), the degree of g1, resp. g2. If X = P2

k

then m1,m2 are degrees, if X = P1
k ×P1

k then m1,m2 are bidegrees such that m1 =
(m1,1,m1,2) and m2 = (m2,1,m2,2). Set η := max(e−n1−n2, 0) and let p be a point
in P3 such that Lp is finite. Then,

corankM(µ,ν)(p) = deg(Lp)

for any degree (µ, ν) such that
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• if X = P2

(µ, ν) ∈ E(3δ − 2, e− 1 + η) ∪ E(3δ − 2−min{m1,m2}, 3e− 1). (3.15)

• if X = P1 × P1

(µ, ν) ∈ E(3δ1 − 1, 2δ2 − 1 + τ2, e− 1 + η) ∪
E(2δ1 − 1 + τ1, 3δ2 − 1, e− 1 + η) ∪
E(2δ1 − 1 + τ1, 2δ2 − 1 + τ2, 3e− 1), (3.16)

where τi := δi −min{2m1,i +m2,i,mi,1 + 2m2,i, δi} > 0, i = 1, 2.

Proof. The proof of Theorem 3.2.1 applies almost verbatim; the specific properties of
this theorem are given in Proposition 3.3.3, as a refinement of Theorem 3.3.1. More
details are given in §3.3.3.

Observe that the lower bounds on the degree (µ, ν) given in Theorem 3.2.2 are
similar to those given in Theorem 3.3.1 up to shifts in some partial degrees that
depend on the defining degrees of the curve C. In addition, we mention that in the
case where the base locus B is finite (including empty), which is the case of a general
map Ψ of the form (3.6), Theorem 3.2.1 gives a natural extension of results obtained
in [2]. We also emphasize that our motivation to consider maps with one-dimensional
base locus comes from congruences of normal lines to rational surfaces that have been
introduced in Section 3.1 (see Lemma 3.1.2).

3.3 Vanishing of some local cohomology modules

The goal of this section is to provide results on the vanishing of particular graded
parts of some local cohomology modules in order to complete the proofs of Theorem
3.2.1 and Theorem 3.2.2. We first recall and set some notation. Let k be a field and
consider the parameterization

Ψ : X × P1 99K P3

ξ × (t : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) (ξ; t, t) (3.17)

The varietyX stands for either P2 or P1×P1, so that n = 3 or n = 4. We denote by RX
its coordinate ring which is a standard graded polynomial ring. Thus, the polynomials
Ψ0,Ψ1,Ψ2,Ψ3 are multi-homogeneous of multi-degree (δ, e) in the polynomial ring
R := RX ⊗k R1 where R1 = k[t, t] is the coordinate ring of P1. We assume that
(δ, e) > (1, 1) (otherwise the map is not dominant), where 1 := (1, 1) in the case
X = P1 × P1. Let I be the ideal generated by the coordinates of the map Ψ, i.e.
I := (Ψ0,Ψ1,Ψ2,Ψ3) ⊂ R. The base locus B of Ψ is the subscheme of X ×P1 defined
by I. Without loss of generality, we assume that B is of dimension at most one.

Theorem 3.3.1. Take again the notation of §3.2.2 and assume that one of the two
following properties holds:

(a) The base locus B is finite, possibly empty,

(b) dim(B) = 1, C has no section in degree < (0, e) and Isat = I ′sat where I ′

is an ideal generated by three general linear combinations of the polynomials
Ψ0, . . . ,Ψ3.
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Then, for any point p in Spec(R) such that Lp is finite, possibly empty, we have that
H i
B(Sym(I) ⊗R κ(p))(µ,ν) = 0 for all integers i and all degree (µ, ν) satisfying to

(3.13) or (3.14).

In order to prove this theorem, we begin with some preliminary results on the
control of the vanishing of the local cohomology of the cycles and homology of the
Koszul complex associated to the sequence of homogeneous polynomials Ψ0, . . . ,Ψ3.

3.3.1 Some preliminaries on Koszul homology

The properties we prove below hold in a more general setting than the properties of
Theorem 3.2.2. In order to state them in this generality we introduce the following
notation.

Let S be a standard Zr-graded polynomial ring; it is the Cox ring of a product
of projective spaces P := Pn1 × · · · × Pnr . We suppose given a sequence Ψ0, . . . ,Ψs

of homogeneous poynomials in S and we consider their associated Koszul complex
K• := K•(Ψ0, . . . ,Ψs;S). We denote by Zi and Hi, respectively, the cycles and
homology modules of K•.

The irrelevant ideal B of the Cox ring S is the product of the r ideals defined by
the r sets of variables. We set I := (Ψ0, . . . ,Ψs) ⊆ S and B := Proj(S/I) ⊆ P. Recall
that, for i > 2, and any S/I-module M with associated sheaf F ,

H i
B(M)µ ' H i−1(B,F(µ))

and in particular H i
B(M) = 0 for i > dim(B) + 1. We notice that in the setting of

(3.17) we have dim(B) 6 1, s = 3 and either r = 2 and (n1, n2) = (2, 1) or r = 3 and
(n1, n2, n3) = (1, 1, 1).

As in the theory of multigraded regularity, it is important to provide regions in
Zr where some local cohomology modules of the ring S, or a direct sum of copies of
S like Ki, vanish. We first give a concrete application of this idea and then we define
regions in the specific case we will be working with. We recall that the support of a
graded S-module M is defined as

Supp(M) := {µ ∈ Zr | Mµ 6= 0} ⊂ Zr.

Proposition 3.3.1. For any integer i, let Ri ⊆ Zr be a subset satisfying

∀j ∈ Z : Ri ∩ Supp(Hj
B(Ki+j)) = ∅,

i.e. Ri is assumed to be the complement of the support of the local cohomology modules
on the i-th diagonal of the first sheet of row filtered spectral sequences of C̆ •B(K•) in
Zr. Then, if dimB 6 1 the following properties hold for any integer i:

• For all µ ∈ Ri−1, H1
B(Hi)µ = 0.

• There exists a natural graded map δi : H0
B(Hi) → H2

B(Hi+1) such that (δi)µ is
surjective for all µ ∈ Ri−1 and is an isomorphism for all µ ∈ Ri.

In particular,
H0
B(Hi)µ ' H2

B(Hi+1)µ for all µ ∈ Ri−1 ∩Ri.

Proof. We consider the double complex obtained from the Koszul complex K• by
replacing each term by its associated Čech complex with respect to the ideal B, de-
noted by C̆ •B(K•). This double complex gives rise to two spectral sequences that both
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converge to the same limit. At the second sheet, the row-filtered spectral sequence is
of the following form

· · · H0
B(Hi+2) H0

B(Hi+1)

δi+1

||

H0
B(Hi)

δi

}}

H0
B(Hi−1)

δi−1

}}

· · ·

· · · H1
B(Hi+2) H1

B(Hi+1) H1
B(Hi) H1

B(Hi−1) · · ·

· · · H2
B(Hi+2) H2

B(Hi+1) H2
B(Hi) H2

B(Hi−1) · · ·

· · · 0 0 0 0 · · ·

.

On the other hand, the terms of the column-filtered spectral sequence at the first
sheet on the diagonal whose total homology is filtered by ker(δi), coker(δi+1) and
H1
B(Hi+1) are Hj

B(Ki+j) for j ∈ N. It follows that :

H1
B(Hi+1)µ = ker(δi)µ = coker(δi+1)µ = 0,∀µ ∈ Ri.

Remark 3.3.1. If dim(B) = 0 then H2
B(Hi) = 0, for any integer i, since Hi is a

S/I-module. Therefore, in this case Proposition 3.3.1 shows that

H0
B(Hi)µ = 0, ∀µ ∈ Ri and H1

B(Hi)µ = 0, ∀µ ∈ Ri−1.

We now turn to properties on the cycles of the Koszul complex K•(Ψ0, . . . ,Ψs;S).

Proposition 3.3.2. Assume that ni > 0 for all integers i. Then, for any integer p
the following properties hold:

• H0
B(Zp) = H1

B(Zp) = 0,

• H2
B(Zp)µ ' H0

B(Hp−1)µ for all µ ∈ Rp−2,

• H3
B(Zp)µ = 0 for all µ ∈ Rp−2 ∩Rp−3,

• H4
B(Zp)µ = 0 for all µ ∈ Rp−3 ∩Rp−4.

Proof. We consider the complex

C• := 0→ Zp ↪→ Kp → Kp−1 → · · · → K1 → K0 → 0

which is built form the Koszul complex K•. This complex gives rise to the double
C̆ •B(C•), which itself gives rise to two spectral sequences that converge to the same
limit. The column-filtered spectral sequence has a first sheet in the following form:

H0
B(Zp) 0 · · · 0 0

H1
B(Zp) 0 · · · 0 0

H2
B(Zp) // H2

B(Kp) // H2
B(Kp−1) // H2

B(Kp−2) // · · ·

H3
B(Zp) // H3

B(Kp) // H3
B(Kp−1) // H3

B(Kp−2) // · · ·

H4
B(Zp) // H4

B(Kp) // H4
B(Kp−1) // H4

B(Kp−2) // · · ·
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On the other hand, the row-filtered spectral sequence at the second sheet is of the
following form

0 0 H0
B(Hp−1) H0

B(Hp−2)
δp−2

{{

H0
B(Hp−3)

δp−3

{{

· · ·

0 0 H1
B(Hp−1) H1

B(Hp−2) H1
B(Hp−3) · · ·

0 0 H2
B(Hp−1) H2

B(Hp−2) H2
B(Hp−3) · · ·

0 0 0 0 0

0 0 0 0 0

Comparing these two spectral sequences, and using that they have same abutment,
we get the claimed results for H0

B(Zp), H
1
B(Zp), H

2
B(Zp) and H4

B(Zp). For H3
B(Zp),

we get that H3
B(Zp)µ is filtered by H1

B(Hp−1)µ and ker(δp−2)µ for all µ ∈ Rp−2∩Rp−3

and the conclusion follows from Proposition 3.3.1.

When s = 3 and the polynomials Ψ0, . . . ,Ψ3 are of the same degree d (which is
equal to (δ, e) in the setting of (3.17)), the corresponding approximation complex Z•
to these polynomials is of the form

0→ Z3 → Z2 → Z1 → Z0 → 0,

with Zi = Zi[id] ⊗ S(−i),. Using the Čech complex construction, we can consider
the double complex C̆ •B(Z•) that gives rise to two canonical spectral sequences corre-
sponding to the row and column filtrations of this double complex. The graded pieces
of the spectral sequence at the first step for the column filtration are Hp

B(Zq)µ+pd.
By Proposition 3.3.2, and under its assumptions, if µ ∈ R−2 all these modules vanish
except for (p, q) = (2, 2) and for (p, q) = (2, 1). Hence, for µ ∈ R−2, C̆ •B(Z•)µ is
quasi-isomorphic to the complex

0→ H0
B(H1)µ+2d ⊗ S(−2)→ H0

B(H0)µ+d ⊗ S(−1)→ 0

that is in turn isomorphic to

0→ H2
B(H2)µ+2d ⊗ S(−2)→ H2

B(H1)µ+d ⊗ S(−1)→ 0

for µ ∈ R−1 ⊆ R−2 by Proposition 3.3.1, assuming in addition that dim(B) = 1.
Consequently, our next goal is to control the vanishing of the graded parts of H2

B(H1)
and H2

B(H2).

Lemma 3.3.1. Assume that dim(B) = 1 and that the s+1 forms Ψ0, . . . ,Ψs are of the
same degree d. Let C be the unmixed curve component of B and set p := s−dim(P)+2
and σ := (s+ 1)d− (n1 + 1, · · · , nr + 1). Then, for all µ ∈ Zr we have

H2
B(Hp)µ ' H0(C,OC(−µ+ σ))∨.

In particular, if C has no section in degree < µ0, for some µ0 ∈ Zr, then

H2
B(Hp)µ = 0 for all µ ∈ E((s+ 1)d− (n1, · · · , nr)− µ0).
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Proof. As locally at a closed point x ∈ P, the Ψi’s contain a regular sequence of length
s− 1, and of length s unless x ∈ C, by [9, §1-3] we have the isomorphisms

H̃p(σ) ' ˜Exts−1
S (S/I, ωS) ' ˜Exts−1

S (S/IC , ωS) ' ωC

from which using [66, Proposition 1.3] we deduce that

H2
B(Hp) '

⊕
µ

H1(C, ωC(µ− σ)). (3.18)

Now, applying Serre’s duality Theorem [47, Corollary 7.7] we get

H1(C, ωC(µ− σ)) ' H0(C,OC(−µ+ σ))∨,

which concludes the proof.

Lemma 3.3.2. In the setting of Lemma 3.3.1, let s = dim(P) and let I ′ be an ideal
generated by s general linear combinations of the Ψi’s. If Isat = I ′sat then for all
µ ∈ Zr there exists an exact sequence

H0(C,OC(−µ− d + σ))∨ → H2
B(H1)µ → H2

B(S/I)µ−d → 0.

In particular, if C has no section in degree < µ0, for some µ0 ∈ Zr, we have that
H2
B(H1)µ = 0 for all µ such that µ ∈ E(sd− (n1, · · · , nr)− µ0) and µ− d ∈ R−2.

Proof. We will denote by H ′i the ith homology module of the Koszul complex associ-
ated to I ′ ⊂ R. By [9, Corollary 1.6.13] and [9, Corollary 1.6.21] we have the following
graded exact sequence

0→M → H ′1 → H1 → H ′0(−d)→ N → 0 (3.19)

with the property that the modules M and N are supported on V (B), which implies
that H i

B(M) = H i
B(N) = 0 for i > 1.

Now, the column-filtered spectral sequence associated to the double complex ob-
tained by replacing each term in the exact sequence (3.19) by its corresponding Čech
complex converges to 0. The first sheet of this spectral sequence has three non zero
lines and is of the following form

H0
B(M) → H0

B(H ′1) → H0
B(H1) → H0

B(H ′0)(−d) → H0
B(N)

0 → H1
B(H ′1) → H1

B(H1) → H1
B(H ′0)(−d) → 0

0 → H2
B(H ′1) → H2

B(H1) → H2
B(H ′0)(−d) → 0

which implies that the right part of the bottom line

H2
B(H ′1)→ H2

B(H1)→ H2
B(H ′0)(−d)→ 0

is exact. By Lemma 3.3.1, H2
B(H ′1)µ ' H0(C,OC(−µ−d+σ))∨ and, by Proposition

3.3.1, H2
B(H ′0)(−d)µ = H2

B(S/I)(−d)µ = 0 for µ− d ∈ R−2.

Before closing this paragraph, we come back to the setting of Theorem 3.3.1 and
provide explicit subsets Ri, as these subsets are key ingredients for proving Theorem
3.3.1. As already mentioned, they can be derived from the known explicit description
of the local cohomology of polynomial rings. More precisely, we have s = 3 and
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the multi-homogeneous polynomials Ψ0, . . . ,Ψ3 are defined in the polynomial ring
S := R = RX ⊗R1 and are of degree d := (δ, e) > (1, 1).

We recall the local cohomology module of the rings RX and R1 (the coordinate
ring of P1) with respect to the irrelevant ideal B in the setting of (3.17).

• ŘX := 1
x0,...,xr

k[x−1
0 , . . . , x−1

r ] such that r = 2, if X = P2 and r = 3, if X =

P1 × P1,

• Ř1 := 1
tt
k[t
−1
, t−1] (see also §1.6).

Lemma 3.3.3. We have that H i
B(R) = 0 for all i 6= 2, 3, 4. In addition, if X = P2

then RX = k[u, v, w] and we have that

H2
B(R) ' RX ⊗ Ř1, H3

B(R) ' ŘX ⊗R1, H4
B(R) ' ŘX ⊗ Ř1.

If X = P1 × P1 then RX = R2 ⊗ R3, where R2 = k[u, u], R3 = k[v, v], and we have
that

H2
B(R) '

⊕
i=1...3,

{i,j,k}={1,2,3}

Ři ⊗Rj ⊗Rk,

H3
B(R) '

⊕
i=1...3,

{i,j,k}={1,2,3}

Ri ⊗ Řj ⊗ Řk,

H4
B(R) ' Ř1 ⊗ Ř2 ⊗ Ř3.

Proof. See for instance [5, Lemma 6.7].

Using the above lemma, we define the following subsets Ri.

Definition 3.3.1. With previous notations,
• If X = P2 we set

- Ri := Z2 for all integer i /∈ [−4, 2],

- R−4 := E(−∞,−1) ∪ E(−2,−∞),

- R−3 := E(−2, e− 1) ∪ E(δ − 2,−∞),

- for i = −2,−1, 0,

Ri := E((i+ 3)δ − 2, (i+ 4)e− 1) ∪ E((i+ 4)δ − 2, (i+ 2)e− 1) ⊆ Z2.

• If X = P1 × P1 we set

- Ri := Z3 for all integer i /∈ [−4, 2],

- R−4 := E(−1,−∞,−∞) ∪ E(−∞,−1,−∞) ∪ E(−∞,−∞,−1),

- R−3 := E(δ1 − 1,−1,−1) ∪ E(−1, δ2 − 1,−1) ∪ E(−1,−1, e− 1),

- for i = −2,−1, 0,

Ri :=
⋃

(a,b,c)|{a,b,c}={2,3,4}

E((a+ i)δ1 − 1, (b+ i)δ2 − 1, (c+ i)e− 1) ⊆ Z3,
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- R1 := E(4δ1−1, 4δ2−1, 3e−1)∪E(4δ1−1, 3δ2−1, 4e−1)∪E(3δ1−1, 4δ2−1, 4e−1),

- R2 := E(4δ1 − 1, 4δ2 − 1, 4e− 1).

It is straightforward to check that these subsets satisfy to the properties required
in Proposition 3.3.1. We notice that Rp ⊆ Rp−1 for all p 6 1, but we also emphasize
that not all these subsets are the largest possible ones in view of Lemma 3.3.3, as we
have restricted ourselves to subsets that fit our needs to prove Theorem 3.3.1 without
adding some useless technicalities.

3.3.2 Proof of Theorem 3.3.1

We focus on the difficult case of this theorem, namely the case where the base locus
B is not finite, which corresponds to the item (b) in its statement. If B is finite, then
the proof simplifies as explained in Remark 3.3.1 and gives the same conclusion. In
what follows, we take again the notation of (3.17) and Theorem 3.3.1.

We consider the approximation complex Z• associated to the sequences of homo-
geneous polynomials Ψ0, Ψ1, Ψ2 and Ψ3 (see §1.4 for approximation complex). It
inherits the multi-graded structure of R and it has an additional grading with respect
to P3 = Proj(k[x0, x1, x2, x3]).

Let p be a point in Spec(k[x0, x1, x2, x3]). The specialization of the approximation
complex Z• at the point p yields the complex Zp

• := Z• ⊗ κ(p) which is of the form

0→ Z3 ⊗ κ(p)→ Z2 ⊗ κ(p)→ Z1 ⊗ κ(p)→ Z0 ⊗ κ(p)→ 0.

Notice that H0(Z•) = Sym(I) and H0(Zp
•) = Sym(I)⊗ κ(p).

Now, using the Čech complex construction, we can consider the double complexes
C̆ •B(Z•) and C̆ •B(Zp

•) that both give rise to two canonical spectral sequences corre-
sponding to the row and column filtrations of these double complexes. As C, the top
unmixed one-dimensional curve component of B, is almost a complete intersection at
its generic points, H i

B(Hj(Z•)) = 0 for i > 1 and j > 0. Let Y ⊂ Proj(R/I) be the
locus where I is not locally an almost complete intersection. Then Y is either empty
or of dimension zero. As Z• is exact outside of Y , Zp

• is exact outside of Y ∪ π−1
2 (p).

Therefore, it follows from our hypothesis that one also has H i
B(Hj(Zp

•)) = 0 for i > 1
and j > 0. From these considerations, we deduce that the row-filtered spectral se-
quence of the double complex C̆ •B(Z•) converges at the second sheet and is equal
to

0 H0
BH3(Z•) H0

B(H2(Z•)) H0
B(H1(Z•)) H0

B(Sym(I))

0 H1
BH3(Z•) H1

B(H2(Z•)) H1
B(H1(Z•)) H1

B(Sym(I))

0 0 0 0 H2
B(Sym(I))

0 0 0 0 0
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On the other hand, the column-filtered spectral sequence of the double complex
C̆ •B(Z•) at the first sheet is

0 0 0 0 0 0

0 0 0 0 0 0

0 // H2
B(Z3) // H2

B(Z2) // H2
B(Z1) // H2

B(Z0) // 0

0 // H3
B(Z3) // H3

B(Z2) // H3
B(Z1) // H3

B(Z0) // 0

0 // H4
B(Z3) // H4

B(Z2) // H4
B(Z1) // H4

B(Z0) // 0

It follows that H3(Z•) = 0 and H0
B(H2(Z•)) = 0. Moreover, for all degree (µ, ν) ∈

R−2 we have H i
B(Zj)(µ,ν) = 0 unless i = 2 and j ∈ {1, 2}. Let

H0
B(H1)(µ,ν)+2(δ,e) ⊗ S[−2]

φ(µ,ν)
// H0

B(H0)(µ,ν)+(δ,e) ⊗ S[−1] (3.20)

be the degree (µ, ν) component of the only potentially non zero map of this graded
piece of the double complex. Then,

• H1
B(Sym(I))(µ,ν) = 0 if and only if φ(µ,ν) is surjective,

• H0
B(Sym(I))(µ,ν) = H1

B(H1(Z•))(µ,ν) = 0 if and only if φ(µ,ν) is injective.

The same arguments apply to C̆ •B(Zp
•) and show that for (µ, ν) ∈ R−2 :

• H1
B(Sym(I)⊗ κ(p))(µ,ν) = 0 if and only if φ(µ,ν) ⊗ κ(p) is surjective,

• H0
B(Sym(I) ⊗ κ(p))(µ,ν) = H1

B(H1(Zp
•))(µ,ν) = 0 if and only if φ(µ,ν) ⊗ κ(p) is

injective.

Furthermore, for all (µ, ν) ∈ R−1 the map φ(µ,ν) identifies with the map

H2
B(H2)(µ,ν)+2(δ,e) ⊗ S[−2] // H2

B(H1)(µ,ν)+(δ,e) ⊗ S[−1]

and the conclusion follows from Lemma 3.3.1 and Lemma 3.3.2. Indeed, assume first
that X = P2, then we need to have (µ, ν) ∈ R−1 and Lemma 3.3.1 and Lemma 3.3.2
both require additionally that

(µ, ν) ∈ E(2δ − 2− µX , 2e− 1− µ1),

where µ0 = (µX , µ1) is such that the unmixed curve component C of the base locus
has no section in degree < µ0. Observing that R−1 is precisely the expected region
(3.13) to prove our theorem, we must have that

R−1 ⊆ E(2δ − 2− µX , 2e− 1− µ1).

This latter inclusion holds if µX > 0 and µ1 > e. From here, the theorem follows as
we assumed that C has no section in degree < (µX , µ1) = (0, e).

Now, consider the case X = P1×P1. Similarly, we need to have (µ, ν) ∈ R−1 and
both Lemma 3.3.1 and Lemma 3.3.2 require additionally that

(µ, ν) ∈ E(2δ1 − 1− µ1, 2δ2 − 1− µ2, 2e− 1− µ3),
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where µ0 = (µ1, µ2, µ3). If we impose, as in the case X = P2, that R−1 is contained
in the above region, then we must have µ1 > δ1, µ2 > δ2 and µ3 > e. In order to have
a weaker assumption on the global sections on the curve C, we preferably choose to
set µ1 = µ2 = 0 and then restrict R−1 accordingly, which gives the claimed region
(3.14).

3.3.3 Residual of a complete intersection curve

The proof of Theorem 3.3.1 completes the proof of Theorem 3.2.1, but it still remains
to prove Theorem 3.2.2. For that purpose, we proceed as in the proof of Theorem
3.3.1 but with a different argument to control the vanishing of some graded parts of
the module H0

B(H0) that appears in (3.20). We maintain the notation of the previous
sections.

Proposition 3.3.3. Let J be an homogeneous ideal in R generated by a regular
sequence (g1, g2) such that I ⊂ J and (I : J) defines a finite subscheme in X × P1.
Denote by (m1, n1), resp. (m2, n2), the degree of g1, resp. g2, and define the integer
κ := min(e, n1 + n2). Then, H0

B(H0(K•))(µ,ν) = 0 for all (µ, ν) satisfying to the
following conditions:

• if X = P2,

(µ, ν) ∈ E(4δ − 2−min{m1 +m2, 2m1, 2m2}, 3e− 1− κ). (3.21)

• if X = P1 × P1,

(µ, ν) ∈ E(4δ1 − 1− ε1, 4δ2 − 1− ε′2, 3e− 1− κ)∪
E(4δ1 − 1− ε′1, 4δ2 − 1− ε2, 3e− 1− κ) (3.22)

where for i = 1, 2

εi := min{2m1,i,m1,i +m2,i, 2m2,i},
ε′i := min{2m1,i +m2,i,m1,i + 2m2,i, δi +m1,i, δi +m2,i}.

Proof. Since I ⊂ J , we have the canonical exact sequence

0→ J/I → R/I → R/J → 0

and hence, by the associated long exact sequence of local cohomology we deduce that
H0
B(H0(K•))(µ,ν) = H0

B(R/I)(µ,ν) = 0 if both H0
B(R/J)(µ,ν) = H0

B(J/I)(µ,ν) = 0.
Our objective is to analyze these two latter conditions.

Set σ := (m1+m2, n1+n2). Since J = (g1, g2) is generated by a regular sequence,
its associated Koszul complex KJ

• ,

0→ F2 = R(−σ)→ F1 = ⊕2
i=1R(−(mi, ni))→ F0 = R,

is acyclic. Therefore, the two classical spectral sequences associated to the double
complex C̆ •B(KJ

• ) shows that H0
B(R/J)(µ,ν) = 0 for all (µ, ν) such that

H2
B(R)(µ,ν)−σ = 0. (3.23)
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Now, from the inclusion I ⊂ J the decomposition of the Ψj
′s on the g1, g2 gives

the 2× 4-matrix H such that

(Ψ0 Ψ1 Ψ2 Ψ3) = (g1 g2)

(
h0,1 h1,1 h2,1 h3,1

h0,2 h1,2 h2,2 h3,2

)
= (g1 g2)H

and which corresponds to the homogeneous map

K1 = R(−(δ, e))4 H−→ F1 = R(−(m1, n1))⊕R(−(m2, n2)).

From here, we obtain a finite free graded presentation of J/I, namely

F ′1 = F2 ⊕K1
ϕ−→ F1

(g1,g2)−−−−→ J/I → 0

where the map ϕ : F ′1 → F1 is defined by the matrix(
−g2 h0,1 h1,1 h2,1 h3,1

g1 h0,2 h1,2 h2,2 h3,2

)
.

Consider the Buchsbaum-Rim complex C• (We refer the reader to 1.5.4 for an overview
of Buchsbaum-Rim complex) associated to ϕ; it is of the form (see [41, Appendix 2.6]
and [22, §2] for the graded version with the appropriate shifting in degrees)

C4 = S2(F ∗1 )⊗ ∧5(F ′1)(σ)→ C3 = S1(F ∗1 )⊗ ∧4(F ′1)(σ)→
C2 = S0(F ∗1 )⊗ ∧3(F ′1)(σ)→ C1 = F ′1

ϕ−→ C0 = F1.

The homology of C• is supported on annR(J/I) = (I :R J), which is assumed to
define a finite subscheme in X × P1. Therefore, the spectral sequence corresponding
to the row filtration of the double complex C̆ •B(K•) abuts at the second sheet, with
the term H0

B(J/I) on the principal diagonal. Comparing it with the spectral sequence
corresponding to the column filtration, we deduce that H0

B(J/I)(µ,ν) = 0 for all (µ, ν)
such that

H2
B(C2)(µ,ν) = H3

B(C3)(µ,ν) = H4
B(C4)(µ,ν) = 0. (3.24)

Moreover, from the definition of the free graded R-modules Ci, i = 2, 3, 4, we have
the graded isomorphisms

C2 ' R(−3(δ, e) + σ)4 ⊕R(−2(δ, e))6,

C3 ' ⊕2
i=1R(−4(δ, e) + (mi, ni) + σ)⊕2

i=1 R(−3(δ, e) + (mi, ni))
4,

and

C4 ' R(−4(δ, e) + 2(m1, n1))⊕R(−4(δ, e) + σ)⊕R(−4(δ, e) + 2(m2, n2)).

From here, using the explicit computation of the local cohomology modules of the
polynomial ring R, see Lemma 3.3.3, it is straightforward to check that the claimed
regions satisfy both conditions (3.23) and (3.24). Notice that it is assumed that
δ >mi > 0 (component-wise if X = P1 × P1) and e > 1.

From the proof of Proposition 3.3.3, it is clear that it is possible to list more valid
regions than those that are given in the statement where we only provided the regions
that are of interest for our application to the computation of orthogonal projections
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on rational surfaces. It turns out that listing all the possible regions can be a rather
technical and cumbersome task. For instance, in the case X = P2, we obtain the
following list of eight quadrants Qi.j.k for which the expected property hold:

(i) Q1.1.1 = E(4δ − 2−min{2m1,m1 +m2, 2m2}, 3e− 1−min{n1 + n2, e}),

(ii) Q1.1.2 = E(4δ − 2−min{2m1,m1 +m2}, 4e− 1−min{2n2, n1 + n2 + e, 2e}),

(iii) Q1.2.2 = E(4δ − 2−min{2m1,m1 + 2m2, δ +m2}, 4e− 1−min{n1 + n2, 2n2}),

(iv) Q1.2.1 = E(4δ − 2−min{2m1, 2m2}, 4e− 1− (n1 + n2)),

(v) Q2.1.1 = E(4δ − 2−min{m1 +m2, 2m2}, 4e− 1− 2n1),

(vi) Q2.1.2 = E(4δ − 2− (m1 +m2), 4e− 1−min{2n1, 2n2}),

(vii) Q2.2.1 = E(4δ − 2−min{2m2, 2m1 +m2, δ +m1}, 4e− 1−min{2n1, n1 + n2}),

(viii) Q2.2.2 = E(4δ − 2−min{m1 + 2m2, 2m1 +m2, δ +m1, δ +m2},
4e− 1−min{2n1, n1 + n2, 2n2}).

For the sake of completeness, we also mention that in the special case where g1 has
degree (m, 0) and g2 has degree (0, 1), which is important for our targeted application,
the union of these eight quadrants is equal to the union of two quadrants Q1.1.1 and
Q1.2.1, which is equal to

E(4δ − 2, 3e− 2) ∪ E(4δ −m− 2, 4e− 2).

The case X = P1 × P1 give rise to too many regions so that they cannot be listed
exhaustively here.

Proof of Theorem 3.2.2. The proofs of Theorem 3.2.1, and hence Theorem 3.3.1, apply
verbatim with the exception of the control of the vanishing of the module H0

B(H0)(µ,ν)

that appears in (3.20). Indeed, instead of relying on Lemma 3.3.2 (and Proposition
3.3.1) to obtain regions where this module vanishes, we apply Proposition 3.3.3. As
we are still using Lemma 3.3.1, it follows that the claimed region are obtained by
intersecting the regions obtained in Theorem 3.2.2 with the additional constrained
given by Proposition 3.3.3. To be more precise, if X = P2 then (µ, ν) must satisfy to
(3.13) but also must satisfy the additional condition

(µ, ν) + (δ, e) ∈ E(4δ − 2−min{m1 +m2, 2m1, 2m2}, 3e− 1− κ).

From here one can easily check that the claimed region satisfies these two conditions.
The case X = P1 × P1 follows exactly in the same way.

3.4 Rings of sections in a product of projective spaces

In order to apply Theorem 3.2.1 and Theorem 3.2.2 in the case of a positive dimen-
sional base locus B, it is necessary to analyze when the curve component of B has no
section in bounded above degrees (see Definition 3.2.2). In this section, we provide
classes of curves that satisfy to this property. Hereafter, a curve is understood to be
a scheme purely of dimension one.

To begin with, if Z is a product (over the field k) of two schemes we recall the
following classical property which is a consequence of the Künneth formula.
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Lemma 3.4.1. Assume Z is the product of two schemes Z1 ⊆ P1 and Z2 ⊆ P2, where
P1 and P2 are two products of projective spaces. Then, setting P := P1 × P2, for any
degree µ and any degree ν we have

H0(Z,OZ(µ,ν)) = H0(Z1,OZ1(µ))⊗k H0(Z2,OZ2(ν)).

From this property, it is interesting to identify classes of subschemes in a single
projective space that have no section in negative degrees, because then this provides
new classes of subschemes in product of projective spaces with no section in negative
degrees by product extensions.

If Z is a reduced irreducible subscheme in a projective space Pn (over a field) of
positive dimension, then it is well known that OZ(µ) has no non-zero global sections
for any integer µ < 0. We show that this result extends to a subscheme of a product
of projective spaces.

Let Z be a subscheme in a product of projective spaces P := Pn1 × · · · × Pnr ,
ni > 1 for all i. Let R be the standard multi-graded ring defining P and let I ⊂ R
be the multi-homogeneous defining ideal of Z. The ring of sections of Z sits in the
exact sequence

0 // H0
B(R/I) // R/I //

⊕
µ∈Zr H

0(Z,OZ(µ)) // H1
B(R/I) // 0

where B stands for the ideal generated by R(1,...,1). It shows in particular that Z
determines IZ = I + H0

B(R/I), the unique ideal saturated with respect to B that
defines Z, giving a one to one correspondence between B-saturated multi-graded
ideals and subschemes of P.

Proposition 3.4.1. With the above notation, assume that Z is reduced with only
components of positive dimension, then H0(Z,OZ(µ)) = 0 for all µ < 0.

Proof. First, there is a canonical inclusion

H0(Z,OZ(µ)) ↪→
t⊕
i=1

⊕
µ∈Zr

H0(Zi,OZi(µ))

where Zi, for i = 1, . . . , t, are the irreducible components of Z. Hence we can, and
will, assume that Z is reduced and irreducible.

Notice then that the multi-graded ring A = ⊕µ∈ZrH0(Z,OZ(µ)) is a domain, as
it sits in the fraction field of A. Let d := dimZ. By Serre duality, for any µ we have

H0(Z,OZ(µ)) ⊆ H0(Z,OZ̃(µ)) ' Hd(Z, ωZ(−µ)),

where Z̃ is the S2-ification of Z (see [9, p.62]), namely the scheme defined by Ã =
End(ωA), which is itself sitting in the integral closure of A. In fact

Ã = ⊕µH0(Z,OZ̃(µ))

as Ã satisfies S2.

Now, if H0(Z,OZ(µ)) 6= 0 for some µ < 0, let 0 6= a ∈ Aµ. As A is a domain,
ak 6= 0 for all k > 1. This implies that Hd(Z, ωZ(−kµ)) 6= 0 for any k, contradicting
Serre vanishing theorem (as −µ1H1...− µrHr is very ample since µi < 0 for all i).
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3.5 Computing orthogonal projection of points onto a
rational surface

In this section, based on our previous results we devise a new method for computing
the orthogonal projections of a point p ∈ R3 onto a rational surface S ∈ R3. Suppose
that S is parameterized by a rational map Φ : X 99K P3, as defined in Section 3.1.2
with polynomials of degree d, and consider its associated congruence of normal lines
Ψ : X × P1 99K P3, as described in Section 3.1.3. We will compute the orthogonal
projections qi ∈ S, i = 1, . . . , rp, of p by means of the matrices M(µ,ν)(Ψ), defined in
Section 3.2.2. The degree of the defining polynomials of Ψ will be denoted by (δ, 1);
their values in terms of the type of Φ are given in Table 3.2.

In what follows, we assume that d > 2 if X = P2 and that d1 > 1 and d2 > 1 if
X = P1 × P1.

3.5.1 Matrix representations of linear fibers

Consider the family of matrices M(µ,ν) associated to Ψ that we introduced in Section
3.2.2. In Section 3.2 it is proved under suitable assumptions that the corank of
M(µ,ν)(p), p a point in P3, gives a computational representation of the linear fiber
Lp of p, providing that Lp is finite and (µ, ν) satisfies to some conditions. Thus, the
matrix M(µ,ν) is a universal matrix-based representation of the finite linear fibers of
Ψ.

Admissible degrees

In terms of computational efficiency it is important to choose the degree (µ, ν) giving
the smallest possible matrix M(µ,ν). Recall that Φ is defined by polynomials of degree
d over X and its congruence of normal lines Ψ is defined by polynomials of degree
(δ, 1) over X × P1, as given in Table 3.2 in terms of degree d.

Corollary 3.5.1. For a general parameterization Φ and a degree (µ, ν), the corre-
sponding matrix M(µ,ν)(Ψ) yields a matrix representation of the finite linear fibers of
Ψ satisfying the following admissible degrees

• (µ, ν) ∈ E(3δ − 2, 0) if X = P2,
• (µ1, µ2, ν) ∈ E(3δ1 − 1, 2δ2 − 1 + d2, 0) or

(µ1, µ2, ν) ∈ E(2δ1 − 1 + d1, 3δ2 − 1, 0) if X = P1 × P1.

Proof. The base locus B of Ψ is of positive dimension and we denote by C its unmixed
curve component. Since Φ is a general parameterization, Lemma 3.1.2 shows that C
is a complete intersection curve defined by an ideal J = (g1, g2) such that deg(g1) =
(δ−d, 0) and deg(g2) = (0, 1). Then, from the results given in Section 3.4, we deduce
that C has no section in degree < (0, 1). Therefore, the assumptions of Theorem 3.2.2
are satisfied. To recover the claimed bounds for the integers (µ, ν), we observe that
in our setting we have e− n1 − n2 = 1− 0− 1 = 0, which proves the case X = P2. If
X = P1 × P1, then we have τi = δi − (δi − di) = di, which concludes the proof.

To be more precise, we remark that we actually proved that the above corollary
holds for any parameterization Φ such that its corresponding congruence of normal
lines Ψ satisfies the assumptions of Theorem 3.2.1 or Theorem 3.2.2.

From a computational point of view, the fact that ν can be chosen to be equal
to zero is extremely important and justifies the theoretical developments in Section
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3.3 that lead us to these lower bounds. Indeed, since ν = 0 the cokernel of the
corresponding matrix is defined solely on X, and not on X × P1. As a consequence,
the orthogonal projections can be computed directly on the surface without computing
their positions on normal lines (see §3.5.2). In Table 3.3 we give the precise value
of the lowest admissible degree, denoted µ0, in terms of the degree and the type of
surface parameterized by Φ.

µ0 Triangular surface Tensor-product surface

Non-rational 6d− 8 (6d1 − 4, 5d2 − 3) or (5d1 − 3, 6d2 − 4)

Rational 9d− 11 (9d1 − 7, 7d2 − 5) or (7d1 − 5, 9d2 − 7)

Table 3.3: Lowest admissible degrees µ0 for building matrix
representations depending on the type of surfaces, namely non-

rational/rational triangular/tensor-product surfaces.

The above theoretical results lead us to use in practice the matrix M(µ0,0) as a
matrix representation of the congruence of normal lines. In what follows we will
denote this matrix by M for simplicity. We recall that its entries are linear forms in
k[x0, . . . , x3], so that M =

∑3
i=0 xiMi where Mi are matrices with entries in k similar

to the previously defined matrices for curves in Chapter 2.

Computational aspects

The computation of M, equivalently of the matrices M0, . . . ,M3, amounts to solve
the linear system formed by the syzygies of Ψ0, . . . ,Ψ3 of degree µ0 (see Table 3.3).
If the parameterization Φ is given with exact coefficients, i.e. if k = Q, then the
computations can be performed over Q, otherwise they are done with floating point
arithmetic with 53 bits of precision, which means that there is no certification on the
results as we are dealing with numerical approximations in the computations.

In computer-aided design mostly used surfaces are up to degree 3 triangular sur-
face or bi-cubic tensor-product surface, for this reason in this chapter we will give
computation time tables only for small degrees. For a general rational cubic surface,
M can be computed in about 28s over Q and about 0.9s on floating point computa-
tions. We notice that this gap in the computation time is expected because of the
growth of the heights of matrix entries over Q (see for instance [57, §1] for more details
on this topic). For a general rational bi-quadratic surface, M is computed in about
31s over Q whereas it is computed in about 0.16s on floating point computationss.
More results are given in Table 3.4 and Table 3.5. We note that these computations
have been made with the software Macaulay2 for the computations over Q, and the
software SageMath for the floating point computations, using an Intel(R) Core(TM)
i7-6600U CPU @ 2.60GHz on a x86 64 machine with 16 GB of RAM..
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non-rational rational
matrix time (ms) time (ms) matrix time (ms) time (ms)

deg(Φ) size floating point over Q size floating point over Q
2 15× 7 2 19 36× 29 15 266
3 66× 51 42 887 153× 150 301 28090
4 153× 132 314 32473 351× 363 2952 –

Table 3.4: Size and computation time of M on floating point arith-
metic and over Q (exact computations) of non-rational and rational

triangular surfaces in milliseconds and in given degrees.

non-rational rational
matrix time (ms) time (ms) matrix time (ms) time (ms)

deg(Φ) size floating point over Q size floating point over Q
(1, 1) 9× 5 1 6 9× 4 1 7
(1, 2) 24× 16 4 32 30× 20 6 125
(1, 3) 39× 27 11 136 51× 36 21 1082
(2, 2) 72× 59 44 1460 120× 108 157 31182
(2, 3) 117× 98 141 10867 204× 188 662 –
(3, 3) 195× 169 575 96704 357× 340 3353 –

Table 3.5: Size and computation time of M on floating point arith-
metic and over Q (exact computation) of non-rational and rational

tensor-product surfaces in milliseconds and in given degrees.

Finally, we emphasize that the corank of M(p) for a general point p and a general
surface parameterization Φ, in which case the linear fiber Lp and the fiber Fp coincide,
is equal to the Euclidean distance degree of Φ, given in §3.1.2. Thus, our method
provides a numerical approach to the computation of the Euclidean distance degree
of the algebraic rational surface Φ (see Table 3.6 and Table 3.7).

Complexity estimation in terms of height

According to the Tables 3.6 and 3.7, one can observe that exact computations, i.e.
computations over Q, are more time consuming than approximate computations, i.e.
computations over floating point numbers. It is because the coefficients that we deal
with during exact computations have many digits. In order to estimate the complexity
for our computations, in this section an upper bound for heights of matrix M(µ,0) is
given in terms of the height of the polynomials defining the parameterization of the
surface Ψ. This section follows from §1.8 and §2.5. Let v be either ∞ or a prime
number p. We recall that Qv is defined to be the completion of Q with respect to the
absolute value v, also Cv is defined to be the completion of the algebraic closure of
Qv with respect to the absolute value v (see §1.8).

Consider the parameterization

ψ : A2
Cv × ACv → A3

Cv
(s, t) × u 7→

(
f1(s,t,u)
f0(s,t,u) , . . . ,

f3(s,t,u)
f0(s,t,u)

)
of the congruence of normal lines to a given surface (see §3.1), where f0, f1, f2, f3

are polynomials of degree d over Cv (one can think them as dehomogenization of
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(3.3)). We emphasize that d stands for degree d for triangular surfaces and bidegree
(d1, d2) for tensor-product surfaces. Let r(µ,1) denotes the number of rows of the
intermediary matrix S(µ,1) described in §3.2.2. Then, r(µ,1) is (d+ µ+ 1)(d+ µ) for
triangular surfaces and 2(d1 + µ1 + 1)(d2 + µ2 + 1) for tensor-product surfaces. We
recall that the height of S(µ,1) is the maximum of the height of fi for i = 0, 1, 2, 3.

Proposition 3.5.1. Let v denote either ∞ or prime number p. The height of the
corresponding matrix representation M(µ,0)(ψ) has the following upper bound

hv(M(µ,0)(ψ)) = max{0, r(µ,1)hv(S(µ,1))log((r(µ,1) − 1)!hv(S(µ,1))
r(µ,1)−1)}.

Proof. See proof of Proposition 2.5.4.

The experiments on height of M(µ,ν) are given in §2.5.1 for similar matrices used in
Chapter 2.

3.5.2 Computation of the orthogonal projections

Given a surface parameterization Φ, the matrix M is computed only once and after-
wards it is stored. It provides a universal representation of the finite linear fibers
of the corresponding congruence of normal lines Ψ. More precisely, given a point
p = (p0 : p1 : p2 : p3) ∈ R3, the cokernel of M(p) =

∑3
i=0 piMi gives a linear represen-

tation of the linear fiber Lp. Thus, if this fiber is finite then classical methods allow
to compute the pre-images of p via Ψ by means of numerical linear algebra techniques
such as singular value decompositions and eigen-computations (see for instance [39,
15, 32, 30], or [75, 18, 64] in a setting which is similar to the ours). In what follows, we
describe the main steps of an algorithm for computing these orthogonal projections in
affine space. It is essentially an adaptation to our context of the inversion algorithm
[75, §2.4] where similar matrices are used for the computation of the intersection
points between 3D lines and trimmed NURBS surfaces.

Input: A point p ∈ R3, a matrix representation M of Ψ and a numerical tolerance ε.
(We will explain ε at Step 2.)

Output: The affine parameters (ui, vi) of φ, i = 1, . . . , l, of the points qi that are the
orthogonal projections of p onto S.

Step 1: Evaluate M at the point p ∈ R3, and denote by r, respectively c, its number
of rows, respectively columns.

Step 2: Compute the approximate cokernel of M(p) via a singular value decomposi-
tion M(p) = USV T : inspecting the singular values, the numerical rank s of M(p) is
obtained within the tolerance ε = |M(p)|∞ · 10−8, where |.|∞ stands for norm infin-
ity, i.e. assume M(p) = (mij)16i6r

16j6c
, then |M(p)|∞ = max16i6r{

∑
16j6c

|mij |} (see [44]).

Then, the submatrix K of U corresponding to the last k := r−s rows is a k×r-matrix
whose rows form a basis of an approximate cokernel of M(p). By construction, the
columns of K are indexed by the polynomial basis used in the computation the M.
For simplicity, we assume that this basis, denoted B, is the following one:

if X = P2, B := {1, u, u2, . . . , uµ, v, vu, vu2, . . . , vuµ, . . . , vµ},
if X = P1 × P1, B := {uµ1vµ2 , uµ1vµ2−1, . . . , uµ1 , uµ1−1vµ2 , . . . , 1}, (3.25)

where µ or (µ1, µ2) are the chosen degrees to build M.
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Step 3: The matrix KT being of rank k, we extract a full-rank k×k - submatrix M1

from KT (for instance by means of a LU-decomposition). Its rows are indexed by an
ordered subset B′ of B. Then, we choose another submatrix M2 of KT corresponding
to the rows indexed by the ordered set u× B′ (multiplication is member-wisely). In
case u.B′ is not contained in B then M has to be rebuilt by increasing by one the
degree with respect to u used to build M and we go back to step 1.

Step 4: Compute the generalized eigenvalues and eigenvectors of the pencil of ma-
trices M1−uM2; these generalized eigenvalues correspond to the v-coordinates of the
orthogonal projections of p. Then we filter them to keep those eigenvalues u1, . . . , ul
that are real numbers and that are contained in the parameter domain of interest,
typically [0, 1] (within a given tolerance).

Step 5: For each generalized eigenvalue ui, i = 1, . . . , l, extract from its corresponding
generalized eigenvector the v-coordinate vi of a pre-image point of p under Ψ, which
is done by computing the ratio of the two first coordinates of this eigenvector (so that
the corresponding ratio of monomials in B is equal to u). Finally, if vi ∈ [0, 1], check
∗ if the point φ(ui, vi) in an orthogonal projection of p on S within the tolerance ε. If
this is the case, then return this point as an orthogonal projection of p on the surface
S.

Remark 3.5.1. Along the algorithm we considered affine parameter values. However,
in Step 2, one can consider the homogeneous monomial basis B in corresponding space
X, after that in Step 3, chose the send submatrix M2 of KT corresponding to the
rows indexed by the ordered set u

ū · B
′, and at Step 4 consider the pencil of matrices

M1− u
ūM2 of which eigenvalues and eigenvectors gives the parameter values u

ū and v
v̄ ,

respectively.

Example 3.5.1. Let’s consider Example 3.2.2, and compute the orthogonal projec-
tions q of the point p = (1 : 2 : 3) in R3 onto the surface S. At the point p, we have
corank(M(2,2,0))(p) = 5 (which is equal to EDdegree, see Table 3.1). The following

matrix is the transpose of the cokernel of (M(2,2,0)(p), i.e. KT in Step 3 of the above
algorithm, with its rows written in biquadratic tensor-product monomial basis. Red
with purple and purple with blue rows are M2 and M1 respectively, as in Step 4.

u2v2

u2v
u2

uv2

uv
u
v2

v
1



−0.685421414 0.0660814878 0.0147592847 −0.537238983 −0.382857655
0.0439704446 0.514793591 0.346591496 −0.4.22032315 0.586864585
0.360640001 −0.229700901 0.523632427 −0.2.51154450 −0.164865982
−0.590414271 −0.106984279 0.301430422 0.481345386 0.333260359
−0.119454498 −0.238405369 0.123702832 −0.291896878 −0.121337251
0.0335820812 0.551596694 0.167283215 0.0872972013 −0.183711883
0.0250897540 −0.201520074 0.668545047 0.181893804 −0.220840750
−0.150984083 0.289888760 0.156097918 0.260172728 −0.119843326
−0.103879941 −0.425053866 0.000419883743 −0.211875596 0.509078454


Then, there is only one real-valued eigenvalue which is equal to 1.308507934982006.

It corresponds to the parameter value u of the orthogonal projection q of p onto S.
The corresponding parameter value of v is computed via the corresponding eigenvec-
tor which is 2.1847721641433284. Thus, evaluating u and v parameter values into
the dehomogenization of the parameterization of the surface S in (3.11) gives the
coordinates of orthogonal projection q in R3 of p onto S. We find

q = (1.308507934982006, 2.18477216414, 2.8587917129093547).
∗This last check is necessary because of the existence of ‘ghost points’ in the cases where the linear

fiber is not the fiber.
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Example 3.5.2. Let us consider Example 3.2.2. The rank of M(2,2,0) at a general
point in P3 is equal to 4, so that the dimension of its cokernel is equal to 5, which is
nothing but the Euclidean distance degree of Φ.

Now, let p := (0 : 0 : 2) ∈ R3. The computation of the cokernel of M(2,2,0)(p)
returns the following matrix

K :=


2 0 0 0 1 0 0 0 0
0 2 0 −1 0 1 0 0 0
−1 0 1 0 0 0 1 0 0
0 −1 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 1


whose columns are indexed by the monomial basis B := {u2v2, u2v, u2, uv2, uv, u, v2, v, 1}.
According to the shape of B, we define M1 as the first 5 rows of KT (red and purple
ones) and M2 as the last 5 rows, except the very last one (purple and blue ones), of
KT . Then solving for the eigenvectors of the pencil (M2,M1), we get the following
list of eigenvalues

{0, 1.73205081i,−1.73205081i, 1,−1}

and their corresponding eigenvectors sorted by columns (with tolerance 10−18)


0 0.577498923 0.577498923 0.492765476 0.450536889
0 −1.22439500 · 10−16 + 0.3.33419159i −1.22439500 · 10−16 − 0.333419159i 0.492765476 −0.450536889
0 −0.577498923− 3.59905499 · 10−17i −0.577498923 + 3.59905499 · 10−17i 0.492765476 0.450536889
0 8.84372488 · 10−17 − 0.333419159i 8.84372488 · 10−17 + 0.333419159i 0.492765476 −0.4.50536889
1 0.208118837 + 0.25949926i 0.208118837− 0.25949926i 0.169495558 0.433665823



From here, we see that there are three real orthogonal points whose u-parameter values
are u1 = 0.0, u2 = 1.0000000000000002 and u2 = −1.0000000000000007. Then,
using the basis B and the first two rows of the eigenvectors matrix, we deduce their v-
parameter values: v1 = 0, v2 = 0.9999999999999996 and v3 = −0.9999999999999996.
The real orthogonal projections of p on the Segre surface are then obtained as Φ(ui, vi),
i = 1, 2, 3. These computations are illustrated (in SageMath) with Figure 3.3.

Figure 3.3: Orthogonal projections (yellow points) of the affine point
(0, 0, 2) (green point) on the Segre variety.

3.5.3 Experiments

The algorithm described in Section 3.5.2 has been implemented in the software Sage-
Math. In Table 3.7, respectively Table 3.6, we report on the computation time to
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inverse a general point of a general non-rational and rational tensor-product, respec-
tively triangular surfaces. All the computations are done approximately, over the real
numbers R, and it is assumed that the matrix representation M has already been
computed and stored.

non-rational rational
deg(Φ) size EDdeg time (ms) size EDdeg time (ms)

2 15× 7 9 3 36× 29 13 3
3 66× 51 25 5 153× 150 39 13
4 153× 132 49 18 351× 363 79 113

Table 3.6: Size and computation time in milliseconds of the inversion
of M(p) of non-rational and rational triangular surfaces.

non-rational rational
deg(Φ) size EDdeg time (ms) size EDdeg time (ms)

(1, 1) 9× 5 5 1 9× 4 6 1
(1, 2) 24× 16 11 2 30× 20 14 2
(1, 3) 39× 27 17 3 51× 36 22 3
(2, 2) 72× 59 25 4 120× 108 36 10
(2, 3) 117× 98 39 14 204× 188 58 29
(3, 3) 195× 169 61 76 357× 340 94 137

Table 3.7: Size and computation time in milliseconds of the inversion
of M(p) of non-rational and rational tensor-product surfaces.

The method we introduced is particularly well adapted to problems where inten-
sive orthogonal projection computations have to be performed on the same geometric
model, thanks to the pre-computation of the matrix representation M. Indeed this
matrix allows to rely on powerful and robust numerical tools of linear algebra; see
for instance Figure 3.4 where orthogonal projections are close to the self-intersection
locus of the surface.

Finally, we mention that the method proposed by Thomassen et al. [78] is also
based on the use of congruences of normal lines, but on the algebraic side they use
high degree equations of the Rees algebra associated to the defining polynomials of the
congruence map (called moving surfaces) (see [78, §3]), which make the computations
heavy in terms of time and memory. In our approach, we overcome this difficulty using
the results in Section 3.3 that allows us to use low degree syzygies, i.e. equations of
the above Rees algebra that are linear in the space variables (i.e. moving planes, and
not moving surfaces of high degree in the space variables).
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Figure 3.4: Orthogonal projections of a point onto a non-rational
bi-quadratic surface patch close to its self-intersection locus.

3.5.4 Comparison with homotopy continuation

In this section, we compare our method for computing orthogonal projections of a
point onto a rational algebraic surface with the method of homotopy continuation.
In the experiments of this section, we only consider tensor-product surfaces. Indeed
we have the similar results for triangular surfaces. Suppose given a surface param-
eterization ϕ as in (3.1) and a point p = (px, py, pz) in R3. We consider two partial
derivatives F1, F2 of the square distance function between p and the surface S, denoted
by dist(p, ϕ(u, v)), more precisely

F1 = (f1 − pxf0) ∂
∂u(f1f0 ) + (f2 − pxf0) ∂

∂u(f2f0 ) + (f3 − pxf0) ∂
∂u(f3f0 ),

F2 = (f1 − pxf0) ∂∂v (f1f0 ) + (f2 − pxf0) ∂∂v (f2f0 ) + (f3 − pxf0) ∂∂v (f3f0 ) (3.26)

We choose f0, f1, f2, f3 as dense polynomials over R such that all are of the same
given degree. We use phcpy interface of SageMath for solving F1 = 0 and F2 = 0
via a homotopy method which is based on the work [81] (see [70] for details about
phcpy interface). We used this interface online through a JupyterHub server (see
[70]) and compared the timing of the inversion of Mν for the smallest possible matrix
given in Table 3.3 and the timing of homotopy method over 50 examples for each
given degree of such randomly choosen tensor-product surfaces. For this comparison,
we supposed that for each example, the corresponding Mν was pre-computed. We
observed that inversion is approximately 27 times faster than homotopy method for
bi-cubic surfaces and almost 92 times faster for bi-quartic surfaces.

Let us denote the bidegre of F1 and F2 by (d11 , d12) and (d21 , d22) respectively.
Then, the corresponding bi-homogeneous Bézout bound is given by

d11d22 + d12d21 ,

(see [71, 65]). The homotopy method of phcpy interface computes exactly the Bézout
bound number of solutions which is more than the Euclidean distance degree. Thus
it computes more points than the orthogonal projections (for rational tensor-product
surfaces see Table 3.8).
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non-rational rational
deg(Φ) Bézout EDdeg deg(F1),deg(F2) Bézout EDdeg deg(F1),deg(F2)

(1, 1) 5 5 (1,2),(2,1) 13 6 (2,3),(3,2)
(1, 2) 11 11 (1,4),(2,3) 28 14 (2,6),(3,5)
(1, 3) 17 17 (1,6),(2,5) 43 22 (2,9),(3,8)
(2, 2) 25 25 (3,4),(4,3) 61 36 (5,6),(6,5)
(2, 3) 39 39 (3,6),(4,5) 94 58 (5,9),(6,8)
(3, 3) 61 61 (5,6),(6,5) 145 94 (8,9),(9,8)

Table 3.8: Bi-homogeneous Bézout bound of F1 and F2 in (3.26) of
tensor-product surfaces in given degrees.

3.6 Orthogonal projection onto a rational space curve

For the sake of completeness, in this section we apply our method for the computation
of orthogonal projection of points onto a rational space curve. In this case, it can be
performed simply because it relies on the solving of a univariate polynomial, which
can be done efficiently. Indeed, suppose given a parameterization of a rational space
curve C of degree d

φ : A1 99K A3

t 7−→
(
f1(t)

f0(t)
,
f2(t)

f0(t)
,
f3(t)

f0(t)

)
. (3.27)

The polynomials fi(t) are assumed to be of degree (at most) d and the map φ is
assumed to be birational onto C. A tangent vector to the curve C at the point φ(t),
if it is nonsingular and well-defined, is given by

τ(t) = (δ1(t), δ2(t), δ3(t))

where, for all i = 1, 2, 3,

δi(t) := det

(
f0(t) fi(t)
f ′0(t) f ′i(t)

)
= f0(t)f ′i(t)− fi(t)f ′0(t), (3.28)

is a polynomial of degree at most 2d − 2 (the leading coefficients of degree 2d − 1
cancel). Thus, the orthogonal projection of a point p = (x, y, z) ∈ R3 onto the curve
C correspond to the values of the parameter t that are solutions of the equation

(p− φ(t)) .τ(t)v = (xδ1 + yδ2 + zδ3)f0 −
3∑
i=1

δifi = 0, (3.29)

which is a polynomial equation of degree at most 3d− 2 (notice that singular points
that are local to the parameter, i.e. such that τ(t) = 0, are solutions of (3.29)). In
what follows, we will show the syzygy-based approach we developed for the com-
putation of orthogonal projections onto a surface may be applied to space curves
and that amounts essentially to solve this same univariate polynomial by means of
eigen-computations.

We keep the same notation as (3.28). The normal plane to the curve C at the point
φ(t) is generated by two vectors of rational functions; we choose two such vectors and
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denote them by

η1(t) = (p1(t), p2(t), p3(t)), η2(t) = (q1(t), q2(t), q3(t)).

Standard candidates for these vectors are two independent linear combinations of the
three canonical vectors δ2(t)

−δ1(t)
0

 ,

 δ3(t)
0

−δ1(t)

 ,

 0
δ3(t)
−δ2(t)

 .

Except for finitely many values of t ∈ A1, η1(t) and η2(t) chosen as above will generate
all the normal planes to C at the point φ(t), t ∈ [0, 1]. But instead of looking at these
Koszul-type syzygies of the tangent vector τ(t), a more interesting choice is to look at
syzygies of smaller degree. To be more precise, assume for simplicity that δ1(t), δ2(t)
and δ3(t) have no common factor. By the Hilbert-Burch Theorem [41, Theorem 20.15]
there exist two vectors of polynomials (p1(t), p2(t), p3(t)) and (q1(t), q2(t), q3(t)) and
a nonzero constant c ∈ k \ {0} such that p1

p2

p3

 ∧
 q1

q2

q3

 = c

 δ1

δ2

δ3

 .

These two vectors generate the first syzygy module of δ1(t), δ2(t) and δ3(t). Moreover,
if we define µ1 to be the maximum of the degree of p1, p2, p3 and µ2 to be the maximum
of the degree of q1, q2, q3 then µ1 + µ2 = 2d − 2 which is the degree of the δi’s for
i = 1, 2, 3. Without loss of generality, we will assume that µ1 6 µ2.

As a consequence of the above discussion, the normal plane at a nonsingular and
well-defined point φ(t) of C, can be generated by both vectors

η1(t) =

 p1(t)
p2(t)
p3(t)

 , η2(t)

 q1(t)
q2(t)
q3(t)


and hence the family of normal planes to the curve C can be parameterized by the
rational map

ψ : A2 × A1 99K A3

(u, v)× t 7→ φ(t) + u.η1(t) + v.η2(t). (3.30)

It follows that the orthogonal projection of a point p ∈ R3 onto C can be obtained
from its pre-images under ψ. In order to apply our syzygy-based approach to solve
this inversion problem, we first need to homogenize the parameterization ψ. For that
purpose, we introduce some notation: we denote by Fi(t̄, t) the homogenization of
fi(t) of degree d, by Pj(t̄, t) the homogenization of pj(t) of degree µ1 and by Qj(t̄, t)
the homogenization of qj(t) of degree µ2. In addition, we also define ∆i to be the
homogenization of δi of degree 2d− 2 and we set D := max{d, µ2}.

Ψ : P2 × P1 99K P3

(w : u : v)× (t̄ : t) 7→ (Ψ0 : Ψ1 : Ψ2 : Ψ3) (3.31)
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where

Ψ0 := wt̄D−dF0, Ψi := wt̄D−dFi + ut̄D−µ1Pi + vt̄D−µ2Qi, for i = 1, 2, 3.

Thus, the Ψi’s are bi-homogeneous polynomials of degree (1, D).

Applying Theorem 3.2.1 and Theorem 3.2.2, we see that the orthogonal projec-
tions of points in P3 onto the curve C can be computed from the matrix representation
of the parameterization Ψ of normal planes to the curve C, denoted by M(Ψ)(µ,ν), un-
der some hypothesis.

Lemma 3.6.1. For a general curve parameterization φ, the curve component of the
base locus B of its corresponding congruence of normal planes Ψ as defined in (3.31),
is at most one dimensional and given by

(a) the ideal (w, t̄), if µ2 = d− 1,

(b) the ideal (w, ut̄2, v), if µ2 = d,

(c) the ideal (w, v, t̄µ2−d), if µ2 > d.

We recall that µ2 > µ1, µ1 + µ2 = 2d− 2 and D = max{d, µ2}.

Proof. Analogous to proof of Lemma 3.1.2:

(a) If µ2 = d− 1 then Ψ0 = wF0 and Ψi = wFi + uPi + vQit̄, for i = 1, 2, 3.

(b) If µ2 = d, then Ψ0 = wF0 and Ψi = wFi + uPit̄
2 + vQi, for i = 1, 2, 3. Thus,

the ideal (w, ut̄2, v) defines a point.

(c) If µ2 > d, then Ψ0 = wF0t̄
µ2−d and Ψi = wFit̄

µ2−d + uPit̄
µ2−µ1 + vQi, for

i = 1, 2, 3.

Lemma 3.6.2. Let Ψ be a general parameterization of degree (1, D) over P2×P1 and
let p be a point in P3 such that the linear fiber Lp is finite.

1. Assume that we are in one of the two following cases:

(a) The base locus B is finite, possibly empty,

(b) dim(B) = 1, the unmixed component of the base locus C has no section
in degree < (0, D) and Isat = I ′sat where I ′ is an ideal generated by three
general linear combinations of the polynomials Ψ0,Ψ1,Ψ2,Ψ3.

Then, we consider any degree (µ, ν) such that

(µ, ν) ∈ E(1, D − 1) ∪ E(0, 3D − 1). (3.32)

2. We are in the case: C having no section in degree < (0, D). Assume that,

(a) if µ2 > d, then I ⊂ J where J = (v, t̄µ2−d),

(b) if µ2 = d− 1, then I ⊂ J where J = (w, t̄).

such that (I : J) defines a finite subscheme in P2 × P1. Then, we consider any
degree (µ, ν) such that

(µ, ν) ∈ E(1, D − 1) ∪ E(0, 4D − 1). (3.33)

(D = µ2 if µ2 > d = deg(Fi) for i = 0, . . . , 3 or D = d if µ2 = d− 1).
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Then, for any such degree (µ, ν) we have

corankM(µ,ν)(p) = deg(Lp).

Proof. The proof of the case 1. is the same as the proof of Theorem 3.3.1. Case 2.
follows from

(a) if µ2 > d, then (g1, g2) = (v, t̄µ2−d), and m1 = 1, n1 = 0,m2 = 0, n2 = µ2 − d,

(b) if µ2 = d− 1, then (g1, g2) = (w, t̄), and m1 = 1, n1 = 0,m2 = 0, n2 = 1.

We also notice that if µ2 = d, the base locus B is not one dimensional (see Lemma
3.6.1.). Then, for the parameterization Ψ of degree (1, D) Theorem 3.2.2 becomes

E(1 + η,D − 1) ∪ E(0, 3D − 1 +D −min{n1, n2}),

where η = max{1 −m1 −m2, 0}, since degree n1, n2 are over the curve parameters,
and degrees m1,m2 are over the parameters of normal plane to the curve.

By definition, such a matrix M(Ψ)(µ,ν) (as in Lemma 3.6.2) is filled with those
syzygies of the polynomials Ψ0, . . . ,Ψ3 that are independent of the variables (w, u, v).
The following proposition shows that these syzygies are actually closely connected to
the equation (3.29).

Proposition 3.6.1. The syzygies of Ψ0, . . . ,Ψ3 that only depend on the variables t̄, t
form a free k[t̄, t]-module of rank 1. Moreover, it is generated in degree 3d− 2 by the
vector

(F1∆1 − F2∆2 + F3∆3,−F0∆1,−F0∆2,−F0∆3) (3.34)

providing its four polynomial coordinates do not have a common factor.

Proof. From the definition of the parameterization Ψ, the 4-uple g0, g1, g2, g3 of ho-
mogeneous polynomials in R := k[t̄, t] of the same degree is a syzygy of Ψ0,Ψ1,Ψ2

and Ψ3 if and only if it satisfies to the matrix equality

 F0(t̄, t) F1(t̄, t) F2(t̄, t) F3(t̄, t)
0 P1(t̄, t) P2(t̄, t) P3(t̄, t)
0 Q1(t̄, t) Q2(t̄, t) Q3(t̄, t)

×


g0(t̄, t)
g1(t̄, t)
g2(t̄, t)
g3(t̄, t)

 = 0.

This matrix of size 3× 4 defines a graded map ϕ : R4 → R(d)⊕R(µ1)⊕R(µ2) and it
is known that its kernel is a free R-module of rank 1 providing the ideal generated by
its 3×3 minors has depth at least 2, and in this latter case these minors generate this
kernel. This proves the proposition since these minors are precisely the coordinates
of the vector (3.34).

To conclude, we notice that for a general choice of curve parameterization one
has µ1 = µ2 = d − 1 = deg(δi)

2 for i = 1, 2, 3 (deg(δi) = 2d − 2, for a general curve
parameterization of degree d (see (3.28))); in this case D = d (see (b) in the proof
of Lemma 3.6.1) and Mν0(Ψ) is expected to be a rank 2 matrix composed of two
columns and 3d rows, with a kernel of dimension at most 3d − 2 which is equal to
degree of the equation in (3.29).
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As a consequence, the method we introduced in §3.5.2 for computing the orthogo-
nal projections of points onto a rational algebraic surface can be seen as an extension
of the classical approach consisting of solving (3.29) for rational curves.

The direct generalization of (3.29) leads to solve bivariate polynomial system. As
we observed in §3.5.4, although our approach requires more sophisticated develop-
ments, it allows to reduce remarkably the computation time which is interesting for
practical applications in CAGD.



85

APPENDIX A

Distance between a circle and a line in
space

This appendix describes the algorithms computing the distance between a circle and
a line, also between an arc of a circle and a line segment in space that I experimented
and implemented during my 3-month secondment at Missler Software. These prob-
lems were chosen to improve some existing algorithms in their CAD/CAM software
called TopSolid. I prepared a module corresponding to these computations, based
on C# programming language. The methods which are described in this appendix
are implemented in C# and integrated into their interface. I changed algorithmically
the existing approches in order to consider all critical points of corresponding dis-
tance problem and improve the accuracy together with the computation time. The
distance computation algorithms in TopSolid work only after if there is no detected
intersection between the line and the circle which we consider. For this reason, my
algorithms exclude the case of intersection.

In §A.1, we give the notations of some geometric objects such as line, circle, arc
of a circle in space as they are used in TopSolid software. In §A.3, the algorithm that
I implemented for distance problem between a circle and a line in space is explained.
In order to improve the computation time, the problem is studied in three cases : the
line is perpendicular to the plane where the circle is located, the line is in the same
plane as the circle, and the general case. Also the corresponding algorithm is given
(see Algorithm 3). Mainly, the existing algorithms and the new approach write the
same distance function in different ways. The improvements are with respect to the
consideration of all critical points and the fact that the computation only depends on
the parameter value of the line. We chose to use the parameter value of line because
the rational parameterization of the circle given in Notation A.1.2 causes distorsion
around the point (−1, 0, 0) that it cannot cover. The more we approach to this point,
the more we have numerical instability. This is because the limit of the derivative
of the coordinates of the parameterization of the unit circle given in Notation A.1.2
approaches fast to zero, while the parameter value of the parameterization is going to
−∞. Our choice of using the parameter value of line allows us to avoid any possible
rotations to stay away from the point (−1, 0, 0) contrarily to the existing algorithm.
We consider the real valued critical points of this distance problem according to a
root classification theorem recalled in §A.3.4. In §A.4, the new algorithm that I
implemented for the second problem on distance between an arc of a circle and a line
segment in space is given and explained (see Algorithm 4). Finally, the observations
mainly on tolerance choices, problems of existing algorithms in TopSolid, comparisons
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of the new algorithms that I implemented with the previous algorithms in TopSolid
for different cases are explained and illustrated with several examples.

A.1 Notations

We emphasize that existing methods in TopSolid software do not consider line seg-
ments, they consider only entire lines.

Notation A.1.1. The origin in space is denoted by O, i.e. O = (0, 0, 0) in R3.
The coordinates of R3 are denoted by (x, y, z). The plane of z = 0 will be called the
XY -plane.

Notation A.1.2. A circle C in R3 is given by its center O and radius r and its
plane. A parameterization of the unit circle centered at O with respect to the cartesian
coordinates ( #»ei,

#»ej ,
#»ek) in XY -plane is given by(

1− u2

1 + u2
#»ei,

2u

1 + u2
#»ej , 0

)
. (A.1)

Definition A.1.1. An arc A of a circle is given by a plane, a center and a radius
r of the circle containing the arc and the parameter values of two extremities of
A with respect to their increasing values in [0, 2π] according to the trigonometric
parameterization

(r cos(u), r sin(u), 0) (A.2)

of the unit circle centered at O and of radius r in the XY -plane. The direction of the
arc is decided weather a randomly chosen third point on the circle belongs to the arc.

Notation A.1.3. A line L in R3 is given by a point P0 = (x0, y0, z0) and a non-zero

vector
#»

V =

ab
c

 in space such that L can be parameterized by t 7→ P0 + t
#»

V where t

is a parameter in R.

Definition A.1.2. The distance between any two points p1 = (x1, y1, z1) and p2 =
(x2, y2, z2) in R3 is defined as

dist(p1, p2) = ||p1 − p2||2 =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Definition A.1.3. With the previous notation, distance function between C and L is
defined as

dist(C(u), L(t)) =

√
(
1− u2

1 + u2
− (x0 + ta))2 + (

2u

1 + u2
− (y0 + tb))2.

The critical points on C and on L are defined to be the couples of points (pc, pl) which
are the critical points of the partial derivatives P1 and P2 of the square distance
function between C and L such that

P1 = (L(t)− C(u))(
dC
du

) and P2 = (L(t)− C(u))(
dL

dt
).
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Then, the distance between C and L is

dist(C, L) = min
(u,t)∈R2

{dist(C(u), L(t))}.

The closest points on C and on L, are defined to be couples of critical points (pc, pl)
minimizing the distance function between the circle C and the line L, i.e.

{(pc, pl) : pc ∈ C pl ∈ L and dist(pc, pl) = dist(C, L)}.

A.2 Overview of existing methods in TopSolid software
computing the distance between an arc of a circle
and a line in space

In this section, we explain the existing algorithms in TopSolid’s library. They have
two algorithms for computing couples of closest points on an arc of a circle and a line
: the first one computes on the parameter value of circle, the second one computes
on the parameter value of the line.

A.2.1 On parameter value of circle

This approach also uses elementary geometry and a solver computing solutions of
a degree four polynomial equation. Firstly, it picks randomly a point P on the
circle C, and it projects orthogonally this point and the center of C onto L. Denote
them as M and A respectively. After that, it considers the critical points of the
polynomial obtained by Pythagore Theorem in the triangle ÌPMA as the candidates
of the parameter values of the closest points pc on C.

Figure A.1: Illustration of the ÌPMA from which TopSolid computes
the critical points (pc, pl).

A.2.2 On parameter value of line

We explain the existing algorithm in TopSolid which computes the distance using the
parameter value of the given line. Similarly to §A.2.1, this approach also uses elemen-
tary geometry and a solver for computing the solutions of a degree four polynomial
equation. Firstly, it projects the line L into the plane of the circle C. After that,
it picks randomly a point P on L, and projects it orthogonally on C, denotes this
point as M and on XY -plane, denotes this point as P ′ . Finally, it studies the critical

points of the polynomial obtained by using Pythagore Theorem in the triangle Ó�PP ′M
as parameter value of the candidates of the closest points on the line L.
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Figure A.2: Illustration of the ÌPP ′M from which TopSolid computes
the critical points (pc, pl).

A.3 Problem 1 : Distance between a circle and a line in
space

In this section, how we treated the distance problem between a circle and a line in
space is explained. The new algorithm mainly considers the resultant of two partial
derivatives of the square distance function between the circle and the line (resultant
of P1 and P2 given in (A.8)) depending on the parameter value of the line. The choice
of eliminating the parameter value of the circle is based on the fact that the ratio-
nal parameterization of the unit circle in XY -plane given in (A.1) causes distorsion
around the point (−1, 0, 0) ∈ R3. The closer the critical point is to (−1, 0, 0), the
more we have numerical unstability. This is because the limit of the derivative of
the coordinates of the parameterization approaches fast to zero, while the parameter
value of the parameterization is going to −∞. Solutions of resultant that we consider
are computed by using a TopSolid’s solver based on Ferrari’s solutions for quartics.
The case of the line is perpendicular to the plane where the circle is and the case of
the line and the circle are both in the same plane are simplier and they do not require
the resultant computation. In order to reduce the computation time, we studied such
a distance problem in three cases.

In the sequel, the circle C and the line L are as in Notation A.1.2 and Notation
A.1.3, respectively. We recall that

L(t) =

x0

y0

z0

+

ab
c

 t,

where t is a real parameter value. Assume that C and L do not intersect. We may
always apply an affine transformation to the circle C and the line L which sends
the circle to XY -plane and its center to the origin. We always consider C and L
multiplied by such a matrix and denote them as C′ and L′, respectively. We call this
multiplication as preparation step for our algorithms in this section. Similarly, one
can multiply C′ and L′ and the couple of critical points (p′c, p

′
l) with the inverse of this

transformation matrix to take them back into their initial positions. In this section,
we call this inverse multiplication as final step in our algorithms. We recall that our
algorithms exclude the case intersection of the circle and the line.
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A.3.1 The line is perpendicular to the plane where the circle is lo-
cated

In this case, with the previous notation we have a = 0 and b = 0. Also we have
already mentioned that the new algorithm is based on the resultant computation. In
§A.3.3, we will see that this resultant yields a polynomial of degree four. However, in
this situation, there is only one couple of closest points (pc, pl) on the circle C and the
line L, which is proved later in Proposition A.3.1. In addition, if line is perpendicular
to the plane of circle and passing through its center, we have infinite number of critical
points. This case is detected and the algorithm deals with the case where there is a
finite number of critical points.

Figure A.3: The circle is in XY -plane, and the line is vertically
passing through the XY -plane.

Lemma A.3.1. The critical points pl and pc on L and C respectively are the couple
of points (pc, pl) such that pl is the point where L intersects with XY -plane, i.e.
pl = (x0, y0, 0) for x, y ∈ R and

pc = (
x0r

||pl||
,
y0r

||pl||
, 0), (A.3)

where ||pl|| 6= 0 and ||.|| stands for the Euclidean norm.

Lemma A.3.2. The distance between C and L is

dist(C, L) = dist(C, pl) = |
√
x2

0 + y2
0 − r|. (A.4)

Here the case ||pl|| = 0 is detected by the algorithm and it is excluded, since it is the
case of infinite number of critical points.

A.3.2 The line is in the same plane as the circle

In this case, with the previous notation, we have z0 = 0 and c = 0.

Figure A.4: The circle and the line are both in XY -plane.
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Lemma A.3.3. The critical points pc and pl on C and L respectively are the couple
of points (pc, pl) such that pl is closest point of L to the origin and

pc = (
x0r

||pl||
,
y0r

||pl||
, 0), (A.5)

where ||pl|| 6= 0 and ||.|| stands for the Euclidean norm. Thus, pl can be computed
by the extremas of the square distance function between L and the origin O, i.e pl is
obtained for t value satisfying

(L(t)−O)
dL(t)

dt
= 0⇔ t =

−(ax0 + by0)

a2 + b2
. (A.6)

Remark A.3.1. One may notice that a2 + b2 is never equal to 0 because it is only
the case where L is perpendicular to the plane of circle, i.e. §A.3.1.

Lemma A.3.4. Let pl = (xl, yl, 0). Then, the distance between C and L is given by
the distance function

dist(C, L) =
√
x2
l + y2

l − r. (A.7)

A.3.3 General case

In order to find the distance between the circle C and the line L, one may look for
the parameter values either t or u which minimize the distance function between L
and C

dist(L(t), C(u)).

For this reason, we study the square distance function between L and C, i.e.

||L(t)− C(u)||2,

and its extremas, i.e.

P1 = (L(t)− C(u))(
dC
du

) = 0 and P2 = (L(t)− C(u))(
dL

dt
) = 0. (A.8)

We denote the resultant of P1 and P2 with respect to parameter u by Resu(P1, P2).
Resu(P1, P2) is a polynomial of degree 4 in t variable. Let t1, t2, t3, t4 be its roots.
Then,

Lemma A.3.5. Let tj ∈ {t1, t2, t3, t4}. The distance between C and L is given by

dist(L, C) = min
16j64

{dist(L(tj), C) =

√
(
√

(x0 + atj)2 + (y0 + btj)2 − r)2 + (z0 + xtj)2}.(A.9)

Lemma A.3.6. The closest points pc and pl on C and L respectively are the couples
of points (pc, pl) such that

pc = (
(x0 + ati)r

||pl||
,
(y0 + bti)r

||pl||
,
(z0 + cti)r

||pl||
) and (A.10)

pl = (x0 + ati, y0 + bti, z0 + cti) (A.11)
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for all ti verifying the equation (A.9).

Notation A.3.1. Let (pci , pli) for i = 1, 2, 3, 4 denote the critical points on the circle
C and on the line L respectively.

A.3.4 Some observations on the number of the real solutions of re-
sultant in §A.3.3

In this section, using mainly root classification (see [84, 1]) of the resultant given in
§A.3.3, we deduce the number of real solutions which are the critical point(s) for the
distance function between the line and the circle given in Definition A.1.2.

Theorem A.3.1 ([84]). Root classification for a quartic polynomial,

a0t
4 + a1t

3 + a2t
2 + a3t+ a4, (a0 6= 0),

gives the number of the real roots with multiplicities and the number of the complex
roots.

1) D4 > 0 ∧ D3 > 0 ∧ D2 > 0 4 real roots
2) D4 > 0 ∧ (D3 6 0 ∨ D2 6 0) no real root
3) D4 < 0 2 distinct real roots
4) D4 = 0 ∧ D3 > 0 1 double, 2 distinct real roots
5) D4 = 0 ∧ D3 < 0 1double real root
6) D4 = 0 ∧ D3 = 0 ∧ D2 > 0 ∧ E = 0 4 real roots
7) D4 = 0 ∧ D3 = 0 ∧ D2 > 0 ∧ E 6= 0 1 real root of multiplicity 3

and 1 distinct real root
8) D4 = 0 ∧ D3 = 0 ∧ D2 < 0 no real root
9) D4 = 0 ∧ D3 = 0 ∧ D2 = 0 1 real root of multiplicity 4,

where

D2 = 3a2
1 − 8a2a0,

D3 = 16a2
0a4a2 − 18a2

0a
2
3 − 4a0a

3
2 + 14a0a3a1a2 − 6a0a4a

2
1 + a2

2a
2
1 − 3a3a

3
1,

D4 = 256a3
0a

3
4 − 27a2

0a
4
3 − 192a2

0a3a
2
4a1 − 27a4

1a
2
4 − 6a0a

2
1a4a

2
3 + a2

2a
2
3a

2
1 − 4a0a

3
2a

2
3+

18a2a4a
3
1a3 + 144a0a2a

2
4a

2
1 − 80a0a

2
2a4a1a3 + 18a0a2a

3
3a1 − 4a3

2a4a
2
1 − 4a3

1a
3
3+

16a0a
4
2a4 − 128a2

0a
2
2a

2
4 + 144a2

0a2a4a
2
3,

E = 8a2
0a3 + a3

1 − 4a0a1a2.

Proposition A.3.1. The resultant of P1 and P2 (as in (A.8)) with respect to u,
evaluated at a = 0 and b = 0, i.e. one considers the lines which are perpendicular to
the plane of the circle with the notation of §A.3.1, has one real root of multiplicity
4. (The case of the line passing through the center of the circle for which there exist
infinitely many closest points on the circle is excluded.)

Proof. If a = 0 and b = 0, then by Theorem A.3.1 D2, D3 and D4 become zero for
all c, x, y, z ∈ R. Hence, by the root classification above there exist one real root of
multiplicity 4.
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Algorithm 3: Distance between the circle C and the line L.

Input : Circle C, the line L as in Notation A.1.2 and Notation A.1.3
respectively.

Output: dist(C, L) and (pci , pli) for i = 1, 2, 3, 4.
1: Do the preparation step. Multiply C by a transformation matrix to send it to
XY -plane and its center to the origin. Multiply L by the same matrix. Denote
them as C′ L′ such that

L′(t) =

x′0y′0
z′0

+

a′b′
c′

 t.
2: if (according to §A.3.1 ) L′⊥XY -plane then

Compute the point (x′0, y
′
0, 0) and denote it as p′l1 .

Compute the point (
x′0r

||p′l||
,
y′0r

||p′l||
, 0) and denote it as p′c1 .

Do the final step i.e. multiply p′l1 , p
′
c1 by the inverse of the transformation

matrix in Step 1. Denote them as pl1 , pc1 .

Compute the distance dist(pl, C) = |
√
x′20 + y′20 − r|.

3: else if (according to §A.3.2) L′ ⊂ XY -plane then

Compute the point
−(a′x′0+b′y′0)

a′2+b′2
and denote it as t.

Compute p+
#»

V t and denote it as p′l1 .

Compute the point (
x′0r

||p′l1 ||
,
y′0r

||p′l1 ||
, 0) and denote it as p′c1 .

Compute the point (xl, yl, 0) and denote it as p′l1 .
Do the final step i.e. multiply p′l1 , p

′
c1 by the inverse of the transformation

matrix in Step 1. Denote them as pl1 , pc1 .

Compute the distance dist(C, L) =
√
x2
l + y2

l − r.

4: else
(according to §A.3.3)

(a) Evaluate the closed form of the resultant in §A.3.3 and solve it. Denote its
solutions as t1, t2, t3, t4.

(b) Go to the algorithm (based on the Theorem A.3.1 to get the number of the
real solutions of the resultant in the previous step. Denote it as k.

for i = 1 to k do
Compute the point p+ #»v t′i and denote it as p′li .

Compute the point (
(x′0+a′t′i)r

||p′li ||
,

(y0+b′t′i)r

||p′li ||
,

(z0+c′t′i)r

||p′li ||
) and denote it

as p′ci .
Compute the distance di := dist(p′li , p

′
ci) =√

|
√

(x′0 + a′t′i)
2 + (y′0 + b′t′i)

2 − r|2 + (z′0 + c′t′i)
2

Store all di’s.

Denote min(d1, d2, d3, d4) as dist(C, L).
Do the final step i.e. multiply p′l1 , p

′
c1 by the inverse of the transformation

matrix in Step 1. Denote them as pl1 , pc1 .
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A.4 Problem 2 : Distance between an arc of a circle and
a line segment in space

The new Algorithm for distance between an arc of a circle and a line segment uses the
outputs of the Algorithm 3 for problem 1, described in §A.3, on which we apply the
preparation step. Namely its inputs are the outputs of the Algorithm 3 multiplied
by a transformation matrix which sends the circle C to the XY -plane and its center
to the origin. Let C′, L′, p′l, p′c be respectively the transformed C, L, pl, pc by a such
transformation matrix.

Notation A.4.1. Let ea1 , ea2 denote the extremities of the arc A of C with respect to
the direction of the arc A as in Definition A.1.1.

Definition A.4.1. A segment S of the line L is parameterized as S(t) = (1−t)s1+ts2

with t ∈ [0, 1] where es1 , es2 are its extremities.

For the case that line is perpendicular to the circle plane, described in §A.3.1,
and they are both in the same plane, described in §A.3.2, the Algorithm 3 finds one
couple of closest points (pc, pl). For the general case §A.3.3, the algorithm runs for
each couple (pc, pl) obtained by the real roots of the resultant of the equations giving
extremas of the square distance function between the circle and the line, described in
§A.3.3.

The algorithm considers the distance computation into 2 cases : the closest points
(pl, pc) on L and on C are contained simultaneously in S and A respectively and the
other situations.

Notation A.4.2. Let the orthogonal projections of the extremities of the line seg-
ment onto the circle be denoted by eprojs1 , eprojs2 also the orthogonal projections of the
extremities of the arc onto the line be denoted by eproja1 , eproja2 .

Let’s recall how we compute the orthogonal projection of a point p = (x0, y0, z0) ∈
R3 on to the given circle in XY -plane. We denote it by pproj . We project orthogonally
the point on XY -plane, denote it by pXY . Hence, pXY = (x0, y0, 0), then do dilation
and we have pproj = ( rx0

||pproj || ,
ry0
||pproj || , 0).

Mainly, the algorithm considers the extremities of the line segment and the arc,
the orthogonal projections of the extremities of the line segment onto circle which
belong to the arc, eprojs1 , eprojs2 , the orthogonal projections of the extremities of the
arc onto the line which belong to the line segment, eproja1 , eproja2 and the couple closest
points of the circle and the line as the candidates to be the couple of closest points
of the arc and the line segment.

A.4.1 If pl and pc are both contained in S and A respectively where
(pl, pc) is a couple of closest points of L and C

This case is trivial.

Lemma A.4.1. The couples of closest points (ps, pa) on segment S of L and the arc
A of C are the couples of closest points (pl, pc) on the line L and on the circle C.
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A.4.2 If either pl or pc is not contained in S and A respectively where
(pl, pc) is a couple of closest points of L and C

Let’s start by looking for some critical points different than the solutions of the
resultant described in §A.3.3.

Notation A.4.3. Let eppsi denotes the orthogonal projection of eprojsi onto L for i =
1, 2.

Proposition A.4.1. Let pproj = ( x0r√
x20+y20

, y0r√
x20+y20

, 0) be the orthogonal projection

of a point p = (x0, y0, z0) of L onto C in XY -plane, centered at origin. Since the
orthogonal projection ppp of pproj onto L is not necessarily p in general for any p,
then neither for esi where i = 1, 2. Moreover, two distances

{dist(eprojs1 , epps1 ), dist(eprojs2 , epps2 )}

are also candidates to be dist(A, L) (see Figure A.5).

Figure A.5: The point p having orthogonal projection pproj on the
circle which is different than the orthogonal projection of pproj onto

the line, denoted by ppp.

ea1

ea2

pc
pl

eproja2

es2

es1

Figure A.6: If the arc and the circle are in the plane and closest point
pc of circle is not contained on the arc, then the orthogonal projection

of ea2 onto L, denoted by eproja2 gives smaller distance to S.
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Proposition A.4.2. For the case pl is contained in S and the pc is not contained in
A, for all i = 1, 2,

dist(eprojai , eai) < dist(eai , pl).

Proof. By Pythagore in the triangle
Ú�

(pl, e
proj
ai , eai),

dist(eai , pl)
2 = dist(eprojai , eai)

2 + dist(eprojai , pl)
2.

The equality is obtained only for eprojai = pc, which is not possible by assumption.

Lemma A.4.2. The distance between A and S is

dist(A, S) = min{dist(eprojs1 , es1),dist(eprojs2 , es2), dist(ea1 , es1), dist(ea1 , es2),

dist(ea1 , e
proj
a1 ), dist(ea2 , e

proj
a2 ), dist(ea2 , es1),dist(ea2 , es2),

dist(eprojs1 , epps1 ),dist(eprojs2 , epps2 )}.

Lemma A.4.3. The couples of closest points (ps, pa) on segment S of L and on the
arc A of C are the couples of points which are considered in Lemma A.4.2 and whose
distance in between is equal to the dist(A, S).

Algorithm 4: Distance between the arc A of the circle C and the line seg-
ment S.

Input : A and S are given as in Definition A.1.1 and Definition A.4.1
respectively and (pc, pl) couple of closest points of C and of L,
dist(pc, pl).

Output: dist(A, S) and (pai , psi), for 1 6 i 6 2.
1: Do the preparation step. Multiply C by a transformation matrix to send it to
XY -plane and its center to the origin, denote it by C′. Multiply L, pc, pl by the
same matrix and denote them by L′, p′c, p

′
l.

2: if (according to §A.4.1) p′l ⊂ S and p′c ⊂ A then
Denote p′a1 := p′c;
Denote p′s1 := p′l;
Denote dist(A, S) := dist(p′c, p

′
l);

Do the final step, i.e. multiply p′a1 , p
′
s1 by the inverse of the transformation

matrix in Step 1. Denote them as pa1 , ps1 ;

3: else
(according to §A.4.2);

(a) Compute the min{dist(eprojs1 , es1), dist(eprojs2 , es2), dist(ea1 , es1),
dist(ea1 , es2), dist(ea1 , e

proj
a1 ), dist(ea2 , e

proj
a2 ), dist(ea2 , es1),

dist(ea2 , es2), dist(eprojs1 , epps1 ),dist(eprojs2 , epps2 )} and denote it as d.

(b) Let n be the number of the couples of points (a′, b′) in the previous Step
satisfying dist(a′, b′) = d.

(c) Denote dist(A, S) = d.

for 1 < i 6 n do
Denote p′ai := a′;
Denote p′si := b′;
Do the final step, i.e. multiply p′ai , p

′
si by the inverse of the transformation

matrix in Step 1 for all 1 < i 6 n. Denote them as pai , psi ;
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A.5 Observations

1. It was difficult to separate the cases using conditions on the point and the
vector defining the line L as in Notation A.1.3, more precisely on a, b, c, z val-
ues, because of the tolerance choice. I could manage to separate them better
with a condition based on angles. I considered 10−5 as linear tolerance, and
0.000872664625997165 as angular tolerance.

2. I had to decrease the use of square root function, because it was changing the
result numerically.

3. I chose to eliminate the variable of the line instead of the circle from the resul-
tant of two partial derivatives of square distance function between the circle and
the line (see §A.3.3), because the rational parameterization of the circle given
in Notation A.1.2 causes numerical instability around the point (−1, 0, 0). Oth-
erwise, it was necessary to detect whether the critical points of the circle were
closed enough to the point (−1, 0, 0). In this case, we would consider also the
parameterization of the circle obtained by exchanging the x and y coordinates
of the rational parameterization of unit circle in XY -plane given in Notation
A.1.2.

4. Problem 1 looks for the real solutions of resultant given in §A.3.3. It was
difficult to fix a tolerance from which the imaginary part of the solutions are
small enough to see them as reals. For this reason, I implemented Proposition
A.3.1, to separate the number of the real solutions for a quartic polynomial
equation.

A.6 Problems of existing algorithms

(a) Existing methods do not consider all the critical points of the corresponding
distance function.

(b) Existing methods do not consider the line segments. They consider only the
entire lines.

(c) One problem was two existing algorithms described in §A.2 find different closest
points on the circle. The following 3 pictures are done on a sketch designed by a
client. For this sketch, I had made run the debugging code. The green and red
points are the closest points on the circles to the choosen line by mouse (the line
which is perpendicular to the screen passing through the mouse) respectively
computed by the 1st (using the parameter of the circle) and the 2nd existing
algorithm (using the parameter of the line) in TopSolid. One may see that two
algorithms may find different closest points.
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The existing methods were failing also because segments were seen as lines and
not all the critical points coming from the resultant in A.3.3 were considered.
Moreover, it was also coming from numerical instability of considering param-
eter value of circle as explained in §A.5.

A.7 Comparison and validation

(a)

Example A.7.1. Let’s consider the arc of a circle of center
(−0.0266955245595897, 0.0003048,−0.0277528286830878), of radius 0.0003048,
for the parameter values according to the trigonometric parametrization of the
circle is in the interval [4.71238898038469, 6.28318530717957] and the line given
by the point (0.0248195074144692, 0.164721630786812, 0.103374481857372), and
the unit vector (0.792993412407533, 0.392932291880139,−0.465580993894809).
The parameter value of the circle at the closest point pa is :

Algorithm t value

Existing 6.28318530717957

Algorithm 4 4.71238898038469

The coordinates of the closest point on the arc are:

Algorithm ps
Existing (−0.0268353856911874, 0.000304799999999994,−0.0280236457871787)

Algorithm 4 (−0.0266955245595897, 0,−0.0277528286830878)

Distance between the closest point on the line computed via the existing algorithm
on the parameter value of line and via Algorithm 4 is 0.000431052293811291.

(b) One may use the interface and use distance icon to experiment only one distance
computation for each click. In that case one may always find that orthogonal-
ity verification, which is whether the closest point of the line is a orthogonal
projection of the closest point on the circle, is always satisfied for the first case
§A.4.1 of the Algorithm 4.

There exist a debugging code which computes, according to both existing meth-
ods, the closest points on the all circles in the document to the chosen axis by
the mouse which is perpendicular to the screen. By this debugging code, it
is possible to compare several computations with one click. I converted it to
comaparison of 4 methods: both existing methods, my Algorithm 4, and the
solutions of ParaSolid which is an external module of TopSolid. My experiments
show that the Algorithm 4 coincide with the solutions as ParaSolid.

(c) Following two examples of the case §A.4.1, i.e. the closest points of the circle
are on the arc and the closest point of the line are on the segment show that the
Algorithm 4 approches more to the closest points than the existing algorithms.

Example A.7.2. Let’s consider the circle of center (4.36210433058997,
−0.614943620347628, 0), of radius 0.369226219157435, and the line given by the
point (4.95987269404932, 2.1814917423629,−2.95370611561499), and the unit
vector (0.881513709084022,−0.216813525604839, 0.419434709831851).
The parameter value of the circle at the closest point is :
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Algorithm t

Existing 0.923216306958422

Algorithm 4 0.923400665174119

The coordinates of the closest point on the circle are:

Algorithm ps
Existing (4.58484304856623,−0.320468724257, 0)

Algorithm 4 (4.58478875591491,−0.320427665548919, 0)

Distance between the closest point on the line computed via the existing algorithm
on the parameter value of line and via Algorithm 4 is 6.80698868559901E− 05.
The computation time for both methods are as following:

Algorithm time

Existing 00 : 00 : 00.0001944

Algorithm 4 00 : 00 : 00.0000645

Example A.7.3. Let’s consider the circle of center (−1.72615113008238,
1.74841631272117, 1.61159839442974), of radius 0.5, and the line given by the
point (4.78198822485689, 1.8633299601087,−2.74431519387126), and the unit
vector (0, 881513709084022,−0, 216813525604839, 0, 419434709831851).
The parameter value of the circle at the closest point pc is :

Algorithm t

Existing 5.62854848049478

Algorithm 4 5.62833550554993

The coordinates of the closest point on the circle are:

Algorithm ps
Existing (−1.33903540200799, 1.48554519129016, 1.43541614051341)

Algorithm 4 (−1.33910276791265, 1.48547876876287, 1.43536725836432)

Distance between the closest point on the line computed via the existing algorithm
on the parameter value of line and via Algorithm 4 is 0.000106487472223496.
The computation time for both methods are as following:

Algorithm time

Existing 00 : 00 : 00.0000966

Algorithm 4 00 : 00 : 00.0000647

(d) I did Newton iterations on 677 examples of the case in A.4.1, having different
closest points then the Algorithm 3 finds. They all converged to the closest
points on the circle computed by the Algorithm 3.

(e) The average computation time is (over 457710 examples)

Algorithm time

Existing 00 : 00 : 00.0000966

Algorithm 4 00 : 00 : 00.0000643

(f) 67842 among 457710, i.e, %14.82204, computations on the client’s examples,
have different solutions from the new Algorithm 4 with the tolerance 10−5.
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[63] T. Luu Ba, L. Busé, and B. Mourrain. “Curve/surface intersection problem
by means of matrix representations”. In: SNC Conference. ACM Press, 2009,
pp. 71–78. doi: 10.1145/1577190.1577205.

[64] D. Manocha and J. Canny. “A new approach for surface intersection”. In: Pro-
ceedings of the first ACM symposium on Solid modeling foundations and CAD/-
CAM applications. Austin, Texas, United States: ACM, 1991, pp. 209–219. isbn:
0-89791-427-9. doi: 10.1145/112515.112544. url: http://portal.acm.org/
citation.cfm?id=112544.

https://doi.org/10.1016/j.cam.2017.07.023
https://doi.org/10.1016/j.jsc.2009.11.001
http://dx.doi.org/10.1016/j.jsc.2009.11.001
http://dx.doi.org/10.1016/j.jsc.2009.11.001
https://doi.org/10.1006/aima.1996.1609
https://doi.org/10.1006/aima.1996.1609
https://doi.org/10.1016/j.jsc.2008.04.011
https://doi.org/10.1016/j.jsc.2008.04.011
https://doi.org/10.1016/j.jsc.2008.04.011
https://doi.org/10.1215/S0012-7094-01-10934-4
https://doi.org/10.1215/S0012-7094-01-10934-4
https://doi.org/10.1215/S0012-7094-01-10934-4
https://doi.org/10.2140/ant.2017.11.1489
https://doi.org/10.2140/ant.2017.11.1489
https://doi.org/10.2140/ant.2017.11.1489
https://doi.org/10.1515/CRELLE.2011.002
https://doi.org/10.1515/CRELLE.2011.002
https://books.google.fr/books?id=DwnvAAAAMAAJ
https://books.google.fr/books?id=DwnvAAAAMAAJ
https://doi.org/10.1016/j.jsc.2016.02.001
https://doi.org/10.1007/978-3-540-33275-6_4
https://doi.org/10.1007/978-3-540-33275-6_4
https://doi.org/10.1007/978-3-540-33275-6_4
https://doi.org/10.1145/1577190.1577205
https://doi.org/10.1145/112515.112544
http://portal.acm.org/citation.cfm?id=112544
http://portal.acm.org/citation.cfm?id=112544


104 Bibliography

[65] Alexander Morgan and Andrew Sommese. “A homotopy for solving general
polynomial systems that respects m-homogeneous structures”. In: Applied Math-
ematics and Computation 24.2 (1987), pp. 101 –113. issn: 0096-3003. doi:
https://doi.org/10.1016/0096-3003(87)90063-4. url: http://www.
sciencedirect.com/science/article/pii/0096300387900634.
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[75] J. Shen, L. Busé, P. Alliez, and N. Dodgson. “A Line/Trimmed NURBS surface
intersection algorithm using matrix representations”. In: Computuer Aided Ge-
ometric Design 48.C (Nov. 2016), pp. 1–16. issn: 0167-8396. doi: 10.1016/j.
cagd.2016.07.002. url: https://doi.org/10.1016/j.cagd.2016.07.002.

[76] K. A. Sohn, B. Juttler, M.S. Kim, and W. Wang.“Computing distances between
surfaces using line geometry”. In: Computer Graphics and Applications, 2002.
Proceedings. 10th Pacific Conference on. 2002, pp. 236–245. doi: 10.1109/

PCCGA.2002.1167866.

[77] N. Song and R. Goldman. “µ-bases for polynomial systems in one variable”. In:
Computer Aided Geometric Design 26.2 (2009), pp. 217–230. issn: 0167-8396.
doi: 10.1016/j.cagd.2008.04.001.

[78] J.B. Thomassen, P. H. Johansen, and T. Dokken. Closest points, moving sur-
faces; and algebraic geometry. Nashboro Press, Brentwood, Tenn, 2005, pp. 351–
382.

[79] B. Ulrich and Wolmer V. Vasconcelos. “The equations of Rees algebras of ideals
with linear presentation”. In: Mathematische Zeitschrift 214 (1993), pp. 79–92.

https://doi.org/https://doi.org/10.1016/0096-3003(87)90063-4
http://www.sciencedirect.com/science/article/pii/0096300387900634
http://www.sciencedirect.com/science/article/pii/0096300387900634
https://doi.org/10.2748/tmj/1113247605
https://doi.org/10.2748/tmj/1113247605
https://doi.org/10.1145/3087604.3087656
https://doi.org/10.1145/3087604.3087656
https://books.google.fr/books?id=1b2WoAEACAAJ
https://books.google.fr/books?id=1b2WoAEACAAJ
https://doi.org/10.1017/CBO9780511565892
https://books.google.fr/books?id=U7zuCAAAQBAJ
https://books.google.fr/books?id=U7zuCAAAQBAJ
https://doi.org/10.1023/A:1017572213947
https://doi.org/10.1006/jsco.1996.0081
https://doi.org/10.1016/j.cagd.2016.07.002
https://doi.org/10.1016/j.cagd.2016.07.002
https://doi.org/10.1016/j.cagd.2016.07.002
https://doi.org/10.1109/PCCGA.2002.1167866
https://doi.org/10.1109/PCCGA.2002.1167866
https://doi.org/10.1016/j.cagd.2008.04.001


Bibliography 105

[80] Wolmer V. Vasconcelos. Arithmetic of Blowup Algebras. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1994. doi: 10.1017/
CBO9780511574726.

[81] Jan Verschelde and Ronald Cools.“Symbolic homotopy construction”. In: Appli-
cable Algebra in Engineering, Communication and Computing 4.3 (Sept. 1993),
pp. 169–183. issn: 1432-0622. doi: 10.1007/BF01202036. url: https://doi.
org/10.1007/BF01202036.

[82] Haohao Wang, Xiaohong Jia, and Ron Goldman. “Axial moving planes and
singularities of rational space curves”. In: Computer Aided Geometric Design
26.3 (2009), pp. 300 –316. issn: 0167-8396. doi: https://doi.org/10.1016/
j.cagd.2008.09.002.

[83] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1994. doi: 10.1017/
CBO9781139644136.

[84] Lu Yang. “Recent Advances on Determining the Number of Real Roots of
Parametric Polynomials”. In: Journal of Symbolic Computation 28.1 (1999),
pp. 225 –242. issn: 0747-7171. doi: https : / / doi . org / 10 . 1006 / jsco .

1998.0274. url: http://www.sciencedirect.com/science/article/pii/
S0747717198902747.

[85] W. Zhou, G. Labahn, and A. Storjohann.“Computing minimal nullspace bases”.
In: Proceedings of the 37th International Symposium on Symbolic and Algebraic
Computation. ISSAC ’12. Grenoble, France: ACM, 2012, pp. 366–373. isbn:
978-1-4503-1269-1. doi: 10.1145/2442829.2442881.

https://doi.org/10.1017/CBO9780511574726
https://doi.org/10.1017/CBO9780511574726
https://doi.org/10.1007/BF01202036
https://doi.org/10.1007/BF01202036
https://doi.org/10.1007/BF01202036
https://doi.org/https://doi.org/10.1016/j.cagd.2008.09.002
https://doi.org/https://doi.org/10.1016/j.cagd.2008.09.002
https://doi.org/10.1017/CBO9781139644136
https://doi.org/10.1017/CBO9781139644136
https://doi.org/https://doi.org/10.1006/jsco.1998.0274
https://doi.org/https://doi.org/10.1006/jsco.1998.0274
http://www.sciencedirect.com/science/article/pii/S0747717198902747
http://www.sciencedirect.com/science/article/pii/S0747717198902747
https://doi.org/10.1145/2442829.2442881

	Introduction
	Preliminaries
	Closed image and fibers of rational maps
	Blow-up algebras
	Koszul complex
	Approximation complexes
	Generalized Koszul complex
	Čech Complex and local cohomology
	Spectral sequences and double complexes
	Height computation

	Curve implicitization
	Previous works on curve implicitization 
	Maps from P1 to P2
	Moving lines
	-basis
	Moving conics
	Sylvester forms

	Maps from P1 to Pn with n3
	Moving hyperplanes and -basis
	Defining ideal in Pn


	The method of moving quadrics
	Moving quadrics
	Sylvester forms

	Proofs of the main theorems
	Elimination and matrices
	Proof of Theorem 2.2.2
	Koszul syzygies
	Summary of our results

	Computational aspects
	Computation of the matrices
	The drop-of-rank property

	Complexity estimation in terms of height
	Experiments on height computation

	Applications
	Curve/curve intersection
	Multiplicity of singular points and inversion
	Singular factors
	Distance function


	Rational maps in three dimensional space
	Congruence of normal lines to a rational surface
	Congruences of normal lines
	Homogenization to projective spaces
	Explicit homogeneous parameterizations
	Base locus

	Fibers and matrices of syzygies
	Fiber of a point
	Matrices built from syzygies
	Main results

	Vanishing of some local cohomology modules
	Some preliminaries on Koszul homology
	Proof of Theorem 3.3.1
	Residual of a complete intersection curve

	Rings of sections in a product of projective spaces
	Computing orthogonal projection of points onto a rational surface 
	Matrix representations of linear fibers
	Admissible degrees
	Computational aspects
	Complexity estimation in terms of height

	Computation of the orthogonal projections
	Experiments
	Comparison with homotopy continuation

	Orthogonal projection onto a rational space curve

	APPENDIX
	Distance between a circle and a line in space
	Notations
	Overview of existing methods in TopSolid software computing the distance between an arc of a circle and a line in space
	On parameter value of circle
	On parameter value of line

	Problem 1 : Distance between a circle and a line in space
	The line is perpendicular to the plane where the circle is located
	The line is in the same plane as the circle
	General case
	Some observations on the number of the real solutions of resultant in §A.3.3

	Problem 2 : Distance between an arc of a circle and a line segment in space
	If pl and pc are both contained in S and A respectively where (pl,pc) is a couple of closest points of L and C
	If either pl or pc is not contained in S and A respectively where (pl,pc) is a couple of closest points of L and C

	Observations
	Problems of existing algorithms
	Comparison and validation


