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Abstract
Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two

opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys

Mol Biol 105:119–127, 2011; Pharmacopsychiatry 46:S44–S52, 2013) rests upon the notion that manic and depressive

symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model

can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude

(suprathreshold) oscillations and could correspond to mixed bipolar states. These rhythms are commonly referred to as

mixed mode oscillations (MMOs) and they have already been studied in many different contexts by Bertram (Mathematical

analysis of complex cellular activity, Springer, Cham, 2015), (Petrov et al. in J Chem Phys 97:6191–6198, 1992). In order

to accurately explain these dynamics one has to apply a mathematical apparatus that makes full use of the timescale

separation between variables. Here we apply the framework of multiple-timescale dynamics to the model of BD in order to

understand the mathematical mechanisms underpinning the observed dynamics of changing mood. We show that the

observed complex oscillations can be understood as MMOs due to a so-called folded-node singularity. Moreover, we

explore the bifurcation structure of the system and we provide possible biological interpretations of our findings. Finally,

we show the robustness of the MMOs regime to stochastic noise and we propose a minimal three-dimensional model

which, with the addition of noise, exhibits similar yet purely noise-driven dynamics. The broader significance of this work

is to introduce mathematical tools that could be used to analyse and potentially control future, more biologically grounded

models of BD.
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Introduction

Psychiatric disorders from a dynamical systems
perspective

There is an ever-evolving set of paradigms taking place in

Theoretical Neuroscience. Cognition, a set of computations

that produces meaningful behavior, can be understood as

transformations of representations within or between neural

state spaces. The neural population now becomes the

central implementational unit, replacing in a way the

notion of neural circuits and the simple passage of mes-

sages between neurons. The so-called state space, that is

the space of all possible states taken by the model’s vari-

ables, allows to depict the collective change of activation

of the different neuronal populations. In these representa-

tion spaces, the aforementioned transformations can be

described as dynamical phenomena such as equilibria

(stationary states), limit cycles (robust oscillatory states),

bifurcations (transitions from one type of observed state to

another) (Vyas et al. 2020; Barack and Krakauer 2021;

Pessoa 2019). Since psychiatric illnesses can be loosely

summarised as productions of maladaptive beliefs and

behavior, one could partly attribute that to disregulation of

mechanisms pertaining to cognition. Furthermore, psychi-

atric disorders are phenomena that originate from the

interplay of biophysical factors evolving on different spa-

tial and temporal scales, while different factors can give

rise to the same dynamical phenomena which, however,

would result in different behavioral effects depending on

the brain region where they take place (Durstewitz et al.

2020). All these considerations motivate us to take a new

look at psychiatric illnesses through the lenses of

Dynamical Systems theory, which is precisely the part of

mathematical modeling that classify and analyses the

possible types of states that a given time-varying system

can admit for a given parameter set as well as transitions

from state to state upon parameter variations. Some of the

most promising approaches include the study of behavior

as the outcome of a series of transient states called

metastable states (La Camera et al. 2019) that can be

achieved through various switching mechanisms like

heteroclinic channels (Bystritsky et al. 2012) and dynam-

ical systems with multiple timescales (Jimenez-Marin

et al. 2019). In the present work, we revisit a dynamical

model of BD from the perspective of multiple-timescale

dynamics, in order to uncover the switching mechanism

that explains the metastability between mania and depres-

sion and gives rise to complex oscillations of mood.

Interestingly, these complex oscillations include prolonged

plateaus in the time series, which may bear relevance to

mixed bipolar states or episodes (pauses) within classical

bipolar oscillations from manic to depressive states and

back; see Sect. 1.3 below for details.

Bipolar disorder (BD) and models of the disease

BD is characterised by a pathological mood cyclicity

between manic (extremely elevated mood) and depressive

(extremely low mood) (Geller and Luby 1997) episodes,

interspersed with milder mood fluctuations or, in some

cases, relative mood stability. Its prevalence is estimated to

be within 0.3�1.5% of the total population (Weissman

et al. 1996). Although small steps have been made towards

the elucidation of the mechanisms of the disease, its

molecular, cellular and network bases remain unknown (-

Soares and Young 2007; Barnett and Smoller 2009).

Neuronal alterations spanning all levels of description have

been implicated in the pathophysiology of this complex

illness (Magioncalda and Martino 2021). Regarding the

large-scale activity in BD patients’ brain, there is evidence

of disturbances of the structural, functional and effective

connectivity in networks responsible for affective pro-

cesses, as well as those responsible for cognitive control

and executive functions. These disruptions of the connec-

tivity contribute significantly to the mood instabilities that

are observed in BD (Perry et al. 2019). In contrast, at the

micro-scale level of description, the cytoarchitecture of

specific brain areas bears significant changes for those

patients as well. Specifically, reduction in the density of

neuronal and glial cells as well as glial hypertrophy have

been observed in the dorsolateral prefrontal cortex

(DLPFC) of BD patients (Rajkowska et al. 2001). The

contribution of neuronal changes, spanning different scales

of the brain, to the development of BD symptoms is

another factor that places Dynamical Systems theory as a

key tool for the analysis of such a complex disorder.

The need to further understand the complexity of this

spectrum of mental disorders resulted in various modelling

attempts. In the absence of a reliable biomarker that could

accurately track the evolution of this clinical entity, most of

the evaluations of patients are based on their responses to

questionnaires that capture in regular time periods their

emotional status. In recent years, there have been a few

different modeling approaches for the behavioral time

series obtained from BD patients including (a) behavioral

activation system models (Chang and Chou 2018; Stei-

nacher and Wright 2013) where altered mood stems from

the dysregulation of systems governing behavioural acti-

vation or approach and (b) discrete-time random mod-

els (Fan 2015). Moreover, another category BD models is

(c) biological rhythm models (Daugherty et al. 2009;

Goldbeter 2011; Bonsall et al. 2015) in which a periodicity

assumption about the mood variation of bipolar patients is

implied, which could be correlated with results that show a
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connection between this pathological mood cyclicity and

the circadian rhythms (Takaesu 2018) or mitochondrial

fluctuations (Kato 2017). Among them, the model by

Goldbeter is based on the delayed interaction of two

mutually inhibiting neuronal populations (Goldbeter 2011)

and produces particularly interesting complex oscillatory

dynamics in the BD regime. These complex oscillations,

which we will show correspond to MMOs with multiple

timescales, are termed ‘‘mixed state’’ by Goldbeter and one

could also relate them to ‘‘inter-episode mood instability’’

as proposed by (Bonsall et al. 2012).

Mixed states in bipolar disorder and relation
to MMOs in neuron models

Mixed affective states are defined as the coexistence of

both manic and depressive symptoms, within a single

episode of Mania or Depression. For example, a person in

an episode with mixed features could be crying and having

feelings of remorse while being hyperactive and experi-

encing racing thoughts and rapid speech. Or inversely, they

could be feeling ecstatically happy and then suddenly

collapse to a depressive state. In the updated version of the

book Diagnostic and Statistical Manual of Mental Disor-

ders (American, Psychiatric, & Association 2013), the

term ‘‘mixed episodes’’ has been replaced by the specifier

‘‘mixed features’’ to describe low-grade symptoms of the

opposite pole. The occurrence of these states is related to

higher severity and worse course of illness (Solé et al.

2017), and the prevalence of these episodes is approxi-

mately 40% among bipolar patients (Fagiolini et al. 2015;

Tohen et al. 2017; Gonzalez-Pinto et al. 2010; McIntyre

et al. 2015). The pathophysiological mechanisms that lead

to these mixed states include genetic susceptibility related

to circadian rhythms and dopamine neurotransmission as

well as disturbances in the catecholamine-acetylcholine

neurotransmission balance. However, further research is

necessary in order to shed light onto the precise mechanism

of this condition (Muneer 2017). From a dynamical sys-

tems point of view, this coexistence of manic and depres-

sive symptoms could be expressed in the Goldbeter model

through the occurrence of small-amplitude oscillations

exhibited by the variables in between large-amplitude

oscillations reminiscent of classical BD states.

When time series of a mathematical model are charac-

terised by superposed rhythms consisting of both small-

amplitude and large-amplitude oscillations, one typically

refer to such time series as MMOs (Desroches et al. 2012).

These multiple modes of oscillations are often due to the

presence of multiple timescales in the underlying model, in

particular in biological models. In the present work, we

revisit the Goldbeter model of BD using multiple-timescale

analysis since its oscillatory solutions exhibit a dynamical

behaviour consistent with MMOs. Multiple-timescale

analysis of mathematical models pertinent to biological

application (e.g. single-neuron or neural population mod-

els) has proved very efficient in capturing complex non-

linear oscillations of MMO type; see e.g. (Rubin and

Wechselberger 2008; Iglesias et al. 2011; Ersöz et al.

2020). However, to the best of our knowledge, this for-

malism has not been applied in models of psychiatric dis-

orders, which is the main objective of the present work. It

allows us to import recent developments in Mathematical

and Computational Neuroscience to the young yet fast-

developing field of Computational Neuropsychiatry (Dau-

vermann et al. 2014; Deco and Kringelbach 2014;

Durstewitz et al. 2020).

From the early 1980s onward, multiple-timescale ana-

lytical and computational tools have been developed to

study neural dynamics, both to analyze existing biophysical

models and also to design idealized models. This classical

approach of analyzing the dynamics of neuron models

using so-called slow-fast theory revealed powerful enough

to explain some key aspects of the bursting activity of

neurons that was observed experimentally. In that context,

when at least two fast and one slow variables were con-

sidered, the seminal work of Rinzel enabled to analyze

complex bursting oscillations (Rinzel 1987) as observed in

both biophysical and idealized neuron models, for instance

in the Hindmarsh-Rose model (Hindmarsh and Rose 1984)

or 3D versions of the FitzHugh-Nagumo (Rinzel 1987) and

of the Morris-Lecar (Izhikevich 2000) models. Namely, the

shape of the full system’s limit cycle, parts of the trajectory

corresponding to the slow dynamics of the system (quies-

cent phase of the bursting cycle), as well as parts of the

trajectory corresponding to the fast dynamics of the system

(active phase of the bursting cycle).More recently, other

aspects of neural electrical activity could be captured by

slow-fast models with at least two slow variables, namely

the possibility for spiking activity interspersed by sub-

threshold oscillations as observed, e.g., in some versions of

the Hodgkin-Huxley model both in networks (Drover et al.

2004) and self-coupled simplified units (Wechselberger

2005). This other type of complex oscillations correspond

to MMOs and, in such context, the solution profile of the

system shows a remarkable correspondence with the

underlying structure of the fast subsystem and two-di-

mensional slow subsystem as we will show later. These

complex biological rhythms modeled within the MMO

framework can be compared with experiments, both at

single cell level and population level; see, e.g., (Bertram

et al. 2015) for examples of such experimental time series.

For the Bipolar Disorder model, however, experimental

data are hard to be compared with the model’s output.

In the remainder of the article, we first introduce in

Sect. 2 the Goldbeter model and analyse it using the lenses
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of multiple-timescale dynamics as a two slow / two fast

system. Then, in Sect. 3, we compute and finely describe

the bifurcation structure of this model with respect to two

key parameters, revealing in particular a complex organi-

sation of MMOs in parameter space along isolated curves

called isolas. In Sect. 4, we consider the effect of noise on

the dynamics of the model in two different ways: first, we

study the robustness of MMOs to small added noise in the

full 4D model; then, we derive a reduced 3D model, with

only one slow variable and added noise which plays the

driving role in generating noise-induced MMOs. We

review our methods of analysis and computations in

Sect. 5. Finally, in Sect. 6, we conclude and give a number

of perspectives regarding the broader significance of the

multiple-timescale modeling approach both in BD and also

in other computational neuropsychiatric problems. All

technical analyses of fast and slow subsystems of the

model, as well as the details of noisy versions of the model,

are presented in Appendix A.

The model

We consider a four-dimensional phenomenological model

of bipolar disorder (BD), introduced and first analysed by

Goldbeter in (Goldbeter 2011, 2013). Variables M and D

correspond to the activation of neuronal populations that

are responsible for manic and depressive symptoms,

respectively. These variables inhibit each other. The intu-

ition behind this inhibition comes from the two opposing

poles of mood in bipolar patients; biologically, it is sup-

ported by observations of antidepressant-induced manic

episodes (Viktorin et al. 2014). In these cases, it seems as

if the propensity to depression keeps the manic symptoms

from emerging and when this propensity is decreased with

antidepressants, the manic symptoms re-emerge. Of note

here is that the original model by A. Goldbeter consisted

only of these two variables and what is observed is the

existence of two distinct stable states (bistability). The

other two variables are FM and FD and these are interme-

diate factors which could be thought of as neuromodula-

tors. One of the versions of Goldbeter’s model postulated

that FM and FD further activate each other (cross-activa-

tion) producing, with this mechanism, bipolar oscillations.

However in this work we focus on the alternative scenario,

namely that the variables FM and FD are produced by, and

also inhibit, M and D, respectively (auto-inhibition). In this

way, the two intermediate factors delay the interaction

between M and D. Auto-inhibition is an ubiquitous mech-

anism in nature, especially for neurobiological sys-

tems (Destexhe et al. 1994). The model’s

equations (Goldbeter 2011, 2013) read

dM

dt
¼ VM

K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �
;

dD

dt
¼ VD

K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �
;

dFM

dt
¼ kc1

M

Kf1 þM

� �
� kc2FM ;

dFD

dt
¼ kc3

D

Kf2 þ D

� �
� kc4FD:

ð1Þ

Fig. 1 displays a schematic of the microcircuit underpin-

ning this model.

Time series and the phase space of the model

From observing the time profile of the four variables, we

obtain two important pieces of information. First, the time

courses of M and D change a lot faster than FM and FD; we

reach this conclusion by observing their slopes on a sliding

window; see Fig. 2. Secondly, we observe that the rhythm

of these variables consists an alternation between large-

amplitude oscillations and small-amplitude ones. Such

rhythm is often referred to as mixed mode oscillations

(MMOs) (Desroches et al. 2012). MMOs could correspond

to the mixed bipolar states that are present in about 40% of

bipolar patients (McIntyre et al. 2015) and are charac-

terised by the coexistence of manic and depressive symp-

toms during an episode of mania or depression.

Time series are key outputs of such differential equation

models, and they can in some cases be compared with

experimental data. However, a strong advantage of looking

at a mathematical model is that we can investigate the

behaviour of its solutions by plotting one variable against

another one, in the so-called phase plane. In this context,

dedicated techniques can be used in order to extract pre-

cious dynamical markers about the model. In the present

case, we can see how the fast variable M changes with

respect to the slow variables FM and FD along a MMO

trajectory.

What we observe in Fig. 3 is that there are two segments

of the trajectory (in red on the figure) along which

M changes a lot slower than the other two segments (in

Fig. 1 A schematic representation of the model for Bipolar Disorder

that uses mutual inhibition with auto-inhibition. Adapted from (Gold-

beter 2011)

Cognitive Neurodynamics

123



blue); the blue segments are ‘‘quasi-vertical’’ and the red

ones seem to follow the lower and upper sheets of a surface

represented in green which we will define below. Fur-

thermore, we observe that there is an abrupt transition from

the upper slow segment to the fast segment, while it is not

the case in the transition from the lower slow segment to

the fast segment of the trajectory, as there is a delay. The

trajectory undergoes a turning point that corresponds to the

small-amplitude oscillations mentioned above regarding

the time series, which is a very important part of the

MMOs. In terms of biological interpretation of this

dynamical behaviour of the model, the slow segment is

characterised by low manic, high depressive symptoms. In

other words, one may interpret this part of the solution

trajectory as a delay in the transition from depression to

mania. At the core of the analysis presented in the present

article is the fact that we can use classical results from

multiple-timescale dynamical systems to control this delay

using key parameters of the model.

Analysing the fast dynamics

In order to exploit the different timescales present in the

model and identifiable in the solutions’ time series, we first

identify a small parameter responsible for the timescale

separation in the equation. It turns out that, from the

original parameter set considered in (Goldbeter

2011, 2013), parameters kc1�4
are all small and of the same

order, therefore we will introduce a small parameter e equal

to kc3;4
, which will automatically give that kc1;2

¼ 4e is still

small.

This timescale ratio parameter e plays a central role in

slow-fast systems. First and foremost, it allows to iden-

tify two fast variables (M and D) and two slow variables

(FM and FD) in this BD model. When e multiplies the

right-hand side of the slow equations in system (4) then

the system is said to be written in the fast-time

parametrization, with the fast time t, in which Eqs. (1)

take the form

(a) (b)

Fig. 2 a Time-series of M and D displaying a MMO; b Time series of FM and FD displaying a MMO. Parameter values are as in (Goldbeter

2013, Fig.5)

Fig. 3 Mixed Mode Oscillations in the Goldbeter model, as described

by the system of equation in (4) (see Appendix 1.1), with a mixed

state close to the depressive state; parameter values correspond to

Figure 5 in (Goldbeter 2013). Also shown are the critical manifold S0,

its fold curves F� and the folded-node singularity fn. Along the

MMO trajectory, slow segments are highlighted in red with single

arrows, and fast segments in blue with double arrows
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M0 ¼ VM
K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �
;

D0 ¼ VD
K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �
;

F0
M ¼ 4e

M

Kf1 þM
� FM

� �
;

F0
D ¼ e

D

Kf2 þ D
� FD

� �
;

ð2Þ

where the prime denotes the derivative with respect to the

fast time t. If we want to explore the fast segments of the

trajectory, i.e., the fast dynamics of the system, we can

consider the limit of the fast-time system Eqs. (4) when e
tends to 0. This is perfectly possible and legitimate in a

mathematical model even though it is impossible in an

experimental context. However, it still unveils important

elements that one can use to decipher the complex

dynamics of the full system. Essentially, in this way we

freeze the dynamics of the slow variables and consider

them as parameters. As a result, we get the so-called fast

subsystem which gives an approximation of the fast

dynamics of the full system.

If we solve the system of equations M0 ¼ 0 and D0 ¼ 0,

we can find the set of equilibria of the fast subsystem. By

plotting them in a three-dimensional phase-space projec-

tion, for instance onto ðFM;FD;MÞ, we obtain a surface

called the critical manifold S0 of the system; this is the

green surface shown in Fig. 3. Superimposing the MMO

trajectory of the full system onto the critical manifold, that

is, onto the set of equilibria of the fast subsystem, we can

see that there is a remarkable fit. This confirms that our

original assumption of a two fast/two slow variable system

was correct. Moreover, superimposing these solutions of

the full system onto the bifurcation diagram of the fast

subsystem with respect to the ‘‘frozen’’ slow variables

proves very pertinent: the full system solution follows

slowly branches of attractors of the fast subsystem and

transitions between different phases appear near bifurca-

tion points of the fast subsystem. In the present context, we

have two slow variables so two main parameters in the fast

subsystem; hence, important transitions along an MMO

trajectory occur near lines of bifurcations of the fast sub-

system, namely lines of fold bifurcation, which geometri-

cally correspond to the two fold lines F� of the critical

manifold; see also Appendix 1.1.

Given that the system also has two slow variables, the

slow singular limit at e ¼ 0 also contains valuable infor-

mation, in particular about the mixed-state dynamics, as

explained next. For more details on the methodology, see

Appendix 1.2.

Analysing the slow dynamics

We now turn our focus to the study of the slow segments of

the trajectory, i.e., the slow dynamics of the system. For

that, we can rewrite the system in slow-time parametrisa-

tion (7) (see Appendix 1.2) by introducing the so-called

slow time s ¼ te. Here we use an overdot to denote dif-

ferentiation with respect to s:

e _M ¼ VM
K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �
;

e _D ¼ VD
K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �
;

_FM ¼ 4
M

Kf1 þM
� FM

� �
;

_FD ¼ D

Kf2 þ D
� FD;

ð3Þ

where the over dot denotes the derivative with respect to

the slow time s. In this case, if we take the abstract limit

e ¼ 0, the resulting system is called the slow subsystem and

it approximates the slow dynamics of the full system. It

consists of two differential equations that are constrained

by two algebraic equations which we can write in vector

form ff ¼ 0g, where f is a complicated nonlinear function

of all the variables.

This equation ff ¼ 0g is the one that we used to plot the

critical manifold. In other words, the slow subsystem

solution trajectories are forced to evolve on the critical

manifold when e ¼ 0. Thus, the critical manifold forms

both the set of equilibria of the fast subsystem, as we saw

earlier, and the phase space of the slow subsystem. Because

this algebraic equation ff ¼ 0g has to hold true for all

times s, we can differentiate it with respect to time s. The

resulting formula is given in (9).

When the denominator vanishes and the numerator does

not, the slow subsystem is not defined, and this happens

along the fold curves of the critical manifold. There are,

however, special points where the numerator also vanishes

by having a zero of the same order as the denominator. In

such cases, the slow subsystem is well defined. These

points are called folded singularities, they correspond to

turning points of the slow flow and are responsible for the

aforementioned delayed transition from depression to

mania. Note that in some cases, folded singularities can

have an interplay with a delayed Hopf bifurcation and the

delayed transition and accompanying small oscillations can

also be related to the presence of equilibria with complex

eigenvalues in the fast subsystem; see e.g. Desroches et al.

(2012). Details about the derivation and analysis of the

slow flow are given in the Appendix section 1.2.
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By changing the value of parameter Kf1, one can find by

direct simulation another type of MMO trajectory, where

the delayed transition now occurs at the transition from

mania to depression; see Fig. 4. Here as well, the length of

the delay (i.e. the duration of the mixed state) can be

controlled by adjusting the parameter Kf1. Another folded

singularity (of the same node type) is also responsible for

the MMOs whose intermediate state is closer to mania

(higher values of Kf1) and located on the upper fold of the

critical manifold and shown in Fig. 4.

The important conclusion is that the aforementioned

delay in the transition from the slow to the fast segment in the

MMO trajectory corresponds to a delay in the transition from

depression to mania, or in the opposite transition depending

on Kf1, and such mixed bipolar states can be attributed to the

existence of a folded singularity. Furthermore, by changing

the values of system parameters, we can control the duration

of this delay, which emphasizes the relative importance of a

mixed state within a bipolar disorder episode. We therefore

need to study the various types of solutions that the model

admits depending on the value of a key parameter like Kf1

and this is the purpose of the next section.

Bifurcation analysis of the system

Exploring the bifurcation structure with respect
to Kf1

Bifurcation analysis is a common tool in the study of

non-linear dynamical systems, also in the context of

neuroscientific problems (e.g. (Breakspear et al. 2006)), as

it enables to explore how small changes in the values of the

system’s parameters affect the system’s regime. Parameter

Kf1, and symmetrically parameter Kf2, play an important

role for the model. In this model, the rates of production of

FM and FD take the form of Michaelis-Menten like func-

tions and therefore they display saturation and reach a

plateau at large values of M and D. The constants Kf1 and

Kf2 reflect the levels of M or D achieving 50% of the

maximum rates of production of FM or FD, respectively. In

other words, the rates of synthesis of FM and FD saturate

and reach a plateau value for sufficiently low values of Kf1

and Kf2, while they become linear at large values of these

constants. We now explore how variations of parameter

Kf1 affect the dynamical regime of the system. The bifur-

cation diagram of the full system with respect to Kf1 is

presented in Fig. 5.

It appears that there are three distinct areas of interest.

For low values of Kf1, the system is in a steady state that is

characterised by low levels of mania (and high levels of

depression). Thus, region 1 corresponds to Depression. As

we increase Kf1 there is a Hopf Bifurcation that gives rise

to a family of limit cycles. Now the system is in an

oscillatory regime between manic and depressive states,

hence region 2 corresponds to bipolar disorder. Lastly, if

we increase further the value of Kf1 then the system settles

in a different steady state characterised by high manic (and

low depressive) symptoms, which means that region 3

corresponds to mania. All 3 regions are highlighted in

Fig. 5a.

Moreover, for values of Kf1 at the transition from region

1 to region 2, we can observe in the corresponding time-

series, the kind of rhythms that were mentioned earlier,

consisting of large- and small-amplitude oscillations

(MMOs). These MMOs have an intermediate state closer to

depression (D reaching higher values than M). The family

of MMOs that is located the closest to the branch of limit

cycles born at the Hopf Bifurcation consists of one large-

amplitude and one small-amplitude oscillation and it is

denoted as 11. The second MMO branch corresponds to 1

large and 2 small oscillations (12), and so on. In the

parameter space, most of them are organised along closed

isolated branches typically referred to as isolas; a few such

isolas are shown in details in Fig. 5a and c, and one specific

isola is shown in panel (d) to showcase its closed geometry

in parameter space. However, this is not the case for the

first branch of MMOs (11). Numerical evidence supports

the fact that this branch of 11 MMOs starts and ends

through a period-doubling bifurcation from the main

branch of limit cycles, the one that is born at the Hopf

bifurcation. We provide this numerical evidence in Fig. 5c

where we plot all MMO branches with the period as

Fig. 4 Mixed Mode Oscillations in the Goldbeter model (4) with a

mixed state close to the manic state; parameter values as in Fig. 3

except for Kf1 ¼ 1:293. Also shown are the critical manifold S0, its

fold curves F� and the folded-node singularity fn. Along the MMO

trajectory, slow segments are highlighted by single arrows, and fast

segments with double arrows
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solution measure, and indeed the beginning and end of the

11 branch correspond to a doubling of the period with

respect to the corresponding parts of the 10 branch. This is

quite typical of slow-fast systems with MMOs due a folded

node as studied in, e.g. (Desroches et al. 2012), specifically

figure 19 which was made for a prototypical model of

MMO dynamics due to folded node (the so-called Koper

model). Thus, what we observe in the Goldbeter model is

consistent with this scenario.

MMOs with more small-amplitude oscillations exist on

isolas and we show five such isolas: MMOs of type 12 to

MMOs of type 16. Essentially, we can control the number

of small oscillations by changing, for instance, the

parameter Kf1. Note that MMOs due to the presence of a

folded-node singularity are very much related to canard

solutions, known to organise, in this context, the transition

between different profiles of MMOs upon parameter (e.g.

Kf1) variation (Desroches et al. 2012). By decreasing the

(a) (b)

(c) (d)

Fig. 5 a Bifurcation diagram with respect to the parameter Kf1; b
Zoomed view of panel (a) (colored rectangle) highlighting 6 isolas

MMOs corresponding to solutions with profile 11 � 16, respectively.

The label 1s refers to MMO with 1 large-amplitude and s small-

amplitude oscillations per period. By extension, we call 10 standard

BD oscillations, with only 1 frequency so no small-amplitude

oscillations. c Period along all computed branches of periodic

solutions. d The isola of 13 MMOs shown alone so as to highlight

its geometry and the fact that it is closed in parameter space. In all

panels the solid lines correspond to stable equilibria, whereas the

dashed lines correspond to unstable equilibria. SN: saddle-node

bifurcation, H: Hopf bifurcation, Ho: homoclinic bifurcation, PD:

period-doubling bifurcation
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parameter’s value we can increase the period of the MMO,

hence the delay of the transition from the slow to the fast

dynamics of the system and by extension the transition

from the depressive to the manic state; see Fig. 6 for an

illustration where the number of small oscillations (hence

the amount of delay to the transition to mania) progres-

sively increases as Kf1 is decreased in the MMO regime.

For values of Kf1 at the transition from region 2 to region 3,

we can observe MMOs whose intermediate state is closer

to mania. In parameter space, these families of MMOs are

organised along open branches bounded by homoclinic

bifurcations on both sides, which in particular indicates that

the duration of the mixed state can become very large. In

the limit, we observe a plateau instead of small oscillations,

interspersed with abrupt spikes, or episodes, of mania.

It is possible that the change of other parameters has a

similar effect too. An interesting connection can be made

with the bifurcation diagram of the DRS (an auxiliary

system that was used for the analysis of the slow dynamics

of the system; see Appendix 1.2 for details) with respect to

the parameter Kf1, as illustrated in Fig. 7. We observe that

there are two transcritical bifurcations (denoted by T),

which correspond to the birth and death of the MMO

regime in the full system and the values of the parameter

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Time series for variable M of stable MMO solutions for

various values of Kf1, illustrating the fact that the effect of varying

this parameter is to create more and more small-amplitude oscillations

in between the large-amplitude oscillation displayed per period.

Values of Kf1 and MMO profiles are: a Kf1 ¼ 0:8 with a 11 MMO; b

Kf1 ¼ 0:79 with a 12 MMO; c Kf1 ¼ 0:785 with a 13 MMO; d Kf1 ¼
0:782 with a 14 MMO; e Kf1 ¼ 0:78 with a 15 MMO; f Kf1 ¼ 0:779

with a 16 MMO; g Kf1 ¼ 0:778 with a 18 MMO; h Kf1 ¼ 0:777 with a

112 MMO
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are similar to the ones that correspond to the MMO regimes

that were mentioned before.

Finally, claims of chaotic patterns of mood variation in

bipolar disorder have been the focus of scientific efforts

since the 1990s. (Gottschalk et al. 1995) used time series

analysis to show that self-reported mood in patients with

bipolar disorder can be characterised as a process evolving

in a low-dimensional chaotic regime. More recent studies

show that these patterns could be reinforced by stronger

interactions between negative affective states (Wichers

et al. 2015). In accordance with these observations, the

present BD model can exhibit a highly irregular non-peri-

odic behavior of chaotic oscillations which is very sensitive

to even small perturbations of the initial conditions of the

system and thus very hard to predict. These dynamics are

common for systems that produce MMOs as shown in

multiple studies (Awal and Epstein 2021; Larter and

Steinmetz 1991). For a narrow range of values of parameter

Kf1, the system undergoes successive transitions to limit

cycles with a period that doubles each time, known as

period-doubling cascade. This is one of the known mech-

anisms of creation of deterministic chaos and it often

appears in the MMO regime of multiple-timescale

dynamical systems. The integration of the system for a

long simulation time can give rise to a solution trajectory

that is consistent with the existence of an underlying

chaotic attractor because we can observe a significant

(deterministic) variation of the trajectory which is, how-

ever, confined in a certain ‘‘volume’’ of the state space; see

Fig. 8.

Two-parameter bifurcation analysis with respect
to Kf1 and VM

Another important parameter that plays a crucial role in

the model of bipolar disorder is the ratio h of the param-

eters VD and VM (h ¼ VD

VM
). Parameters VD and VM dictate

the maximum rate of increase of the propensity to

depression and mania respectively, which are correlated

with the activation of the two opposing neuronal popula-

tions D and M. An original formulation of the model which

produced bistability between mania and depression was

based on the increase of h so that the transition from mania

to depression can be achieved and vice-versa. The oscil-

latory behavior of the model was created when this ratio h
was coupled with the two main variables M and D through

the equations of the intermediate factors FM and

FD (Goldbeter 2013, 2011). Thus, switching between states

in this model is strongly related to the h ratio. In a way h
expresses the end result of various proposed triggers of the

mood swings in Bipolar Disorder. These triggers can be

pharmacological factors, as in the case of anti-depressant

treatment-induced switching to a hypomanic or manic

state, or environmental factors such as a disturbed sleep

pattern, social rhythm disruption (SRD) (social zeitge-

ber) (Grandin et al. 2006) due to adverse life events, or the

changing of seasons (Young and Dulcis 2015). Alterna-

tively, the continuous accumulation of a multitude of risk

factors, as those mentioned above, could push the person to

reach a rather sudden shift (catastrophe or tipping point)

from one mental state or mood to another (Nelson et al.

2017; Scott 1985). By definition of h, changing h for a

given value of VD is similar to changing the parameter VM .

We therefore investigated numerically the change of the

dynamical regime of the system with regard to the values

of both VM and Kf1. The result is shown in Fig. 9. The

black line depicts a family of Hopf Bifurcations (HB). The

red line depicts a family of saddle-node bifurcations (SN).

Fig. 7 Bifurcation diagram of the Desingularized Reduced System

(DRS) with respect to parameter Kf1. The structure of this diagram

reveals the presence of two types of equilibria of the DRS, namely

folded singularities (which are not equilibria of the true slow

subsystem) and true singularities (which are also equilibria of the

slow subsystem). Both types of singularities meet at transcritical

bifurcation points Ti. In the present context, such bifurcations

correspond to the event where a folded node loses stability to become

a folded saddle and a (true) saddle becomes a (true) node. Hence, this

event marks the boundaries of the MMO regimes

Fig. 8 Chaotic attractor in system (4) obtained by direct simulation

for Kf1 ¼ 0:78065832
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For descending values of VM we observe that the two

branches of the family of SNs meet at a cusp (VM � 0:9)

after which there are no more saddle nodes. If we want to

visualise better this two-parameter bifurcation diagram, we

can imagine that for VM ¼ 1 a snapshot of the bifurcations

of the system would be the same as the bifurcation diagram

for Kf1 in Fig. 5, with two saddle-nodes and two HBs. The

important information that this bifurcation diagram con-

veys is the range of values of Kf1 and VM for which the

system is in an oscillatory regime (bipolar disorder). The

oscillations are attributed to limit cycles that are created by

the HBs. And these values lie within the black curve of the

HBs. The other important information is that for values of

VM below the codimension-two cusp point, we do not have

the possibility of the two distinct states Depression and

Mania that we saw before (region 1 and region 3 in Fig. 5),

because in the parameter space these states appear as

branches of stable equilibria after the SN bifurcations only

for values of VM higher than the value at the cusp.

Robustness of deterministic MMOs to noise
and noise-induced MMOs

The existence of stochastic noise is ubiquitous in biological

systems and thus an important factor contributing to the

emergence of psychiatric disorders (Roberts et al. 2017;

Petzschner 2017). Hence, taking into account the effects of

noise in this multi-time scale model of bipolar disorder

could contribute to a more accurate explanation of real data

of bipolar patients’ mood changes that are susceptible to

random fluctuations. Firstly, we investigate the effect of

noise on this system of ODEs. If we add a noise term (a

standard Wiener process multiplied by a small parameter of

the order e) we observe from the time-series that the sys-

tem, in general, retains the structure of MMOs. We indeed

show in Fig. 10 that MMOs are robust to small-amplitude

noise added to the fast equations; see Appendix 1.3.

However, part of the small amplitude oscillations becomes

less distinguishable from the random fluctuations of the

values of the fast variables. Of course, for large values of

the noise term this structure is lost. The relation between

the noise level relative to the timescale ratio parameter

plays a significant role as shown in previous works (Ber-

glund et al. 2012; Simpson and Kuske 2011); see also (Su

et al. 2003) for another study investigating the effect of

noise on complex oscillations with multiple timescales. A

similar exploration of the effects of noise on the model’s

oscillatory regime has been made by A. Goldbeter

in (Goldbeter 2013).

Furthermore, it is established that the MMOs can be

created with various mechanisms by structurally different

systems (noise induced, delay bifurcations, etc) and there is

previous work that proposes ways to identify this mecha-

nism (Borowski et al. 2010). One of the ways for a system

to produce MMOs is with the addition of stochastic noise.

Although in a deterministic setting the minimal require-

ment for MMOs is the existence of one fast and two slow

variables, we can create MMO dynamics through a dif-

ferent approach that needs only one slow variable. To this

end, we removed the slow variable FD (now considered as

a fixed parameter) and introduced a noise term B (standard

Wiener process) in the remaining slow variable FM . This

produces MMOs that are purely noise-induced, as seen

Fig. 9 a Two-parameter bifurcation diagram with respect to VM and

Kf1. The black line corresponds to a family of Hopf Bifurcations

(HB). The purple segment of the black line corresponds to the

‘‘isolas’’ that were mentioned earlier. The red line corresponds to a

family of saddle-node bifurcations (SN). b The same diagram plotted

in the 3D space ðKf1;VM ;MÞ space and superimposed on the

equilibrium manifold of the system, that is, the zero set of the

right-hand side of system (1)
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from the time-series and the trajectories in the phase plane

in Fig. 11. Essentially the slow perturbations that lead to

this peculiar periodic solution that we described as MMOs

are driven by the stochastic noise instead of the interplay of

the two slow variables. The important benefit of this

attempt is twofold. In computational modeling we attempt

in general to provide the minimal model that serves our

purposes, (in our case reproduce the behavioural time-

series, obtained by bipolar patients) driven by the principle

of parsimony i.e simpler models and theories are preferable

because they tend to be more easily falsifiable. Adding to

that, mood is a phenomenon affected by the stochasticity of

biological processes as well as by random life events. This

attribute of mood can be captured by the model with the

addition of the noise term. In other words there is a clear

interpretation of the stochastic drive of the periodic solu-

tions, namely the induction of the mixed bipolar states by

random environmental factors or events. For the formula-

tion of the respective systems of stochastic differential

equations, see Appendix 1.4.

(a) (b)

(c) (d)

Fig. 10 Simulation of system (4) with added Gaussian noise in the fast equations, that is, Eq. (13). Panels a1–b1 show the time series of variables

D and M, respectively. Panels a2–b2 display the phase-plane projections onto the ðFD;DÞ and onto the ðFM ;MÞ planes, respectively
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Fig. 11 Noise-induced MMOs in a 3D reduced version of the

Goldbeter model with added Gaussian noise in the slow variable; see

Eq. (14). Panels a1–b1 show the time series of variables D and M,

respectively. Panels a2–b2 display the phase-plane projections onto

the ðFD;DÞ and onto the ðFM ;MÞ planes, respectively
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Methods

The main methods that we have employed in order to

revisit the BD model by Goldbeter are both of theoretical

(slow-fast analysis, bifurcation theory) and computational

(numerical solutions of ODEs and numerical continuation)

nature. For the simulations of the trajectories of the system

on the phase planes we used the XPPAUT software and the

numerical scheme that we used was Runge-Kutta order 4.

For the construction of the bifurcation diagrams, we used

the numerical continuation algorithm of the XPPAUT

software (Ermentrout 2002). Numerical continuation is a

standard method of computing families of attractors (e.g.

stable equilibria, stable limit cycles) as well as repellor

(stationary or periodic) and bifurcation points marking

changes of stability along such families. On top of these,

other functions are implemented which can detect bifur-

cation points of nonlinear systems i.e. changes of the

dynamics of a dynamical system within the neighborhood

of a specific parameter value. For the 3D plots in the phase-

space with the critical manifold and one trajectory, we used

the MATLAB environment. The parameter values used for

the Bipolar Disorder Model were given in (Goldbeter

2011, 2013): VM ¼1; h¼1:2; VD¼hVM; n¼1; K2 ¼K4 ¼
0:5; Ki1 ¼ 0:33; Ki2 ¼ 0:35; Ki3¼0:6;Ki4¼0:4; kM¼kD ¼
1; kc1¼kc2¼0:04; kc3¼kc4¼ 0:01; Kf1¼Kf2¼0:8: Initial

conditions: M¼0:161; D¼0:495; FM¼0:165; FD¼
0:391: All the scripts are available upon request and will be

uploaded onto MODELDB 1 upon publication of the pre-

sent work.

Summary and discussion

The slow-fast theory for MMO due to a folded node is rather

recent (it was developed from the 1990s onward) and it pro-

vides a framework to study certain types of complex oscil-

lations with both small-amplitude and large-amplitude

components. Such complex oscillatory patterns are ubiqui-

tous in biological signals and multiple-timescale MMO the-

ory has proven very useful in many neural systems, both at

single-cell and population level. Slow-fast theory is espe-

cially relevant to Bipolar Disorder. There is an accumulation

of evidence related to the topological features of the con-

nectome (Perry et al. 2019; Gollo et al. 2015) suggesting that

the dense connectivity of cortical hubs, known as the ‘‘rich

club’’, gives rise to slow stable dynamics in core areas that

include much of the neuronal circuitry pertaining to emotion

and cognitive control. On the other hand, there are peripheral

regions typically on the primary sensory cortex that create fast

and unstable fluctuations (Murray et al. 2014). These

findings suggest that there is a correspondence of the slow

time scales of the emotional highly connected nodes with the

slow time scales of internal states (such as mood changes that

bias learning and expectations according to the real life

context (Eldar and Niv 2015), whereas peripheral regions’

fluctuations are related to the fast alterations of events in the

external sensory apparatus. Potential structural changes

located in these core hub-regions could destabilize the

aforementioned slow dynamics and could contribute to the

mood variations of BD patients (Perry et al. 2019).

In this work we have revisited a neural model of bipolar

disorder based upon mutual inhibition of neuronal popu-

lations. This core hypothesis of the model, is supported by

various examples in the neuropsychiatric literature of

mutual inhibition of two neuronal networks. More specif-

ically, two assumed mutually inhibiting neural circuits, that

produce bistability, seem to be involved in the mechanism

of the REM-nonREM transitions during sleep (Lu et al.

2006; Hobson et al. 1975; Goldbeter 2018). The dynamical

consequences of mutual inhibition have also been studied

in two-neuron models (Wang and Rinzel 1992), while the

effect of mutual inhibition supplemented with auto-inhi-

bition has been investigated in a theoretical study of

Reticular Thalamic oscillations (Destexhe et al. 1994).

Moreover, (Ramirez-Mahaluf et al. 2017; Ramirez-

Mahaluf and Compte 2018), after establishing the opposite

functions and anticorrelation of dorsolateral prefrontal

cortex (dlPFC) and ventral anterior cingulate cortex

(vACC) during the performance of emotional and cognitive

tasks, they propose a computational model that explains

Major Depressive Disorder (MDD) symptoms and treat-

ments. This model is based on the hypothesis of mutual

disynaptic inhibition between the vACC and the dlPFC

networks.

In summary, we were able to show that the complex

oscillations obtained and reported by (Goldbeter

2013, 2011) can be understood as MMOs due to a folded

node, which we could provide analytical and numerical

evidence of, once we found the appropriate timescale

separation in the initial model. Furthermore, we explored

the bifurcation structure of the model with respect to the

parameter Kf1 and with respect to both Kf1 and VM . The

former bifurcation analysis led to the identification of 3

distinct regimes of the system, namely that of depression,

bipolar disorder and mania. The transitions between those

regimes are characterised by the existence of MMOs that in

parameter space are created by different bifurcations in

each case. The latter bifurcation analysis on the other hand,

led to the identification of the range of values of the two

parameters for which there is an oscillatory regime (cor-

responding to bipolar disorder) and for which there is the

possibility of the two distinct steady states (depression and
1 https://senselab.med.yale.edu/ModelDB/.
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mania) that were achievable for low and high values of Kf1,

respectively. Moreover, we show that the addition of small

noise (of order e) to the two fast variables of the system

does not affect the MMO structure and we propose a

minimal model consisting of two fast variables and one

slow variable with a noise term that also produces MMOs

which could correspond to the induction of the mixed

bipolar states by random life events. Finally, we found

numerical evidence of deterministic chaos produced by this

model. For a specific value of the parameter Kf1, possibly

through a period-doubling cascade, we find by direct sim-

ulation a trajectory which seemingly follows a chaotic

attractor. The broader significance of our work is that we

introduce to the neuropsychiatric community some rela-

tively new mathematical tools which enable the in-depth

analysis of systems evolving on multiple timescales. This

type of analysis and control could be applied to future more

biologically plausible models of bipolar disorder. In par-

ticular, one could also derive information about the values

of specific parameters from the regime that the system is in,

through the bifurcation diagrams. More generally, multi-

ple-timescale dynamical modeling, which is customary in a

number of biological topics (such as neuronal and cardiac

cells’ electrical activity, cell cycles, hormonal release, to

name a few), should become a part of the toolbox of

computational psychiatry (Anticevic and Murray 2017;

Series 2020) and we provide a case study based on BD to

demonstrate its efficiency.

Finally, among the questions that remain open are those

regarding the biological meaning of the parameters of the

system. In this study we focused on parameters Kf1 and VM .

As explained in Sects. 3.1 and 3.2, these parameters directly

govern the rate at which the variables of the model increase in

time. Parameters VD and VM dictate the maximum rate of

increase of the propensity to depression and mania respec-

tively, which are correlated with the activation of the two

opposing neuronal populations D and M, while Kf1, and

symmetrically Kf2, measure the levels of M or D achieving

50% of the maximum rates of production of the intermediate

factors FM or FD, respectively. These parameters are likely

affected by molecules used to treat bipolar disorders, such as

antidepressants. The model parameters encompass a variety

of processes controlling the electrophysiological activity of

the neural network involved. These processes may range

from the control of ionic conductances and synaptic function

to the rates of synthesis, transport or degradation of hor-

mones and neurotransmitters, as well as the affinity of the

receptors that respond to these signals. At the molecular

level, a more thorough physiological characterization of the

model parameters awaits the identification of the molecular

and cellular mechanisms involved in the origin of bipolar

disorders.

The interest of the modeling approach is to pinpoint the

type of plausible mechanisms that are capable of giving

rise to the different modes of dynamic behavior associated

with this neuropsychiatric disorder. The analysis that we

present provides a detailed mathematical description of the

transitions between these various modes of dynamic

behavior, which may hopefully contribute to a better

understanding of bipolar disorder and its control. Aspects

of this topic that could be explored further are: (1) using a

generalized methodology for dissecting systems with more

than 2 fast and 2 slow variables and improving our

numerical results, (2) studying how manipulating the ratio

of the eigenvalues of the Jacobian matrix of the DRS could

affect the number of smaller oscillations that we observe

and the delay in the transition between the two different

regimes, depression and mania. In a later stage of research,

this could lead to the identification of a specific biological

substrate that generates the observed oscillations as well as

a better stratification of patients with respect to their

individualized set of parameters. In any case, there is

potential for further research as this approach for dissecting

the dynamics of complex systems that exhibit this kind of

periodic behavior seems very promising and calls for

applications in diverse fields that range from bursting

neuron models to mood oscillations in psychiatric patients.

Appendix 1: Multiple-timescale analysis
of the model

1.1 Fast dynamics and fast subsystem

The full system of ODEs, written explicitly as a slow-fast

system in fast-time formulation (timescale ratio parameter

e multiplying the right hand side of the slow variables):

M0 ¼ VM
K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �

D0 ¼ VD
K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �

F0
M ¼ 4e

M

Kf1 þM
� FM

� �

F0
D ¼ e

D

Kf2 þ D
� FD

� �

ð4Þ

Taking the limit e ¼ 0 of the fast-time system yields the so-

called fast subsystem, in which FM and FD have their
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dynamics frozen and are considered as parameters. The fast

subsystem, that provides an approximation of the fast

dynamics of the original system is:

M0 ¼ VM
K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �

D0 ¼ VD
K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �
:

ð5Þ

In order to find all the equilibria of the fast subsystem, we

solve the equations D’=0, M’=0. The corresponding object

is called the critical manifold of the system. It is a 2D

surface (equilibria of fast subsystem and phase space of the

slow subsystem) that we aim to plot in the 3D phase space.

By performing algebraic manipulations to the previous

equations, if we take n ¼ 1 as in the papers by Goldbeter,

we can solve for FM:

FM ¼ K2 þMð ÞK2
i1Ki3VM

MKM K2
i1 þ

K4

K2
i2

K2
i2
þM2

� �
Ki4

Ki4þFD

� �
KD
VD

�
K2
i2

K2
i2
þM2

� �
Ki4

Ki4þFD

� �
0
@

1
A

2
0
B@

1
CA

� Ki3

ð6Þ

Plotting this formula for FM in 3D using MATLAB yields

the surface in Figs. 3 and 4

1.2 Slow dynamics, slow sub-system
and desingularised reduced system (DRS)

We are interested in finding the limit of the slow segments

of the MMO solution, or in other words what are the

dynamics on the critical manifold, as the timescale ratio

parameter e tends to 0. The introduction of the so-called

slow time s ¼ te allows to put the system in its slow-time

parametrization.

e _M ¼ VM
K2
i1

K2
i1 þ D2

� �
Kn
i3

Kn
i3 þ Fn

M

� �
� kM

M

K2 þM

� �

e _D ¼ VD
K2
i2

K2
i2 þM2

� �
Kn
i4

Kn
i4 þ Fn

D

� �
� kD

D

K4 þ D

� �

_FM ¼ 4
M

Kf1 þM
� FM

� �

_FD ¼ D

Kf2 þ D
� FD

ð7Þ

By taking the limit e ¼ 0 in the slow-time parametrization

of the system, we obtain the slow subsystem that provides

an approximation of the slow dynamics of the original

system. The slow subsystem or reduced system (RS) is:

0 ¼ f M;FD;FMð Þ
_FM ¼ hðM;FMÞ
_FD ¼ gðD;FDÞ

ð8Þ

Note that the slow subsystem is a differential-algebraic

system, that is, a system of two differential equations (for

the original slow variables FM and FD) constrained by an

algebraic equation, which effectively corresponds to the

critical manifold. Hence the critical manifold plays a key

role in both subsystems: it is the set of equilibria of the fast

subsystem, and it is the phase space of the slow subsystem.

Since the algebraic constraint must be true for all time t, we

can differentiate it with respect to t and we obtain:

0 ¼ of

oM

dM

dt
þ of

oFD

dFD

dt
þ of

oFM

dFm

dt

�! dM

dt
¼

of
oFD

gþ of
oFM

h

� of
oM

ð9Þ

Therefore when of
oM ¼ 0 the RS is not defined. It is worth

mentioning that the condition of
oM ¼ 0 corresponds to the

fold set of the critical manifold (S-shaped surface), locally

formed by two curves (only one curve with two branches

that meet at a cusp point) and it can be computed by

continuing the fold bifurcation points of the fast subsystem

in both FM and FD. This is the reason to introduce an

auxiliary system called the Desingularized Reduced Sys-

tem (DRS) obtained by rescaling time in the RS by a factor

‘‘�df=dM’’. If we apply the convention that the flow of the

RS and of the DRS should have the same direction on the

attracting sheet of the critical manifold, which corresponds

to the submanifold fdf=dM\0g and opposite direction on

the repelling sheet of S, which corresponds to the sub-

manifold fdf=dM[ 0g, then the only possible way to

obtain the DRS from the RS is to introduce an auxiliary

time s ¼ �tdf =dM and we obtain the following Desingu-

larized Reduced System (DRS):

dM

ds
¼ df

dFD
gþ df

dFM
h ¼ k1 M;D;FD;FMð Þ

dFD

ds
¼ � df

dM
g ¼ k2 M;D;FDð Þ

dFM

ds
¼ � df

dM
h ¼ k3 M;FD;FMð Þ

ð10Þ

With the process of desingularization essentially, we pro-

ject the points of the critical manifold (a surface) onto a

plane, which removes the singularity along the fold set, and

we also change the orientation of the flow along the

repelling sheet. Note that the RS is a dynamical system

constrained to evolve on a surface (the critical manifold),

therefore it can be described with only two equations.

Cognitive Neurodynamics

123



Since we have an explicit formula for FM that depends only

on M and FD, we can eliminate the equation for dFm/ds.

The DRS becomes:

dM

ds
¼ df

dFD
gþ df

dFM
h ¼ k1 M;D;FD;FMð Þ

dFD

ds
¼ � df

dM
g ¼ k2 M;D;FDð Þ

ð11Þ

For the DRS to have an equilibrium two conditions must be

satisfied: df
dFD

gþ df
dFM

h ¼ 0 and df
dM ¼ 0 or g ¼ 0. The

equilibria of the DRS satisfying df
dM ¼ 0 are precisely the

ones that have been created by the process of desingular-

ization allowing to pass from the RS to the DRS. There-

fore, they are of interest to us since we want to understand

the dynamics along the fold set of the critical manifold,

where the RS is not defined. Such equilibria of the DRS are

called folded equilibria for the RS. The DRS, in other

words, offers a way to understand the slow flow up to the

fold curve via the existence of folded equilibria, which are

true equilibria of the DRS located on the fold curve. The

fact that the right-hand side of the M-equation of the RS

has a denominator going to 0 on the fold curve of the

critical manifold makes the RS a priori undefined along this

curve. However, when the term ‘‘ df
dFD

gþ df
dFM

h’’ also has a

zero of the same order as df
dM, then dM

dt is well defined and so

is the RS. Therefore, even though the RS is undefined at

most points on the fold curve, there are specific points

where it is defined, and these are folded singularities. The

conditions for a folded singularity p are the following:

1. F pð Þ ¼ 0 (critical manifold)

2. df
dM pð Þ ¼ 0 (fold curve)

3. df
dFD

pð Þg pð Þ þ df
dFM

h pð Þ ¼ 0

It is worth noting that folded singularities are not equilibria

of the RS but important points that allow a dynamical

passage from the attracting onto the repelling sheet of the

critical manifold. This corresponds to a canard type

dynamic in the singular limit e ¼ 0, and therefore the

corresponding solutions of the RS are called singular

canards (Desroches et al. 2012). To find the type of the

folded singularity of the DRS we can compute the eigen-

values of its Jacobian matrix A:

A ¼

dk1

dM

dk1

dFD

dk2

dM

dk2

dFD

0
BB@

1
CCA ð12Þ

In order to find the eigenvalues for the fold point p, we

must solve detðA� kIÞ ¼ 0, with A evaluated at the point

p. If s1; s2 are the eigenvalues of the Jacobian Matrix A

evaluated at the folded singularity p, as an equilibrium of

the DRS, then p is a folded node if s1\0; s2\0 and

s1; s2 2 R.

1.3 Robustness of MMOs to noise

We add low-amplitude noise terms, of the order of e, to the

two fast variables:

dMðtÞ ¼
�
VM

K2
i1

K2
i1
þDðtÞ2

� �
Kn
i3

Kn
i3
þFMðtÞn

� �
� kM

MðtÞ
K2þMðtÞ

� ��
dt

þ r1MðtÞdW1ðtÞ

dDðtÞ ¼
�
VD

K2
i2

K2
i2
þMðtÞ2

� �
Kn
i4

Kn
i4
þFDðtÞn

� �
� kD

DðtÞ
K4þDðtÞ

� ��
dt

þ r2DðtÞdW2ðtÞ

_FMðtÞ ¼ 4e MðtÞ
Kf 1þMðtÞ � FMðtÞ

� �

_FDðtÞ ¼ e DðtÞ
Kf 2þDðtÞ � FDðtÞ

� �
;

ð13Þ

where WiðtÞ are independent standard Wiener processes

(also independent of the initial conditions when the latter

are stochastic), and where the structure of the drift terms

(i.e. the terms in ‘‘dt’’) and of the diffusion terms (i.e. the

term in ‘‘dWiðtÞ’’) ensures that M(t) and D(t) remain pos-

itive almost surely for all t� 0: indeed, for in MðtÞ ¼ 0

(resp. DðtÞ ¼ 0) the noise term is null and the drift term

(i.e. the term in ‘‘dt’’) is positive in the corresponding

equation.

1.4 Noise induced MMOs

Removing the variable FD and adding a noise term in the

other slow variable FM:

_MðtÞ ¼ VM
K2
i1

K2
i1
þDðtÞ2

� �
Kn
i3

Kn
i3
þFMðtÞn

� �
� kM

M
K2þM

� �

dDðtÞ ¼
�
VD

K2
i2

K2
i2
þMðtÞ2

� �
Kn
i4

Kn
i4
þFDðtÞn

� �
� kD

D
K4þD

� ��
dt

þ r2DðtÞdW2ðtÞ

_FMðtÞ ¼e AM
Kf1þMðtÞ � FM

� �
;

ð14Þ

where a standard Wiener process with a diffusion term

r2 DðtÞ is added to the dynamics of D, as before, when

DðtÞ ¼ 0, the diffusion term is null and the drift term is

nonnegative so that D(t) stays nonnegative for all t� 0,

almost surely. The thought process behind the construction

of the 3D stochastic model is the following: the 2D system

with only of M and D variables, with FM and FD being

parameters, as described by A. Goldbeter (Goldbeter
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2011, 2013) exhibits bistability between equilibria (has an

S-shaped curve of equilibria) which will allow for relax-

ation oscillations when slow variable(s) are added (e.g.

FM). When slow dynamics is added for FM , while FD is

still a parameter, the resulting 3D system displays bista-

bility between large-amplitude relaxation cycles and

equilibria, when FD is statically varied. The system has 2

Hopf bifurcations which are both subcritical and the ini-

tially unstable branches of limit cycles become

stable through saddle-node bifurcations of cycles. This

system has two zones of bistability (in between the Hopf

points and the saddle-node of cycles point) between equi-

libria and limit cycles. Then, as the noise term

r2DðtÞdW2ðtÞ is introduced to the system, its effect is

essentially to make the system ‘‘jitter’’ in the zone of

bistability. Because the branch of cycles without noise

grows sharply (canards), this is the reason why the noisy

system exhibits noise-induced MMOs; see e.g. Simpson

and Kuske (2011) for an example of analysis of such noisy

complex oscillations.
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