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Abstract

Sequential Monte Carlo methods have been a major advance in the field of numerical filtering
for stochastic dynamical state-space systems with partial and noisy observations. However, these
methods still have some weaknesses. One of its main weaknesses concerns the degeneracy of these
particle filters due to the impoverishment of the particles. Indeed, during the prediction step of
these filters, the particles explore the state space, and if this exploration phase is not done correctly,
a large part of the particles will end up in areas that are weakly weighted by the new measurement
and will be mostly eliminated. Only a few particles will remain, leading to a degeneracy of the
filter. In order to improve this last step within the framework of the classic bootstrap particle filter,
we propose a simple approximation of the one step fixed-lag smoother. At each time iteration,
we propose to perform additional simulations during the prediction step in order to improve the
likelihood of the selected particles. Note that we aim to propose an algorithm that is almost as fast
and of the same order of complexity as the bootstrap particle filter, and which is robust in poorly
conditioned filtering situations. We also investigate a robust version of this smoother.

Keywords

particle filter, robust particle filter, regime switching particle filter, one step fixed-lag particle
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I INTRODUCTION

Since the 1980s sequential Monte Carlo (SMC) methods, also called particle filter (PF) methods
(2,4, 6,7, 11], have met with vast success and broad usage in the context of nonlinear filtering
for state-space models with partial and noisy observations, also known as hidden Markov mod-
els (HMM) for state-space models. The success of these methods is due to their ability to take
into account, in a numerically realistic and efficient way, the non-linearity of the dynamics and
the non-Gaussianity of the underlying conditional distributions.

The exact (i.e., non approximated) dynamics of these HMMs takes the form of a sequential
Bayes formula represented in Eqs. (3)-(4) also called Bayesian filter. In the case of linear
models with additive Gaussian noise, the Kalman filter gives an exact solution of this problem
as well as an efficient algorithm to compute it. There are a few cases where this filter can be
computed explicitly in a finite-dimensional way, but in the majority of cases it is necessary to
use numerical approximation methods. Historically, the first method proposed is the extended
Kalman filter (EKF) [1] and its variants, which consist in linearizing the model around the
current estimate and applying the Kalman filter. But in the case of strongly nonlinear models,
the EKF often diverges. Since the 1980s, Monte Carlo methods have become very effective
alternatives, they are now recognized as a powerful tool in the estimation with Bayesian filters
in nonlinear/non-Gaussian hidden Markov models.

Among Monte Carlo methods, the PF techniques rely on an online importance sampling ap-
proximation of the sequential Bayes formula (3)-(4). At each time iteration, the PF builds a set
of particles i.e. an independently and identically distributed sample from an approximation of
the theoretical solution of the Bayesian filter.

A PF time iteration classically includes two steps: a prediction step consisting in exploring the
state space by moving the particles according to the state equation, followed by a correction
step consisting in first weighting the particles according to their correspondence with the new
observation, i.e. according to their likelihood, then resampling these particles according to their
weight. These two steps can be understood respectively as the mutation and selection steps of
genetic algorithms.

The first really efficient PF algorithm, namely the bootstrap particle filter (BPF) or sampling-
importance-resampling filter proposed in 1993 [11], follows exactly these two steps.

The resampling step is essential, without it we notice after a few time iterations an impoverish-
ment of the particles: very few particles, even one, will concentrate all the likelihood; the other
particles then become useless, the filter then loses track of the current state.

This resampling step is therefore essential, but still it does not prevent another type of particle
degeneracy [2, 7, 17, 21, 27]. The latter appears when the particles explore areas of the state
space that are not in agreement with the new observation. This is due to the fact that in its
classical version, especially in the case of BPFE, the prediction step propagates the particles
in the state space without taking into account the next observation. Thus, when we associate
weights with particles using their value via the likelihood function, a large proportion of the
particles may have almost zero weight, this phenomenon is aggravated by the machine epsilon.
In the worst case, all the particles can have a zero weight, the filter has then completely lost
track of the state evolution.

To overcome this problem it is relevant to take into account the observations in the prediction
step consisting in exploring the state space. The auxiliary particle filter (APF) [22, 23] is one
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of the first attempts to take into account the observation in the prediction step. One can consult
the review articles [9, 10] concerning the possibilities of improvement of particle filters.

Another possibility to overcome this difficulty, without using the observation following the
current one, is to use robust versions of particle filters, such as the regime switching method
[15] or the averaging-model approach [19, 25], which allow model uncertainties to be taken
into account.

The present paper aims to propose a new PF algorithm, called predictive bootstrap particle
smoother (PBPS), to further improve the prediction step but keeping the simplicity of the BPF.
The principle of the PBPS is to take into account the current and the next observations for the
prediction and correction steps. At each prediction step, we make additional explorations in
order to better determine the likelihood according to the next observation. It can be seen as a
simple approximation of the one step fixed-lag smoother. The additional explorations contribute
to the correction step in order to improve the likelihood of the selected particles with the current
and next observation.

We propose an algorithm that is only a little more complex than the BPF, which is why we
do not consider more complex algorithms, like the smoother with a deeper time-lag. We also
want to propose an efficient algorithm in case of unfavorable filtering situations such as when
observability is poorly conditioned.

In Section II state-space models and the (exact) formulas for nonlinear filters and smoothers
are presented. In Section III, we first present the classical bootstrap particle filter (BPF), then
the predictive bootstrap particle smoother (PBPS) and its “robustfied” version called regime
switching predictive bootstrap particle smoother (RS-PBPS).

In Section IV we present simulations in two test cases where observability is weakly condi-
tioned. The first test case is a classical example in state space dimension 1 for which we com-
pare the PBPS to the extended Kalman filter (EKF) [1], the unscented Kalman filter (UKF) [13,
26], the bootstrap particle filter (BPF) [11], and the the auxiliary particle filter (APF) [22]. The
second is more realistic, it is a classical problem of bearing-only 2D tracking with a state space
of dimension 4. In this case we first compare the PBPS to the BPF and the APF filters. In
this example there are often model uncertainties, so it is relevant to use robust filters, and we
compare the RS-PBPS to “robustified” versions of the particle filters.

I NONLINEAR FILTERING AND SMOOTHING

In order to simplify the presentation, we will make the abuse of notation, customary in this field,
of representing probability distributions, e.g. p(dx), by densities, e.g. p(x)dz; we also repre-
sent the Dirac measure 0, (dz) as d,, (z) dz where §,, () is the Dirac function (with d,,(z) = 0
if © # 2, 04y (x) = +00 if £ = 20, and [ d,,(z)dz = 1).

2.1 The state space model

We consider a Markovian state-space model with state process (X} )x>o taking values in R™ and
observation process (Y})r>; taking values in R?. We suppose that conditionally on (X})z>0,
the observations Y}, are independent.
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The ingredients of the state-space model are:

g (z|2)) E px,x, = (2), (state transition kernel)
Ypy() = Py Xp=2(Y) ; (local likelihood function)
po(z) = px, (2), (initial distribution)

for any z, 2’ € R", y € R%

These ingredients can be made more explicit in the case of the following state space model:

Xi = froo1(Xe—1) + gr—1 (Xp—1) Wia (D
Yie = hi(Xi) + Vi, ()

for k > 1, where X, (resp. Y3, Wy, V) takes values in R” (resp. RY, R™, RY), f;, (resp. gi, hi,)
is a differentiable and at most linear growth, uniformly in k, from R” to R™ (resp. R%, R™*™,
R%), gx being also bounded. Random sequences W), and Vj, are independent centered white
Gaussian noises with respective variances R}’ and R} ; Wy, Vj,, X, being independent. In this
case:

, 1
i (z|2’) =
\/(2 ) det RV,

xexp(—5[e = firl@)] [ane) RE )] o = fiae')])

X

and

1 x _
Yieya) o< exp (=5 [y — hel@)] " [BY) ™" [y = hila)] )
(11, has to be known up to a multiplicative constant).

2.2 Nonlinear filtering

Nonlinear filtering aims at determining the conditional distribution 7 of the current state X
given the past observations Y7, ..., Y}, namely:

def

k(%) = DxyVig=ys (€),  €R"
for any k > 1 and yy., € (R%)¥, here we use the notation:
“Yi.x” for (Y1,...,Y%)
(e.g. Y1 = y1pmeans Y, =y, forall{ =1,... k).
The nonlinear filter allows us to determine 7, from 7;_; using the classical two-step recursive

Bayes formula:

Prediction step. The predicted distribution 74— () = pPx,|vis_i=yis_. (¥) Of X}, given

Yik—1 = Y1.6—1 18 given by:

n- () = / ar(2]2') 1 (2f) da’ 3)

for x € R™.
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Correction step. The new observation Y, = y; allows the predicted distribution to be
updated in order to obtain 7, according to the Bayes formula:

B V() M- ()
() = Jgn V(") mp- (2) d’ ©

for x € R™; here and in order to simplify the notations, () represents ¢ ,, ().

Note that in the correction step (4) , 7 is proportional to the product of 7;_; and the local
likelihood function, that is:
() o< Pr(x) M- (2) -

2.3 Nonlinear smoothing

Define 7j;(z) the conditional distribution of X}, given Y7511 = y1.541, that is:

_ def
nk(x) = PXpViks1=y1:041 ($> , T €R"

forany k > 1 and yy.441 € (RY)*+1,
To get the recurrence equation for 77 (), we consider the extended state vector X, = (X, Xy_1),
it’s a Markov with transition:
/ !
Qk(I y L |Ik—17Ik—2) =
- roon
= PXp, Xp—1|Xp—1=25_1,Xp—2=Th_2 (x y L )
= () (")
= PXp|Xpo1=2" Xp_1=ap_1,Xp—2=2k_2\T ) PXp_1|Xp_1=zp_1, Xp_o=a_2\L
J— / "
= PXy|Xpo1=24-1,Xk—2=Tp—2 (CL’ ) 6%71(I )
P / "
= PXy|Xpo1=2k-1 (m ) 59%4 ($ )

= q(2'|2-1) Oz, (2"),

where 2 — 0,, (") is the Dirac delta function in z;_; (here, we adopt the usual abuse of

notation, which consists in representing the Dirac measure by the Dirac delta function: 6, (z’) =
0if 2’ # 2, 0,(2') = +ooif 2’ = z, and [ d,(2') dz’ = 1.)

The conditional distribution 1, (2, ") of X}, = (Xy, Xx_1) given Y1, = 4.5, we apply the
previous filter formula:

nkf(x’,x”) :/ Qk(l’/,x//\xkq,l’kﬁ) nk71($k717$k72>d37k71 dzg_o
= // Qe (@' |wp—1) Oz (") My (X1, p—2) dag—q dg—2
~ [[ @) b @) ) s,

and the distribution of Y}, given (X} = x, Xx—1 = x_1) is the distribution of Y}, given X =
T, hence:

nk(xlv $H) X wk (l‘/) Ny- (l’/, $//) ) (5)

and the x”-marginal distribution of this last expression gives 77,1 (z”), the conditional distribu-
tion of X;_; given Y1.x = y1..
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2.4 Approximations

The main difficulty encountered by the nonlinear filter (3)-(4) lies in the two integrations. These
integrations can be solved explicitly only in the linear/Gaussian case, leading to the Kalman fil-
ter, and in a very few other specific nonlinear/non-Gaussian cases. In the latter cases, the optimal
filter can be solved explicitly in the form of a finite dimensional filter; hence in the vast major-
ity of cases, it is necessary to use approximation techniques [4]. Among the approximation
techniques, we will consider the extended Kalman filter (EKF) [1], the unscented Kalman filter
(UKF) [13, 26] and particle filter techniques, also called sequential Monte Carlo techniques [6,
11], see [8] for a recent overview.

Concerning the particle filters, as we will see in the next section, it is important to notice that
on the one hand we do not need to know the analytical expressions of the state transition kernel
and of the initial distribution, we just need to be able to sample (efficiently) from them; on
the other hand, we do need the analytical expression of the local likelihood function (up to a
multiplicative constant), indeed, for a given y, we need to compute v, ,(x) for a very large
number of = values.

III PARTICLE APPROXIMATIONS

Particle filtering, also known as sequential Monte Carlo (SMC) methods, is a set of computa-
tional techniques used for the approximation of nonlinear filters [6]. According to this approach,
the nonlinear filter 7, is approximated by 7} of the form:

N
ne (z) = Zw};(&z(m), reR"™.
i=1

composed of N particles located in & in R™ and associated weights w?, the weights are positive
and sum to one [6]. Ideally the particles are sampled from 7, and the importance weight are all
equal to 1 /N (meaning that all the particles have the same “importance”).

Particle filters offer two essential advantages in numerical approximation:

* they are finite-dimensional filters in the sense that they are represented using a finite
number of parameters, in this case the position of the particles (after selection), which
can therefore be integrated into computer memorys;

* the representation of particle filters, as weighted sums of Dirac measurements, greatly
facilitates the calculation of integrals according to these filters; moreover, many opera-
tions can be parallelized as a function of the particle index (or vectorized with interpreted
languages like Python).

In the 3 particle filters presented, at each time increment between two observations, in a first
so-called “mutation” step, the particles explore the state space. A weight is then associated
with each of these particles according to a fitness function (here a local likelihood function),
these weights will be noted w; " in the 3 cases, then in a second “selection” step, particules are
selected based on the fact that particles with a high weight will have a greater probability of
reproduction than particles with low weights (at constant number of particles V), leading to a
family of particles noted &4 in the 3 cases.
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3.1 The bootstrap particle filter

The bootstrap particle filter (BPF) filter is a classical sequential importance resampling method:
suppose we have a good approximation n;' | = % Zf\il 552 B of 1_1. We can apply the predic-
tion step (3) to 7)Y, and get the following approximation of 7,

N
ﬁmwﬁ/qmwm%uwf%Z%lmmim
" i=1

and then apply the correction step (4) and get the following approximation of 7:

() 2 i ket (@) au(al6) )
Jin 2521 wh_y V(2" qe(2'[&_ ) da’ ’

but the two last approximations 7j;— and 7, are mixtures of the continuous densities gx( - |£; ;)
and therefore not of the particle type. The bootstrap particle filter (BPF) proposed by [11] is
the simplest method to propose a particle approximation. For the prediction step we use the
sampling technique:

& ~a(-1&_1), i=1: N (independently),
which is:

S- = fo1(&y) + g1 () W',

where w' are i.i.d. N (0, R} ;) samples. Then we let

N
n ()2 w6 ().
i=1
Through the correction step (4), this approximation n,iv_ gives vazl wt 0¢: where:
-
i def @Z’k(filr) w;'f*
k= N i Yo
Zj:l Ui(&-) wy-

are the updated weights taking account of the new observation y;, through the likelihood func-
tion 1)y, 5, . This correction step must be completed by a resampling of the particles &; _ according
to the importance weights w?:

(6)

N
i~S widy ,i=1:N (independentl 7
3 ;wk g ol (independently) , 7
leading the to the particle approximation:
e (1) £ w0 (1), with wj, = <
=1

Algorithm III.1 gives a summary of the BPF, in this version a resampling is performed at each
time interval. The multinomial resampling step (7), whose basic idea is proposed in [11], could
be greatly improved, there are several resampling techniques, see [5, 16] for more details.
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Algorithm III.1 Bootstrap particle filter (BPF).
1. N K

Po # initialization
2: return &V
3: fork=1,2,... do

4 & ~qu(-l&_y),i=1:N # particles evolution
50 wp+— (&), i=1:N # likelihood

6w+ wk/z 1wk, i=1:N # renormalization

7: éN%ZJ lwk5£J # resampling

8:  return fk

9: end for

It is not necessary to resample the particles systematically at each time iteration as in Algorithm
III.1. However, this resampling step should be done regularly in terms of time iterations to avoid
degeneracy of the weights [6].

We will consider another degeneracy problem. Suppose that in step (6), the local likelihood
values (£} ) associated with the predicted particles & are all very small, or even equal to
zero due to rounding in floating point arithmetic. This normalization step (6) is then impossible.
This problem occurs when the filter loses track of the true state X, i.e. the likelihood of the
predicted particles 5,1_ w.r.t. the observation y;, are all negligible, in this case the observation
appears as an outlier. This occurs especially when the period of time between two successive
instants of observation is very large compared to the dynamics of the state process. Strategies
to overcome this weakness encompass the iterated extended Kalman particle filter [18] or the
iterated unscented Kalman particle filter [12]; see [10] and [17] for reviews of the subject.

3.2 The predictive bootstrap particle smoother

The purpose of the predictive bootstrap filter (PBPS) is to improve the correction step (6) of the
BPF by using both observations Y, = y, and Y1 = yi41 at each iteration k. In a way, the
PBPS can be seen as an approximation of the distribution of X, given Y7.x11 = v1.5+1, the one
step fixed-lag smoother presented in Section 2.3.

In the proposed algorithm, the prediction step consists in a first step to propagate at time & the
nw_, particles by simulating the transition kernel sampler, then in a second step to extend these
particles according to a one-step-ahead sampler. Then the correction step consists in updating
the weights of the IV particles of n}’. according to their likelihood with yj, and the likelihood of
their one-step ahead offspring particles with vy 1.

The iteration k — 1 — k of the filter is more precisely:

Prediction step. As for the BPF we sample N particles and compute N normalized likelihood
weights:

&~ au(-1€L_,), @ < Yr(éh)wi-, i=1:N.

Again we will resample the particles 5 1N but instead of doing so according to the weights

@V, we will first modify the latter ones. For each index 7, we generate a one-step-ahead
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Algorithm IIIL.2 predictive bootstrap particle smoother (PBPS).

1: 5(1):N X oo # initialization

2: fork=1,2,... do

3 fori=1:Ndo

4 ~‘ ~ Qk( \fk 1) # particles propagation
5 &} (&)

6: €k+1 fk(gk) # offspring

7 Wk+1 < /ly[)k+1(£};;+1) # offspring weighting

8 W]ig A (D]Zg J)Iif—l-l # particles weighting

9 end for

10: (&.}2 — w,i/zzjyzl wg ,1=1: N # weights normalization
11: 51 N Zj'yzl w]i/ &' # particles resampling

12:  return &
13: end for

offspring particles and compute its weight:

S ~ Fi def T
Sk ™ Qe (- 16) 5 Wk+1 = ¢k+1(5k+1)-

Note that the likelihood weights &} ; depend on the next observation y;1. The choice
of the one-step-ahead sampler ¢, ; will be detailed at the end of this sub-section.

Correction step. We compute the weights at time %k according to Eq. (5):
wp =@ @p,,  fori=1:N.
N

Then, N particles 13 +:N are resampled according to the weights w; ™.
The PBPS is depicted in Algorithm IIL.2.

Choice of one-step-ahead sampler ¢;.;. For the special case of the system (1)-(2) we can
choose a simpler “deterministic sampler”:

éli—&-l = fk(glzc)
which corresponds to the one-step-ahead mean:
éli—&-l = E<Xk+1‘Xk - glle)
= E(fu(X5) + gx(X5) Wi| Xy, = &)
= fi(&) + (&) EWil Xi = &) = fu(&) -

'
=0

This choice greatly reduces the computation burden and it is sufficient, as we will see, for a
linear state equation. For a highly nonlinear state equation, we can choose Gx+1 = qr+1, which
corresponds to a simulation of the state dynamic.
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Algorithm III.3 Regime Switching predictive bootstrap particle smoother (RS-PBPS)

1: 5(1):N X oo # initialization
2: return &Y

3: fork=1,2,... do

4 kN BUMm)

5 é]lc ~ qi (- fflifp ,%71), i=1:N # particles propagation
6: @ Pp(El),i=1:N

T 5}2“ = fk(gi) ,i1=1:N offspring

8 Wiy ¢ Yer1(§fyq), i=1:N offspring weighting
9 wp & WLwp g, t=1:N

10: wi(—w};/zyzlwi,izlzl\f
11: g,ﬁiN%Zﬁlwiéz

12:  return &

13: end for

particles weighting

renormalization

H H= FH H= H*

resampling

3.3 The regime switching predictive bootstrap particle smoother

In most applications, both the state model and the observation model are only partially known.
As we will see in Section 4.2, applying a filter without care in such situations can be delicate.
There are several techniques to make these filters more robust to model mismatch such as the
dynamic model averaging (DMA) [19, 25] or the regime switching (RS) [15]. We will use
both DMA and RS techniques in the simulations of Section 4.2, but we introduce only the RS
technique in the present section by proposing a “robustified” version of PBPS, called regime
switching PBPS (RS-PBPS).

The partial knowledge on the state-space model introduced in Section 2.1 can be related to the
state model, i.e. to the the transition kernel ¢, or the observation model, i.e. the likelihood
function .

In the great majority of applications, the uncertainty relates to the state model, so we will restrict
ourselves to this case. In order to model this uncertainty, we assume that the state dynamics
corresponds to a transition kernel of the form:

Qk<x’$/7 m) )
where m is a parameter that evolves dynamically in the finite set:
M ::{Tnl,...,ﬂQL}.

Thus M represents the different possible regimes of the state model over time.

The principle of these robust filters consists in making the particles and the weights evolve
according to a mixture of the parameters M. The dynamic model averaging particle filter
(DMA-BPF) proposed in [25] is detailed in Algorithm A.2, we will not describe it here.
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We now present one of the algorithms proposed by [15]. We use the simplest of them which
gives good results according to [15]. In the BPF, we replace the prediction step (Algorithm III.1
line 4) by:

N R UM), &~ a(- &1, thy), i=1:N,

where U(M) is the uniform distribution on M; the only difference lies in the fact that the
particles are sampled at random according to the various models represented by M. The re-
sulting method called RS-BPF is described in Algorithm A.3. The adaptation to PBPS and
APF is also immediate, leading to the RS-PBPS and the RS-APF; the RS-PBPS is detailed in
Algorithm II1.3.

IV SIMULATION STUDIES

We compare numerically the PBPS to other filters on two space-state models where observ-
ability is weakly conditioned. The performance of the filters is compared using an empiri-
cal evaluation of the root-mean-square error (RMSE). We simulate S independent trajectories
(Xéf[)o }/1(:‘;){)3:1:5 of the state-space models, where K is the length of the chronological se-
quence of observations. For each simulation s, we ran R times each filter 7 € {BPF, PBPS,
APF, DMA-BPF, RS-BPF, RS-APF, RS-PBPS} and we compute the root mean squared error at
time k:

RMSE,,(F) =

; ®)

CQ |

where:

F(s,r) de N,]—'sr F(s,r),8
Xk( )E/ L g, ( Zﬁ(

is the numerical approximation of X ,gs) =E(X ,is) |Y1(‘Z)) by the filter 7. We also compute the
global root mean squared error:

Note that for the EKF and UKF filters the summation over r in (8) is useless.
All implementations are done in R language [24] using a 2.11 GHz core 17-8650U intel running

Windows 10 64bits with a 16 Go RAM.

4.1 First case study: a one-dimensional model

We consider the following one-dimensional nonlinear model [6, 11, 14]:

Xp—1 | 25X

X, = + +8cos(1.2(k—1)) + Wi_1,
2 1+ X2, ( ) ©)
X2
Yy = ok
E= o0 + Vi,
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Figure 1: One-dimensional case study (9) — We plot the average computation time for filtering a tra-
jectory (left) and the RMSE (right) of the filters PBPS, BPF and APF as a function of different values
of N (50, 100, 500, 1000, 3000, 5000) (with S = 100 and R = 40). In comparison, the EKF and UKF
have a respective RMSE of 16.83 and 6.88 (and a negligible computation time compared to the particle
approximations).

with 1 < k < K (K = 50), Xo ~ N(0,1); W, & N(0,3%), Vi, = N(0,1); Xo, (Wp)x>1 and
(Vi)k>1 mutually independent. Note that the state process X, is observed only through X7 so
the filters have difficulties in determining whether X, is positive or negative, especially since
the state process X, regularly changes it’s sign. Thus this model is regularly used as benchmark
for testing filters, as filters may easily lose track of Xj.

For this example we compare the filters PBPS, BPF, APF, EKF and UKF.

In Figure 1 we plot, as a function of different values of N (50, 100, 500, 1000, 3000, 5000), on
the left the average computation time for the filtering a trajectory, and on the right the RMSE
(with S = 100, R = 40).

The computation times of EKF and UKF are negligible compared to those of the particle ap-
proximations. On the other hand, the RMSE of EKF (16.83) are much higher than those of the
particle approximations; UKF with an RMSE of 6.88 behaves much better than EKF but is still
less accurate than the particle approximations.

The computation time of PBPS is naturally higher than that of BPF, but the latter is much less
accurate. For example, PBPS with N = 50 particles is 15 times faster than BPF with N = 5000
particles while being 30% more accurate.

In Figure 2, for each filter 7 € {PBPS, BPF, APF, EKIf, UKF} (with N = 5000), we plot the
true state trajectory k — X, the approximation k¥ — X", and the associated 95% confidence
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regions. For the particle approximations the confidence interval is given empirically by the
particles, for the EKF and UKEF it is given as an approximated Gaussian confidence interval.
The PBPS approximation has a smaller error £ — |X' i — Xj| and a smaller confidence region
than the other filters.

In Figure 3, we compare & — RMSE,(F) for F € {PBPS, BPF, APF, EKF, UKF} (with
N = 5000). Again, we see that the PBPS behaves better than the other filters and that the EKF
has a very erratic behavior.

The poor behavior of the EKF can be explained by the very nonlinear nature of this example and
by the observability problem around 0. Note the relatively good behavior of the UKF. However,
because of the observability problem at 0, both the UKF and the EKF cannot find the track of
X}, once in the wrong half-plane (Figure 2 around time £ = 30).

In Figure 4, in the case of a single simulation of the state-space system and of the BPF and
PBPS filters (with N = 5000), we plot the true trajectory k& — X, as well as the set of particles
k — f,f’l:N for F € {BPF, PBPS}. Not surprisingly, we find that the PBPS particles are more
concentrated around the true value X, and that BPF more often “loads” the symmetric part of
the state space. Indeed, the smoothing allows us to reduce the variance but also to compensate
the observability ambiguities; it is for this purpose that it was designed, and we reiterate that this
gain is obtained with a great improvement in the computation time (provided that less particles
are used).

4.2 Second case study: a four-dimensional bearings-only tracking model
We consider the following four-dimensional model [3, 11, 23]:
1010 0.5 0
xi= (1) xavow () Wi,
0001

0 1

(10)

Xi[1]
Yy ~ d Cauch ( ¢ ( ) )
» ~ wrapped Cauchy ( arctan X2 0

with 1 <k < K = 20, Xy ~ N (X, P) with:
Xo = (-0.05,0.2,0.001, —0.055) ",
Py = 0.01diag(0.5%,0.3%,0.005%,0.01%)

ow = 0.001, W, = N(0,Ixs), p = 1 — 0.005%, Xy and (W},)>; mutually independent;
conditionally on (X%)x>0, (Yx)r>1 and (Wy)g>1 are independent.

The state equation corresponds to a target moving on a plane. The state vector is:
X = (Xg[1], Xe[2], Xe[3], Xe[4])" = (21, 02, 21, 32)",

where (21, x9) are the Cartesian coordinates of the target in the plane and (&1, ) are the corre-
sponding velocities. The observer is located at the origin of the plane and accessed only to the
azimuth angle 5 = arctan(z,/xs) € [—m, 7] corrupted by noise.

It is known that in the situation where the observer follows a rectilinear trajectory at constant
speed, or zero speed as here, the filtering problem is poorly conditioned [20]. This is a situation
where it is known for example that the EKF diverges very strongly.
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The conditional probability density function of the measured angle Y}, given the state X} is
assumed to be a wrapped Cauchy distribution with concentration parameter p [23]:

(2m) ' (1—p%)
14+p2—=2p cos(y — arctan(%)))

kaleZI(y) = (11)

for —m <y < 7, where p € [0, 1] is the mean resultant length. Note that the state dynamics is
linear and Gaussian, but the observation dynamics is nonlinear and non-Gaussian.

Classically, in tracking studies, the trajectory model (the state equation) does not correspond
to reality. In reality, the target follows a uniform straight trajectory sometimes interrupted by
changes in heading and/or speed. The variance oy, of the state equation (10) appears then as a
parameter of the filter: if it is too small, the filter will have trouble tracking the target, if it is
too large, the particles will spread out too much, the filter will then lose accuracy, and even lose
track of the target.

For bearings-only tracking applications, the EKF and UKF filters have poor performances and
will therefore not be considered in this example. On the other hand, the robust filters introduced
in Section 3.3 are relevant here because there is a mismatch model.

We compare the filters in two scenarios (with K = 40 time steps):

* the target follows a uniform rectilinear motion;

* the target follows a uniform rectilinear motion with a change of heading at the middle of

the simulation.

As we will see, the first scenario is simpler than the second. For the filter we consider two
different values for oy : a small value oy = 0.001 and a large oy = 0.003. oy = 0.001 is
in fact too small to be consistent with the simulated trajectory, the second value oy = 0.003 1s
more consistent with the simulated trajectory. For the robust filter we consider:

M = {0.0005, 0.001, 0.003, 0.005}

as the set of possible models.

In Figure 5 we present the average computation times for filtering a trajectory as a function of
different values of N (50, 100, 500, 1000, 3000, 5000) (with S = 20 and R = 50).

In Figure 6, in agreement with Figure 5, we present the evolution of the RMSE as a function
of the number V of particles: the left column corresponds to the case without a turn, the right
column to the case with a turn. For PBPS, BPF and APEF, the first row (top) presents the RMSE
for with oy, = 0.001, the second (middle) with oy, = 0.003. The third row (bottom) shows the
RMSE for the RS-PBPS, RS-BPF, RS-APF, and DMA-BPF filters.

In Figure 7 we plot & — RMSE; (for N = 5000, R = 50, S = 20) for the different filters:
the left column corresponds to the case without a turn, the right column to the case with a turn;
PBPS, BPF and APF for with oy = 0.001, on the first row; PBPS, BPF and APF for with
ow = 0.003, on the middle row; RS-PBPS, RS-BPF, RS-APF, and DMA-BPF, on the bottom
Tow.

In Figure 8, on a single simulation and for each filter, we plot the true trajectory of the target
with the estimates of each filter: without turn in the left column, with 1 turn in the right column;
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PBPS, BPS and APF filters with small oy, = 0.001 in the top row, PBPS, BPS and APF filters
with large oy = 0.003 in the middle row, RS-PBPS, RS-BPS, RS-APF, and DMA-BPF filters
in the bottom row.

According to Figure 5, at the same number of particles, BPF is slightly faster than PBPS, both
being faster than APF. The overheads for the robust version (RS) are also reasonable. In terms
of complexity, the computation time is linear with the number of particles.

In order to better understand the situation, we will first comment on Figures 7 and 8: with a too
small oy, the filters are able to track the target when it stays in a straight line (a) but they are
not able to adapt when a turn occurs and continue the tracking more or less in a straight line (b).
With a larger oy, the filters are still able to track the target when it remains in a straight line (c¢)
with a small and increasing inaccuracy; in contrast only PBPS behaves reasonably well when a
turn occurs (d). Except DMA-BPF which has a bad behavior, the RS robust filters behave better
and RS-PBPS remains better than all the others (e) and (f).

From Figures 5 and 6, in the case of a turn, which is the most complex situation, we see that in
order to reach PBPS/RS-PBPS accuracy with N = 1000 the other filters must use N = 5000
particles, and even in this case PBPS/RS-PBPS is at least twice as fast as the others.

V  DISCUSSION AND CONCLUSION

In this paper, our aim was to propose a particle approximation method, not much more complex
than the boostrap particle filter, which reduces the error variance, while being more robust in
weakly conditioned situations, especially when observability conditions are poor.

We have therefore proposed an new particle filter algorithm, called predictive bootstrap particle
smoother (PBPS), that deviates slightly from the strict filtering method in the sense that it takes
into account the next observation in addition to the current one. We can thus consider PBPS as
an approximation of the smoother with a fixed-lag interval of one step. However, the proposed
algorithm is considerably simpler than the smoothing algorithms.

Furthermore, a way of making a filter more robust is to extend it to a “regime switching” strategy
framework as proposed in [15]; which is what we have done by proposing a robustified version
of PBPS.

In the considered examples, EKF shows very poor performance, which is perfectly understand-
able due to the very nonlinear nature and the poor observability conditions of the examples. It
should be noted that UKF performs much better than EKF while remaining far from the per-
formance of particle filters. Among the particle filters, APF performs slightly less well than
than PBF and PBPS. Finally, even if for a given number of particles, BPF is faster than PBPS,
the latter presents both a lower error variance and a much better behavior regarding observabil-
ity problems. In terms of accuracy, PBPS with 1000 particles is still better than BPF with 5000
particles while being much faster. This is also the case when comparing RS-PBPS with RS-BPF

These performances are due to the fact that PBPS is a very simplified approximation of the one
time step fixed-lag smoother. A strategy using a deeper fixed-lag interval of 2 or more time
steps would be too costly and would not allow us to recover such performances.
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In view of the performance of PBPS it would be interesting to develop strategies where the
number N of particles adapts dynamically to the problem conditions. It would also be inter-
esting to test the PBPS strategy in other cases, such as when the time between two consecutive
observations is important and requires several successive prediction steps.

APPENDIX: ALGORITHMS

Algorithm A.1 Auxi_liary particle filter (APF). Note that in the case of the (1)-(2), the first step,
line 4, is reduced to & = E(X| X1 =& 1) = fi1(E_))

~ i
1: é(l)N ~ Po # initialization

2: return &3V
3: fork=1: Kdo
4 gllf =E(Xy|Xpo1=¢_4),i=1:N

mean particle evolution

id
5: (I}]i — Qﬁk(gz), 1=1: N # and weighting
6 PN A Zj\;l Wl 5%71 # initial particles resampling
70 &~ il \é,i_l), 1=1:N # particles propagation
8 wi (&) o, i=1:N # likelihood
9: w,i — w,@/Zj\f 1 (Ui ,t=1:N # renormalization
10 GNEYY Wl a # resampling

11:  return &

12: end for

Algorithm A.2 Dynamic model averaging bootstrap particle filter (DMA-BPF) [25].
12 &N R po, ubN R U(M) # initialization
2: return &Y
3: fork=1: Kdo
& Gmal I8 )= 1N
50 wh= Zfil zﬂk(f};*)lur _=mpl=1:L # likelinood of candidate models

. iid . .
6:  NFL A Multinomial(N;my, ..., mpwp, -+ ,wk)

Wlth Nl R NL = N # number of particles per candidate model

F1,1:L iid N L . .
7 k1 jzlé J (Sui = # initial particles resampling
# per candidate model
. S1:N 21:NE1 21:N2,2 ~1:NE ,L

8 (G ™) (G ma), (60 ma), - (60, m)
9: gk ~ Qk( . |£k71’ /”Lk) s 1=1: N # particles propagation

10:  return &

11: end for
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Algorithm A.3 Regime Switching Bootstrap Particle Filter (RS-BPF) [15].

- o
l: géN ~ Po # initialization

2: return &5V
3: fork=1: K do

4ty R UM)

550 &G ~ae(c g ), i=1:N # particles propagation

6 wh Qﬁk(ffc—): 1=1:N # likelihood

7. (,L)li, < wlZc/Z;Vzl wi, 1=1: N # renormalization

8: li:N ~ Z;\le wi 555;7 # resampling

9: return &

10: end for
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Figure 2: One-dimensional case study (9) — On a single simulation, for each filter, we plot the true

state trajectory k — X} and the approximation k — X with the associated 95% confidence region
(/N = 5000).
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Figure 3: One-dimensional case study (9) — We compare ¥ — RMSE;, for each filter (S = 100,
R =40, N = 5000).
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k

Figure 4: One-dimensional case study (9) — On a single simulation, we plot the true value £ — X},

with the evolution of the set of NV = 500 particles k — & ,i:N for the BPF (top) and the PBPS (bottom);
the particles are represented in transparency to better reflect their density.

0

>

g 015 APF

©

2 BPF

©

S 010 -e- PBPS

2 RS-APF
3 RS-BPF
o 0.05 - RS-PBPS
qgg -2 DMA-BPF
~ 0.00

0 1000 2000 3000 4000 5000
Number of particules

Figure 5: Four-dimensional case study (11) — We plot the average computation time for filtering a
trajectory of the filters PBPS, BPF, APF, RS-PBPS, RS-BPF, RS-APF and DMA-BPF as a function of
different values of N (50, 100, 500, 1000, 3000, 5000) (with S = 20 and R = 50).
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Figure 6: Four-dimensional case study (11) — Evolution of the RMSE as a function of the number N
of particles: the left column corresponds to the case without a turn, the right column to the case with
a turn. For PBPS, BPF and APEF, the first row (top) presents the RMSE for with oy = 0.001, the
second (middle) with oy = 0.003. The third row (bottom) shows the RMSE for the RS-PBPS, RS-BPF,
RS-APF, and DMA-BPF filters.
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Figure 7: Four-dimensional case study (11) — & —RMSE (for N = 5000, R = 50, S = 20) for
the different filters: the left column corresponds to the case without a turn, the right column to the case
with a turn; PBPS, BPF and APF for with oy, = 0.001, on the first row; PBPS, BPF and APF for with
ow = 0.003, on the middle row; RS-PBPS, RS-BPF, RS-APF, and DMA-BPF, on the bottom row.
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Figure 8: Four-dimensional case study (11) — On a single simulation and for each filter, we plot the true
trajectory of the target with the estimates of each filter: without turn in the left column, with 1 turn in the
right column; PBPS, BPS and APF filters with small oy = 0.001 in the top row, PBPS, BPS and APF
filters with large oy = 0.003 in the middle row, RS-PBPS, RS-BPS, RS-APF, and DMA-BPF filters in
the bottom row. The observer is in position (0, 0).
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