Ontologies and Large Databases
Querying Algorithms for the Web of Data

Jean-François Baget (baget@lirmm.fr)
Artificial Intelligence meets the Web of Data, Montpellier, 2013
ONTOMETRY-BASED DATA ACCESS FOR THE WEB OF DATA
Ontology-based Query Answering

Knowledge Base

Data/Facts

Ontology

Query

Answers?
Data / Facts

Relational Database

<table>
<thead>
<tr>
<th>parentOf</th>
<th>Male</th>
<th>Fem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

RDF (Semantic Web)

<table>
<thead>
<tr>
<th>F</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>rdf:type</td>
<td>rdf:type</td>
</tr>
<tr>
<td>ex:a</td>
<td>ex:b</td>
</tr>
<tr>
<td>ex:a</td>
<td>ex:c</td>
</tr>
<tr>
<td>ex:b</td>
<td></td>
</tr>
</tbody>
</table>

Abstraction in first-order logic

\[\exists x (\text{parentOf}(a,b) \land \text{parentOf}(a,c) \land \text{parentOf}(c,x) \land F(a) \land M(b)) \]

Or in graphs / hypergraphs

A conjunction of facts ≈ a fact
A (boolean) CQ and a fact have the same form
Ontology: Existential Rules

\[\forall X \forall Y (B[X, Y] \rightarrow \exists Z H[X, Z]) \]

- **Body:** \[B[X, Y] \]
- **Head:** \[\exists Z H[X, Z] \]

X, Y, Z: tuples of variables

Any conjunction of atoms (on variables and constants)

\[\forall x \forall y \left(\text{ siblingOf}(x,y) \rightarrow \exists z \left(\text{ parentOf}(z,x) \land \text{ parentOf}(z,y) \right) \right) \]

Simplified form: siblingOf(x,y) \rightarrow parentOf(z,x) \land parentOf(z,y)

- Same as Tuple Generating Dependencies
 - [+ Equality Generating Dependencies, Negative Constraints]
- See also Datalog+/-
- Same as the logical translation of Conceptual Graph rules
- Generalize light Description Logics used for OBDA (DL-Lite, \mathcal{EL}, …)
Generating Fresh Variables

\[R = \forall x \forall y \ (\text{siblingOf}(x,y) \rightarrow \exists z \ (\text{parentOf}(z,x) \land \text{parentOf}(z,y))) \]

\[F = \text{siblingOf}(a,b) \]

A rule \(\text{body} \rightarrow \text{head} \) is applicable to a fact \(F \) if there is a homomorphism \(h: \text{body} \rightarrow F \)

Then \(h(\text{head}) \) can be « added » to \(F \) with renaming existential variables of head

\[F' = \exists z_0 \ (\text{siblingOf}(a,b) \land \text{parentOf}(z_0,a) \land \text{parentOf}(z_0,a)) \]
Basic Decision Problem

Given a KB $\mathcal{K} = (F, R)$ and a (Boolean) conjunctive query Q, is Q entailed by \mathcal{K}?
Forward vs Backward Chaining

FC
Fact saturation (« bottom-up »)

\[F, R \models Q \iff \text{there is a homomorphism from } Q \text{ to } F', \text{ where } F' \text{ is obtained by a derivation sequence from } F \text{ with } R \]

BC
Query rewriting (« top-down »)

[Decomposition into 2 steps: DL-Lite]

\[F, R \models Q \iff \text{there is a homomorphism from } Q' \text{ to } F, \text{ where } Q' \text{ is obtained by a rewriting sequence from } Q \text{ with } R \]
Decidability Issues

- Entailment is not decidable
- Many decidable classes exhibited in databases and KR
- Three generic kinds of properties ensuring decidability:
 - Saturation by Forward Chaining halts (« finite expansion set », \(fes \))
 - Query rewriting by Backward Chaining halts (« finite unification set », \(fus \))
 - Saturation by Forward Chaining may not halt but the generated facts have a tree-like structure (« bounded treewidth set », \(bts \))

These properties are not recognizable [Baget+ KR 10] but they provide generic algorithms
(Partial) Inclusion Map of Decidable Classes

- Datalog
- weakly-acyclic
- wa-GRD
- jointly acyclic
- weakly-acyclic
- Inclusion dependency
- atomic body
- domain-r

Key:
- BTS
- FUS
- glut fg
- jointly fg
- weakly fg
- weakly-guarded
- frontier-guarded
- frontier-1
- guarded
- w-sticky-join
- w-sticky
- sticky join
- sticky
- (Partial) Inclusion Map of Decidable Classes
FINITE EXPANSION SETS
Breadth-First FC / Chase

\[F^0 = F \]
\[F^i \ (i > 1) \] obtained from \(F^{i-1} \) by performing all possible rule applications on \(F^{i-1} \)

Any atom with rank \(i \) can be obtained by a derivation sequence of length \(\leq \max (|\text{rule body}|)^i \)

\(F, R \models Q \) iff there is \(k \) s.t. \(Q \) maps to \(F^k \)
Finite Saturation (*fes*)

Def: \mathcal{R} is a finite expansion set (*fes*) if for all fact F, there is F' (finitely) derived from F s.t. any rule application on F' leads to a fact equivalent to F'

\mathcal{R} is *fes* iff for all fact F, there is k s.t. $F^{k+1} \equiv F^k$ = *core chase*

Note: k is not independent from F

$fes \neq \text{« bounded » set of rules (cf. this notion in Datalog)}$

\mathcal{R} is bounded if there is k s.t. for all F, $F^{k+1} \equiv F^k$

(ex: acyclic GRD)
Main Recognizable Classes with Finite Saturation (fes)

Semantic condition
[Cuenca Grau+ KR 12]

Acyclic existential dependency graph
[Krötzsch+ IJCAI 11]

Acyclic position dependency graph
[Deutsch+ ICDT 03]
[Fagin+ ICDT 03]

No existential variables

Super-weak acyclicity

Joint-acyclicity

Weak-acyclicity

Datalog

MFA

fes-GRD

GRD with any kind of fes s.c.c.
[Baget KR 04]

GRD with wa strongly connected components
[Deutsch+ PODS 08]

aGRD
[Baget KR 04]

Acyclic chase graph
[Deutsch+ PODS 08]

Position dependency graph:
nodes are positions in predicates
edges show how existential variables are propagated

Graph of Rule Dependencies:
(GRD – also chase graph)
nodes are rules
edges express that a rule may lead to trigger a rule
FINITE UNIFICATION SETS
Remark: If Q_1 is more general than Q_2 (i.e. Q_1 maps to Q_2) then Q_2 is useless.

Def: R is a **finite unification set (fus)** if, for any query Q, the set of *most general* rewritings of Q with R is finite.

[dropping « most general » would weaken the notion]

Prop: [König+ RR 2011] When R is fus, there is a *unique* sound and complete set of *most general* rewritings of Q.

[unique if each query in the set is made non redundant]
Main Recognizable Classes with Finite Query Rewriting (fus)

- **Sticky-join**
 - Body restricted to a single atom
 - [Baget+ IJCAI 09]
 - Restricts multiple occurrences of body variables that do not occur in all head atoms
 - [Cali+ RR 10]

- **Sticky**
 - Each head atom contains all or none of the body variables
 - [Baget+ IJCAI 09]
 - [Cali+ PVLDB 2010]

- **Domain-restricted**
 - Each head atom contains all the body variables

- **Atomic-body**
 - = linear Datalog+/
 - [Cali+ PODS 09]

E.g. necessary properties of concepts / relations

E.g. concept product
- elephant(x) \(\land \) mouse(y) \(\rightarrow \) bigger-than(x,y)
(GREEDY) BOUNDED TREEWIDTH SETS
Decomposition Tree / Treewidth

\[p(a,b) \ q(b,z0) \ r(a,b,t0) \ p(b,t0) \ q(t0,z1) \ r(b,t0,t1) \ p(t0,t1) \]

Decomposition tree:
1) each node (term) appears in a bag
2) each hyperedge (atom) has all its nodes in a bag
3) for each node \(x \), the subgraph induced by the bags containing \(x \) is connected

Width of a tree decomposition = \(\max \) number of nodes in a bag (minus 1)
Treewidth of a graph = \(\min \) width over all decomposition trees of this graph
Bounded treewidth and decidability

Definition: A set R of existential rules is a bounded treewidth set (bts) if, for any fact F, there exists a bound b such that, for any F' derived from F, $\text{treewidth}(F') < b$.

Theorem (basically [Cali+, KR 2008]): If R is bts, then entailment is decidable.

Proof: Direct consequence of [Courcelles90] + [Thomas88] for compactness.
(Partial) Inclusion Map of Decidable Classes

- Datalog
- acyclic GRD
- wa-GRD
- jointly acyclic
- weakly-acyclic
- Inclusion dependency
- atomic body
- domain-r
- Sticky
- w-sticky
- w-sticky-join
- Sticky join
- Frontier-1
- Guarded
- Frontier-guarded
- Weakly-guarded
- Jointly-guarded
- Glut fg
Some Recognizable bts (and not fes) Classes of Rules

Frontier: variables shared by the body and the head

Guard only the *frontier*

- **[Baget+ KR’ 10]**
 - \(r(x,y) \land r(y,z) \rightarrow r(y,u) \)
 - \(r(y,u) \land r(z,u) \)

The *frontier* has size 1

- **[Baget+ IJCAI’ 09]**

Guard only affected variables from the *frontier*

- **[Baget+ KR’ 10]**
 - \(r(x,y) \land r(y,z) \rightarrow r(y,u) \land r(z,u) \)

Guard only affected variables (i.e. possibly mapped to new existentials)

- **[Cali+ KR’ 08]**

An atom in the body *guards* all the body variables

- **[Cali+ KR’ 08]**

datalog
From BTS to GBTS

Recognizability: As fes and fus, bts is an unrecognizable class.

Algorithms: Can we, as done for fes and fus, present a generic algorithm for all bts subclasses?

- **Problem 1:** we have to be able to compute the bound $b = f_c(F, \mathcal{R})$ for each of the bts subclasses.
- **Problem 2:** even in that case, the enumeration of every interpretation of treewidth lesser than b (and of sufficient depth) is not reasonable.
The GBTS class: main ideas

Goal: Ensure that we can greedily build a decomposition tree of bounded width along the chase.

\[F = \mathbf{B}_0 \]

\[T_0 = \text{Terms}(F) \cup \{\text{possible constants}\} \]

\[B_1 = \pi_j(B_i) \]

\[T_1 = \text{Terms}(B_1) \cup T_0 \]

\[B_2 = \pi_{j'}(B_{i'}) \]

\[T_2 = \text{Terms}(B_2) \cup T_0 \]

\[B_3 = \pi_k(B_q) \]

\[T_3 = \text{Terms}(B_3) \cup T_0 \]

Is there a bag \(B_p \) such that \(\pi_k \) maps terms of frontier \((R_q) \) to \(T_p \)?

YES

NO

The procedure halts and \text{FAILS}.
The GBTS class: main ideas

Definition: A set of existential rules \mathcal{R} is gbts if, for any fact F, for any \mathcal{R}-derivation sequence from F, this greedy algorithm does not return FAILS (in that case, it effectively builds a decomposition tree of width $\leq |F| + \max(|R_i|)$).

Question 1: Is gbts an « interesting subset » of bts?

Question 2: Is there a generic algorithm for gbts?
Which known BTS classes are GBTS?

- glut fg
- jointly fg
- weakly fg
- weakly-guarded
- frontier-guarded
- frontier-1
- guarded
- jointly acyclic
- weakly-acyclic
- Datalog
- wa-GRD
- acyclic GRD
- atomic body
- inclusion dependency
- domain-r
- sticky
- w-sticky
- w-sticky-join
- sticky join
Overview of the gbts algorithm
Step 1: a finite encoding of the chase

Let us suppose that \(R \) is gbts

\[
F = B_0
\]

\[
T_0
\]

Take \(B_i \) and \(B_j \) created by a same rule \(R \) (resp. by \(\pi_i \) and \(\pi_j \)), s.t. there is a bijection \(\psi_{ij} \) between \(T_i \) and \(T_j \) with \(\psi_{ij}(t) = t' \) iff \(t \) and \(t' \) have been generated from the same term of \(R \).

If, moreover, \(\psi_{ij} \) determines an isomorphism between the atoms of the subtrees respectively rooted in \(B_i \) and \(B_j \)

Then \(B_i \) and \(B_j \) are equivalent.
(and so are their children)

Consider an equivalence class of bags.

Choose a (high) representant

Delete subtrees of all others!
Computing the blocked tree

To each bag we associate a pattern

A pattern of a bag (at step p) encodes all ways of mapping a subset of any rule body to the fact obtained at step p, while using some terms from this bag.

Equivalence of patterns at some step p implies that copies (as defined before) under equivalent bags belong to the chase.
Overview of the gbts algorithm

Step 2: querying a blocked tree

Let us suppose that we have built a finite blocked tree

This blocked tree encodes the chase.

Suppose Q maps to the chase.

Choose a set of bags (in the chase) that supports all atoms of Q.

There exists an Atom-Tree decomposition Q_t of Q.

There exists an ATD mapping Γ of Q_t.

Γ is valid.
Overview of the gbts algorithm
Step 2: querying a blocked tree

A complicated algorithm to check if Q maps to R-chase(F)

For every ATD Q_t of Q
 • For every ATD-mapping Γ of Q_t in chase(F)
 If Γ is Valid in chase(F)
 Return YES

Return NO

Problem: we don’t have the chase, only the blocked tree…

For every ATD Q_t of Q
 • For every ATD-mapping Γ of Q_t in the blocked tree
 If Γ is Valid in the blocked tree
 Return YES

Return NO
Overview of the gbts algorithm

Step 2: querying a blocked tree

We have to find an ATD mapping in the blocked tree…
Overview of the gbts algorithm

Step 2: querying a blocked tree

... and prove it corresponds to a Valid one in one completion.

\[F = B_0 \]

\[T_0 \]

\[B_1 \quad T_1 \]

\[B_2 \quad T_2 \]

\[B_3 \quad T_3 \]

\[B_4 \quad T_4 \]

\[B_5 \quad T_5 \]

\[B_6 \quad T_6 \]

\[B_8 \quad T_8 \]

\[B_{10} \quad T_{10} \]

\[B_{12} \quad T_{12} \]

\[B_{14} \quad T_{14} \]

\[Q_0 \]

\[Q_3 \]

\[Q_{11} \]

\[Q_{13} \]

\[Q_{15} \]

\[\varphi_{3,4} \]

\[\varphi_{3,4} \quad \varphi_{4,10} \]

\[\varphi_{14,8} \circ \varphi_{14} \]

\[\pi_0 \]

\[\pi_3 \]

\[\pi_{10} \]

\[\pi_{12} \]

\[\pi_{14} \]

\[\psi_{12,6} \circ \varphi_{12} \]

\[\psi_{14,8} \circ \varphi_{14} \]
Overview of the gbts algorithm

Step 2: querying a blocked tree

Validation is backtrack-free

Generating the required bag is done at most in b^f steps
Complexity results

<table>
<thead>
<tr>
<th>Class</th>
<th>arity unbounded</th>
<th>arity bounded</th>
<th>Data Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gbts</td>
<td>2ExpTime-c</td>
<td>2ExpTime-c^*</td>
<td>ExpTime-c^*</td>
</tr>
<tr>
<td>wfg</td>
<td>2ExpTime-c^*</td>
<td>2ExpTime-c^*</td>
<td>ExpTime-c^*</td>
</tr>
<tr>
<td>fg</td>
<td>2ExpTime-c^*</td>
<td>2ExpTime-c^*</td>
<td>PTIME-c ^*</td>
</tr>
<tr>
<td>fr1</td>
<td>2ExpTime-c^*</td>
<td>2ExpTime-c^*</td>
<td>PTIME-c ^*</td>
</tr>
<tr>
<td>wg</td>
<td>2ExpTime-c</td>
<td>ExpTime-c</td>
<td>ExpTime-c</td>
</tr>
<tr>
<td>guarded</td>
<td>2ExpTime-c</td>
<td>ExpTime-c</td>
<td>PTIME-c</td>
</tr>
<tr>
<td>ba-fg</td>
<td>2ExpTime-c^*</td>
<td>ExpTime-c^*</td>
<td>PTIME-c ^*</td>
</tr>
<tr>
<td>ba-fr1</td>
<td>$\text{ExpTime-hard}^{(1)}$</td>
<td>ExpTime-c^*</td>
<td>PTIME-c ^*</td>
</tr>
<tr>
<td>Datalog</td>
<td>ExpTime-c</td>
<td>NP-c</td>
<td>PTIME-c</td>
</tr>
</tbody>
</table>

^{(1)} Indicates a different complexity class.
On the recognizability of gbts

\[R_{\text{new}}: \text{in}(x, B_0), \text{in}(y, z) \rightarrow \text{in}(x, z) \]

Suppose that there is a derivation from \((F, \mathcal{R})\) that fails.

- There is a derivation \(\mathcal{R}\)-derivation from \(F\) to \(G\) that does not fail, and a failing mapping from some body \(B\) to \(G\).
- There is a \(\mathcal{R}'\)-derivation from \(F'\) to \(G'\), and a failing mapping from some body \(B\) to \(G'\).
- There is a failing validation of some body \(B\) to the blocked tree of \((F', \mathcal{R}')\).

If a derivation from \((F, \mathcal{R})\) fails, then a derivation from \((U, \mathcal{R})\) fails.
ON FORWARD AND BACKWARD CHAININGS
Theorem [Salvat 96]: the following assertions are equivalent.

- Q is semantic consequence of F and \(R \)
- Q maps to some F’ finitely \(R \)-derived from F
- Some finite \(R \)-rewriting Q’ of Q maps to F
FINITE EXPANSION & UNIFICATION SETS

Saturation by Forward Chaining halts (« finite expansion set », fes)

Query rewriting by Backward Chaining halts (« finite unification set », fus)
INITIAL MISUNDERSTANDING

Definition [Cali & al. 2010]: A set of existential rules \mathcal{R} has the bounded derivation-depth property (BDDP) iff, for every facts F and Q, whenever Q can be deduced from F and \mathcal{R}, Q is entailed by the \mathcal{R}-saturation of F at rank γ, where $\gamma = f(\mathcal{R}, Q)$.

A formulation, expressed in Forward Chaining, that is very similar to FES / BTS.

BUT

Known BDDP classes are FUS, not FES nor BTS!
OVERLOOKED LEMMAS [Salvat, 96]
Definition [Cali & al. 2010]: A set of existential rules R has the (Q) bounded derivation-depth property (QBDDP) iff, for every facts F and Q, whenever Q can be deduced from F and R, Q is entailed by the R-saturation of F at rank γ, where $\gamma = f(R, Q)$

Property: If R has the QBDDP, then R is f.u.s. Moreover, for any Q, the depth of the R-rewriting tree of Q is N^γ (where N is the max size of Q and rule bodies).

For any Q' rewritable from Q, there is a Q'' in the rewriting tree of depth N^γ that is more general than Q'.
BOUNDED DERIVATION DEPTH & FUS (2)

Definition [Cali & al. 2010]: A set of existential rules \mathcal{R} has the (Q) bounded derivation-depth property (QBDDP) iff, for every facts F and Q, whenever Q can be deduced from F and \mathcal{R}, Q is entailed by the \mathcal{R}-saturation of F at rank γ, where $\gamma = f(\mathcal{R}, Q)$

Property: If \mathcal{R} is f.u.s., then \mathcal{R} has the QBDDP.

Suppose Q can be deduced from F and \mathcal{R}

$$\gamma = f(\mathcal{R}, Q)$$
Definition [Oxford 2012]: A set of existential rules \(R \) has the (F) bounded derivation-depth property (FBDDP) iff, for every facts \(F \) and \(Q \), whenever \(Q \) can be deduced from \(F \) and \(R \), \(Q \) is entailed by the \(R \)-saturation of \(F \) at rank \(\gamma \), where \(\gamma = f(R, F) \)

Property: \(R \) is f.e.s. iff \(R \) has the FBDDP.

\[(\Rightarrow) \]

\[\gamma = f(R, F) \]

\[\Rightarrow \]

\[F_{\gamma+1} \]

\[(\Leftarrow) \]

\[\gamma = f(R, F) \]
Alternate Definition: A set of existential rules \mathcal{R} has the bounded deduction length property (BDLP) iff, for every facts F and Q, whenever Q can be deduced from F and \mathcal{R}, there exists γ s.t. one of the following equivalent assertions holds:

- Q is entailed by an \mathcal{R}-derivation of F of length γ.
- F entails an \mathcal{R}-rewriting of Q of length γ.

Moreover:

- If $\gamma = f(F, \mathcal{R})$, we say that \mathcal{R} has the Fact BDLP (FBDLP).
- If $\gamma = f(Q, \mathcal{R})$, we say that \mathcal{R} has the Query BDLP (QBDLP).
CONCLUSION (2)

Let \(P \) be the following property on \((R,F,Q,k)\):
\[
F, R \models Q \iff Q \text{ maps to } F^k
\]

Any \(R \) satisfies:
\[
\forall Q \forall F \exists k \mid P
\]

\(R \) is \texts{fes} iff \(R \) satisfies F-BDDP
\[
\forall F \exists k \mid \forall Q: P
\]

\(R \) is \texts{fus} iff \(R \) satisfies Q-BDDP
\[
\forall Q \exists k \mid \forall F: P
\]

\(R \) is bounded iff \(R \) satisfies « strong BDDP »:
\[
\exists k \mid \forall F \forall Q: P
\]

Moreover: \(R \) is \texts{fus} iff \(R \) is FO-rewritable
[Rudolph Thomazo]
Thank you

baget@lirmm.fr