
Semantic web services in corporate memories

Moussa Lo1,2, Fabien Gandon1
1INRIA, ACACIA Team, 2004 rt Lucioles, BP 93 06902 Sophia Antipolis, France

2LANI, Université Gaston Berger – BP 234 Saint-Louis, Senegal
lom@ugb.sn, Fabien.Gandon@sophia.inria.fr

Abstract

We present our experiment in integrating semantic
web services in the existing corporate semantic web
server architecture we use to implement corporate
memories. We rely on a semantic web search engine, to
provide a semantic registry and automatically discover
and invoke corporate applications wrapped into
semantically annotated web services. Using rules we
also demonstrate how to compose the web services
with queries on the knowledge stored in the corporate
memory to automatically populate the service inputs.

1. Introduction

Until the end of the 90's, enterprise modeling has
been mainly used as a tool for enterprise engineering.
But the new trends and the shift in the market rules led
enterprises to become aware of the value of their
memory and of the fact that enterprise model has a role
to play in knowledge management (KM) too. Just like
data-integration problems can benefit from corporate-
level models, technology and application integration
problems can benefit from these same models. This
was recognized by practitioners of Enterprise
Application Integration but it requires a programming
paradigm at a level of abstraction high enough to ease
its implementation.

An organizational memory is an explicit,
disembodied, persistent representation and indexing of
knowledge and information or their sources in an
organization, in order to facilitate its access, share and
reuse by members of the organization, for their
individual and collective tasks [6]. In the past, we
experimented with agent-based architecture for
distributed KM [6][7]. At that time semantic web
hadn't meet the web services while all our protocols
and messages were at the knowledge level. With the
emergence of frameworks to semantically annotate
web services a new paradigm can be used to integrate
enterprise applications in a model-based memory. A

corporate semantic web is an extension of the current
use of web technologies in intranets, exploiting
semantic web frameworks to semantically annotate
resources available on the intranet and relying on these
annotations to assist corporate actors in their daily
tasks. In this article we describe our first experiment in
integrating semantic web services in the existing
semantic web server we use to build corporate
semantic webs.

In section 2 we show how semantic web services
allow us to integrate dynamic resources in corporate
memories. First, we summarize our previous work on
corporate semantic webs; then, we introduce our needs
to take into account dynamic resources which led us to
integrate web services into corporate semantic webs.
Finally, we survey existing frameworks of semantic
web services and give our position in the semantic web
service stack.

The section 3 presents our current implementation
embedded in the semantic web server architecture. We
describe our architecture which relies on Corese, a
semantic web search engine and provides automatic
discovery and invocation of annotated web services.
Using production rules we also demonstrate how to
facilitate service composition. Finally section 4 tackles
the original issue of composing corporate web services
with knowledge from the corporate memory. We
explore two paths: (a) using semantic types to attach
queries to service inputs and (b) turning the search
engine itself into a composable service of the memory.

2. Dynamic resources in corporate memory

2.1. Corporate semantic webs

Semantically annotated information worlds are, in
the actual state of the art, an effective way to make
information systems smarter i.e. a little semantics can
go a long way. If a corporate memory becomes an
annotated world, corporate applications can use the
semantics of the annotations and through inferences

help the users in their interactions with the corporate
memory.

The ACACIA research team focuses on knowledge
management solutions based on semantic web
technologies. We use RDF Model, RDF Schema and
OWL (essentially OWL Lite) to describe ontologies
and implement knowledge models [6]. Organizational
entities and people are annotated in RDF and its XML
syntax is used to store and exchange the annotations.
Using W3C recommendations, information systems
benefit from all the web-based technologies for
networking, display and navigation, integration,
interconnections, customizing, etc.

We can summarize our approach in three stages:
1. To apply scenario-driven knowledge engineering

techniques in order to capture the needed
conceptual vocabulary. We then specify the
corporate memory concepts and their relationships
in an ontology and formalize them in RDFS/OWL.

2. To use the conceptual vocabulary of the ontology
and the scenario analysis to develop corporate and
user models. These models are implemented in
RDF and instantiate the RDFS/OWL schema.

3. To structure the corporate memory using RDF
annotations on the documents: these annotations
instantiate the RDFS/OWL schema and make
reference to the corporate and user models.

2.1. Corporate semantic web services

More and more often, our research team must face
scenarios requiring not only knowledge access but also
computation, decision, routing, transformation, etc.
Until now, the corporate semantic webs we designed
focused on providing a unified and integrated access to
a range of knowledge sources; but there is a growing
demand to get the same facility to access corporate
applications and services and to integrate both worlds.
Users expect Information Technology (IT) managers to
get very different computing systems (desktops,
mobile phone, PDA, mainframes, etc.) to talk together
and to get the variety of applications that run on them
to talk together. Users don't only want to get access to
the needed pieces of information, they want it in a
format they are used to, with some certification of
quality and of provenance, with appropriate tools to
analyze it, modify it, etc.

Usage scenarios are evolving from the problem of
providing a unified access to information to the
problem of providing a unified access to information
and applications. Corporate memories, as they are
specified now, not only include information mediums
but more generally:

• information storage services including: document
sources (digital libraries, mailing-lists, forums,
blogs, etc.) and dedicated systems (corporate or
public databases, ERP, data warehouse, etc.);

• information creation services including: sensors
(e.g. location tracking, presence & availability),
computation and inference systems (e.g. data
analysis tools);

• information flows management services including:
secured transport channels, business rule engines
and workflow systems, connectivity management,
privacy enforcement and trust propagation;

• information mediation services including:
matchmaking directories, translation and mapping
services, contract and service quality enforcement;

• information presentation services including:
multimedia transformation, contextual adaptation,
dynamic customization and manipulation;
All these services may be internal or external to the

company yet users want them to interoperate smoothly
and, even better, to automatically integrate their
workflows at the business layer.

Web services allow organizations to make public a
programmatic access to one of their application
without exposing the internal architecture of their IT
systems. However, compared to agent-based platforms
we used before [6][7], these technologies had the
disadvantage to remain at the syntactic level while all
the resources we manipulate are described in ontology-
based models enabling us to leverage the semantics of
descriptions in inferences. The emergence of semantic
web services provided us with a new paradigm to
identify and integrate corporate or public services at a
semantic level like other corporate resources.

Thus the idea was for corporate web services to rely
on a semantic web server like for other KM
applications we designed: to provide a portal, to
include annotations to describe services like we did
with other resources before and to use our semantic
web search engine to retrieve them like we used it to
retrieve knowledge resources. To do so, we needed to
rely on schemata to annotate these new resources.

2.3. Semantic web services frameworks

Semantic web services (SWS) frameworks allow
service providers to enrich the service descriptions
with formal annotations of their capabilities in order to
be automatically discovered, executed and composed
[11]. Many frameworks have been proposed [3]
among which main ones are: OWL-S, WSMO, and
WSDL-S.

OWL-S [10][12] is a set of OWL ontologies for
describing web services. It has been developed to

provide the building blocks for encoding rich semantic
service descriptions and consists of three main upper
ontologies used to describe three facets of the services:
• The Profile facet is used for describing essentially

the non-functional properties (service name,
category, quality of service, etc.);

• The Process facet gives a detailed description of
the operation, its inputs and outputs and can even
detail its internal processes and, if it is the case, it
identifies the other services it is composed of;

• The Grounding facet provides details on how to
interoperate with a service via messages.
The service profile provides the information needed

for an application to discover a service. The service
model and service grounding provide the information
needed for an application to make use of a service.

Semantic Web enabled Web Services (SWWS)
[2][14] aims at providing a web service description
framework, a web service discovery framework and a
mediation platform for web services. One result is the
Web Service Modeling Framework (WSMF) [5] that
provides a conceptual model for developing and
describing web services and their composition. It
consists of four main elements: ontologies that provide
the terminology used by other elements, goal
repositories that define the problems that should be
solved by web services, web services definitions that
define various aspects of a web service, and mediators
for interoperability problems [3]. The Web Service
Modeling Ontology (WSMO) [15] is an ontology that
addresses two aspects: capability which is a non
functional description of a Web Service (preconditions,
post-conditions, assumptions, effects), and service
interfaces which specify the behavior of the service to
achieve its functionality by providing information
about the operational competence on the web service
(how a client can communicate with the service, how
the overall service functionality is achieved using other
services…).

OWL-S and SWWS start at the knowledge level
and are then grounded in WSDL. WSDL-S [1] starts
from WSDL and augments its expressivity with
semantics descriptions. Using extension slots of
WSDL, it provides a mechanism to add annotations in
a WSDL description to semantically describe the
capabilities and requirements of Web services (inputs,
outputs, preconditions, effects, operations). Again,
these annotations are based on external ontologies.
WSDL-S is the base of the SAWSDL recommendation
currently under construction at W3C.

Because OWL-S is directly expressed in OWL and
because our approach to corporate semantic webs relies
on OWL too, we relied on OWL-S for our experiment.
However, in our current scenarios, we use only the

profile and the grounding of OWL-S plus the input and
output description in the process description. This
corresponds in WSMO to the services capabilities and
input output description and also to the semantics
added by WSDL-S / SAWSDL to annotate services.

3. Corporate semantic web services

3.1. Corese as a semantic UDDI-like registry

Since our approach to corporate semantic webs
relies on OWL we relied on OWL-S for our
annotations of the web services; OWL-S offers the
framework the closest to semantic web frameworks
and thus is directly compatible with Corese. WSML or
WSDL-S would have required mappings (we are
considering the use of GRDDL from W3C together
with SAWSDL for our next experiment). We use the
profile, the process part offering input and output
descriptions and the grounding of OWL-S to annotate
web services wrapping corporate applications.

In this first prototype, to wrap a corporate
application into an annotated service, one must: (1)
write/wrap and deploy the corresponding web services;
(2) annotate the web services with OWL-S. All our
services were based on JWSDP 1.3 and wrapped
legacy services of our intranet.

The corporate semantic webs we experimented with
are based on Corese: a semantic web search engine
enabling us to query the semantic web statements. As
summarized in Figure 1, it relies on a mapping
between RDF/S-OWL and Conceptual Graphs and thus
leverages results of more than 20 years of research and
implementation in that branch of knowledge-based
systems including a graph projection algorithm that
provides an ontology-guided search operator.

RDFS / OWL

RDF / XML

Query / SPARQL

Rules

CG Support

CG Base

CG Query

CG Rules CG Result

PROJECTION

INFERENCES RDF

CORESE
Figure 1. Corese principle

In the corporate memories developed so far, the

annotations generally describe documentary resources
or corporate structures, but, when relying on schemata
as the ones surveyed in section 2.3, these annotations
can describe web services available online (intranet,
extranet, Internet). This means that Corese allows us to
automate the identification of web services available to
a user. Following a service-oriented architecture and a
find-bind-execute schema [13] Corese fits well in the
picture of semantic web services as a semantic registry.

Requester Provider

Corese

Figure 2. Corese as a semantic registry

In this new architecture, we moved from text-based

UDDI search to the semantic search engine Corese to
solve queries on the descriptions of the services, taking
into account the ontologies used to characterize them
and leveraging their semantics when solving a query.
For instance let us consider the following query:
?s rdf:type ex:Directory
?s service:describedBy ?p
?p proc:hasInput ?param

This query will retrieve any instance of directory
services (including instances of sub-types like yellow
pages, LDAP, etc.) together with their input
parameters. With this architecture, annotations of
services corresponding to corporate applications are
stored in the corporate semantic web. Then, the
indexed services can be automatically discovered and
dynamically invoked.

3.2. Semantic web portal to corporate services

Our current implementation is embedded in a
semantic web server architecture we designed to
accelerate the development of semantic web based
portals. In this 3-tier architecture, we added a web
application to manage semantic web services. It
enables us to extend the portal with accesses to
corporate (and external) services using main
functionalities: automatic web service discovery,
dynamic invocation of web service, and web service
composition. All the components of the portal rely on
Corese to access service ontologies and annotations.
When a service is selected by a user, we dynamically
generate a form offering an interface to call the service;
on submitting the form, the inputs are used to generate
a dynamic client and call the web services. The output
is then formatted as a web page. Figure 3 shows two
windows:
• A window in the background showing the result of

a query that retrieved a service description. This
service is a mail-sender with a number of inputs;

• A second window appeared when the service was
selected and provides a form to specify the inputs.
Once submitted, this form triggers a call to the web
service which is then dynamically executed and
displays the outputs.

Figure 3: Discovering & invoking a service

We also give the ability to export the output as an

XML document. This can be interesting for instance to
integrate the results in other applications.

3.3. Discovering sequential compositions

We also introduced means to discover limited
compositions of services that match a user's request
expressed in terms of available inputs and desired
outputs: Corese provides the possibility to search for
resources linked by a path of relations. For instance the
query ?x cos:Property[4] ?y looks for an oriented path
between two resources with a maximum of 4 relations.
This feature of Corese was designed to explore the
relations between two resources in a knowledge base
(e.g.: to discover acquaintance networks). Applied to
web services it can be used to discover a special type
of composition: sequences i.e. a succession of services
combined one after the other through their input and
output types. This is used to match users' requirements
when no single service directly matches available
inputs and desired outputs.

We formally defined what it means for two services
to be "composable" in a sequence. This is done through
a production rule encoding the sufficient condition of
the "composable" relation. To represent this relation,
we extended OWL-S with a property named
"composable" for the Process concept. The rule
defined below uses this new property and defines two
services s1 and s2 as "composable" when the input of
s2 and the output of s1 are ontologically compatible i.e.
the type of the output of s1 is the same or a subtype of
the type of the input of s2:

<cos:rule>
 <cos:if>

?s1 rdf:type proc:Process
?s2 rdf:type proc:Process
?s1 proc:hasInput ?input
?s2 proc:hasOutput ?output

qquueerryy && rreessuulltt

ffoorrmm

?s1 != ?s2
?input proc:semanticType ?inType
?output proc:semanticType ?outType
?outType rdfs:subPropertyOf ?inType

 </cos:if>
 <cos:then>

?s2 proc:composable ?s1
 </cos:then>
</cos:rule>

Applied to the knowledge base this rule generates
the couples of "composable" services. Since this rule
allows us to identify all the services that can be
composed together we can then express queries like
“Find all sequences of services having as input a
BookName and as output a BookBuyNotification”:
?s1 all::proc:composable[2] ?s2
?s1 proc:hasInput ?param1
?s2 proc:hasOutput ?param2
?param1 proc:semanticType c:BookName
?param2 proc:semanticType c:BookBuyNotification

Figure 4 shows an answer to this query with the
Book services coming with the OWL-S API. We
obtained the composition of the three services:
BookFinderProcess (input : BookName, output : BookInfo)

BNPriceProcess (input: BookInfo, output : BookPrice)

BookBuyProcess(input:BookPrice,output:BookBuyNotification)

Figure 4. Example of a sequence of services

We provide the ability to save sequences of services

as OWL-S composite processes. These composite
services can then be retrieved and executed like any
other corporate web service. This feature can be used
by an IT manager to create, save and propose new
services from existing ones.

4. Composing services and knowledge

4.1. Mapping input types to queries

Since we are in a semantic web environment,
"knowledge is everywhere" and thus one can use the
knowledge stored in the corporate memory to populate,
in an automatic way, the service inputs during
execution. This idea was suggested by a previous work
on context-aware service invocation [7]. The
implementation is in three steps:
1. We associate to service inputs a predicate from a

domain ontology by means of the semanticType

predicate. This means that candidate values for an
input can be found from values of this predicate.

2. We formally define these predicates using rules
allowing us to generate dynamically the needed
information from the memory.

3. When generating dynamically an invocation form
we also extract from the corporate memory the
information to (pre)populate the service inputs.
Let us consider the example of the service with an

input associated to the property EmployeeName. A rule
allows us to generate the candidate inputs from the
corporate memory annotations; it defines a sufficient
condition of the predicate EmployeeName. Then, by
using the generic query (select ?value where { ?x
semanticType ?value}), we obtain the triples generated
by the previous rule and we generate a dropdown box
with the name of the employees to pre-populate the
input of the service. To summarize we can select a
service from the result of a query on the directory, then
we can pre-populate the input form and finally we
display the result of the invocation. Again, every step
of this process (semantic rules and queries) leverages
the ontological reasoning.

4.2. Corese as a semantic web service itself

By wrapping a semantic search engine in a semantic
web service, one can provide new capabilities in
compositions: (1) to use the result of a query over the
corporate memory as a service input; (2) to use a
service output to add knowledge to the memory. In
order to do so, we provide the ability to compose a
service which wraps a corporate application with a
Corese semantic web service of two kinds:
• A Corese SWS which takes a query as input and

gives the query results as output; this service can be
composed with any other one to get knowledge
from the memory in order to associate a Corese
query and the service input;

• A Corese SWS which gets an RDF annotation as
input, stores and loads the annotation into the
memory; this service can be composed with another
service to transform its output into knowledge for
the memory. We introduced an auxiliary XSLT
service to transform outputs into RDF/XML.
We tested the following scenario. When someone

wants to know the email of an employee whose name
he knows, he can use directly the service wrapping the
LDAP application. Now, assume he is searching the
email address of the assistant of a given team but he
doesn’t know the name of this person. He can perform
a query (Find the name of the team's secretary) over
the memory and give the result directly to the service

providing emails. He can also save this new knowledge
(the email) in the memory.

5. Conclusion

In this article we presented an experiment in
integrating enterprise applications as web services in
an intranet relying on semantic web frameworks. We
chose to focus on a clearly identified family of
scenarios: the integration of enterprise applications in
an intranet. We have used Corese, a semantic web
search engine as a semantic registry. This allowed us to
prototype a semantic web portal embedded in the
Corese semantic web server. The portal offers (i)
automatic discovery, (ii) dynamic invocation, (iii)
interactive composition and (iv) discovery of
sequences of corporate and public web services.

An original contribution of this experiment is the
composition of corporate web services with knowledge
from the corporate memory: (i) services inputs types
are mapped into queries and (ii) the semantic search
engine is turned into a web service to connect
corporate applications with the memory knowledge.
This allowed us to differentiate between needed
functionalities and prospective ones and to identify the
layers of the semantic web services stack that we
needed first.

A typical question, for instance, is the one of
offering "manual vs. semi-automatic vs. fully
automatic composition and invocation of services". In
our scenarios, we do need to provide high-level
functionality through dynamic integration. However
we have not found ergonomic ways to describe and
decompose service needs to support fully automatic
composition. In addition, such functionality seems to
rely a lot on domain knowledge, and more over we
think that, as claimed in [8], in many cases, users will
want to control the composition process, influencing
the service selection. In the actual state of the art, we
found it more realistic to consider, for instance, the
request from business managers to be able to
implement business workflows in flexible (declarative)
manners above the classical web services architectures.

Finally we are currently studying the interaction and
integration with emerging semantic web extensions
such as: SPARQL query language and protocol and
SWRL rule description language. We also consider the
problem of dynamically generating ergonomic user

interfaces to semantic web services: web services are
primarily designed for B2B programmatic interactions
but the services or their compositions are called by
users. Since their discovery, composition and
invocation are dynamic their use will require
dynamically generated ergonomic user interfaces.

6. References

[1] Akkiraju, R., Farrell, J., Miller, J.A., Nagarajan, M.,
Schmidt M-T., Sheth, A., Verma, K. Web Service Semantics
- WSDL-S, Technical Note, V 1.0, April 2005
[2] Bussler, Fensel, Maedche, A Conceptual Architecture
for Semantic Web Enabled Web Services, ACM 2002.
[3] Cabral, L., Domingue, J., Motta, E., Payne, T.,
Hakimpour, F., Approaches to Semantic Web Services: An
Overview and Comparisons, ESWS’04, 2004.
[4] Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.,
Querying the Semantic Web with the Corese search engine.
In Proc. of the 16th European Conference on Artificial
Intelligence ECAI'2004, IOS Press, p. 705-709.
[5] Fensel, D., Bussler, C., The Web Service Modeling
Framework WSMF, Electronic Commerce: Research and
Applications, Vol. 1., 2002
[6] Gandon, F., Distributed Artificial Intelligence and
Knowledge Management: ontologies and multi-agent
systems for a corporate semantic web, PhD Thesis in
Informatics, 7th of November 2002, INRIA and University
of Nice - Sophia Antipolis
[7] Gandon, F. and Sadeh, N., Semantic Web Technologies
to Reconcile Privacy and Context Awareness, Web
Semantics Journal. Vol. 1, No. 3, 2004.
[8] Kifer, Lara, Polleres, Zhao, Keller, Lausen, Fensel, A
Logical Framework for Web Service Discovery, workshop
Semantic Web Services: Preparing to Meet the World of
Business Applications, at ISWC, Hiroshima, 2004.
[9] Kim, J., Gil, Y., Towards Interactive Composition of
Semantic Web Services, First International Semantic Web
Services Symposium, AAAI, March 2004.
[10] Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,
McDermott, D., McGuinness, D., Parsia, B., Payne, T.,
Sabou, M., Solanki, M., Srinivasan, N., Sycara, K., Bringing
Semantics to Web Services: the OWL-S Approach,
SWSWPC’04, LNCS n° 3387, 2004.
[11] McIlraith, S., Son T. C., Zeng H., Semantic Web
Services, IEEE Intelligent Systems, 16(2):46-53, 2001.
[12] OWL-S Specification, http://www.daml.org/services
[13] Qusay H. M., Service-Oriented Architecture (SOA) and
Web Services: The Road to Enterprise Application
Integration (EAI), April 2005
[14] SWWS Project, http://swws.semanticweb.org
[15] WSMO at http://www.wsmo.org/2004/d2/

