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Population  dynamics  and  in  particular  microbial  population  dynamics,  though  intrinsically  discrete  and
random,  are  conventionally  represented  as deterministic  differential  equations  systems.  In these  type  of
models,  populations  are  represented  by  continuous  population  sizes  or densities  usually  with  determi-
nistic  dynamics.

Over  the  last  decades,  alternate  individual-based  models  have  been  proposed  where  population  is
explicitly  represented  as a set  of individuals.  These  may  include  stochastic  dynamics  or  stochastic  rules.
With  reference  to the last  class  of  models  we  can  also associate  pure  jump  processes  where  the  population
is described  as  a discrete  population  size  with  stochastic  discrete  event  evolutions.

In  the  first  class  of  models  the  population  dynamics  and  its  representation  may  be  viewed  respectively
as  deterministic  and  continuous,  in the  second  class  they  may  be viewed  respectively  as  stochastic  and

discrete.

In this  present  work, we present  a modeling  approach  that  bridges  the  two  representations.  This  link  can
be  mathematically  described  as a functional  law  of  large  numbers  in  high  population  size asymptotics.
These  results  suggest  new  strategies  of modeling  and  simulation.  We  illustrate  this  approach  on  the
modeling  of  the  chemostat.

©  2014  Published  by  Elsevier  B.V.
. Introduction

Biological continuous cultures in chemostat play an important
ole in microbiology as well as in biotechnology. Different formu-
ations are used to represent these processes. The mechanisms of
rowth and cell division may  indeed be described at the cell level
r at the population level.

In the case of the former, the population is represented as a
iscrete population size or as a finite set of individuals. The mech-
nisms acting on these individuals could be discrete or continuous,
tochastic or deterministic. Among other possibilities, we may

hink of stochastic birth and death processes (BDP) or individual-
ased models (IBM). Even if IBM are not intrinsically stochastic,
ere we consider stochastic IBM. Note that most IBMs integrate
tochastic entries or stochastic rules and can be considered as

∗ Corresponding author at: Université Montpellier 2/I3M, 2 Place Eugène Bataillon,
4095 Montpellier Cedex 5, France. Tel.: +33 4 99 61 23 80.

E-mail addresses: coralie.fritsch@supagro.inra.fr (C. Fritsch),
erome.Harmand@supagro.inra.fr (J. Harmand), Fabien.Campillo@inria.fr
F. Campillo).

ttp://dx.doi.org/10.1016/j.ecolmodel.2014.11.021
304-3800/© 2014 Published by Elsevier B.V.
stochastic. Even if these kinds of models can also integrate contin-
uous components (space localization, nutrients, etc.) and partially
deterministic dynamics, we  will refer to them as stochastic and
discrete (in their representation of the population).

In the latter case, the population is described in terms of con-
tinuous population size or continuous population densities and
the dynamics are classically represented as systems of ordinary
differential equations (ODE) or as integro-differential equations
(IDE) or partial derivative equations. With reference to this point
of view, we will refer to these models as deterministic and
continuous.

Our purpose is not to propose a full review of these types of
models and of their classification; these questions go far beyond
the scope of this work and we  suggest the reader to consult works
like Ferrer et al. (2009) and Hellweger and Bucci (2009).

Our purpose is to present a modeling approach through a
specific example of chemostat dynamics. The proposed approach
bridges discrete/random to continuous/deterministic within the
framework of a “large population size” asymptotic, which allows

us to prove, under certain assumptions, the convergence in distri-
bution of the former models toward the latter ones (Campillo and
Fritsch, 2014), and to propose new strategies in terms of modeling
and simulation.

dx.doi.org/10.1016/j.ecolmodel.2014.11.021
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2014.11.021&domain=pdf
mailto:coralie.fritsch@supagro.inra.fr
mailto:Jerome.Harmand@supagro.inra.fr
mailto:Fabien.Campillo@inria.fr
dx.doi.org/10.1016/j.ecolmodel.2014.11.021
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Hence in large population sizes, a simulation of the dis-
rete/random model would be similar to that of the contin-
ous/deterministic one. Of course this is true under certain
ssumptions, and especially in an asymptotic framework: in
ractice it is difficult to a priori know what large population size
eans. Beyond the mathematical analysis, it is possible to rely on

umerical simulations to get an idea of the convergence of these
ormer models to the latter ones. It is also interesting to understand
ow the former models behave when they are not close to the lat-
er, that is to say when the continuous/deterministic models are no
onger valid.

Beyond the antagonism discrete/random vs. continu-
us/deterministic, it seems appropriate to propose a new modeling
pproach where the “model” is not a specific computer or mathe-
atical representation defined once and for all but rather a set of

epresentations. To infer the links between these representations,
he scope of validity of each different representation, as well as
he capabilities of the associated simulation and control tools, are
equired.

As we will see the relation between IBM’s and integro-
ifferential equations is rather straightforward. There are also
atural links between IBM-like representations to PDE represen-
ations. One may  think of meshfree particle methods for the
pproximation of PDE fluid dynamics. In the context of IBMs,
e can consult the following modeling examples: Faugeras and
aury (2007) for fish population movements, Gómez-Mourelo and
inovart (2009) for yeast population growth in batch culture and
ampillo and Champagnat (2012) for clonal plant dynamics.

The first model of the chemostat appeared in the 1950s (Monod,
950; Novick and Szilard, 1950). This first model has always
etained its relevance in particular because of its simplicity (Smith
nd Waltman, 1995). Several other models appeared later such as
he so-called population balance models proposed by Fredrickson
t al. (1967) which rely on a representation of the population struc-
ured in mass (Ramkrishna, 1979).

More recently several stochastic models in (unstructured) pop-
lation size appeared in order to account for the demographic or
nvironmental sources of randomness (Crump and O’Young, 1979;
tephanopoulos et al., 1979; Imhof and Walcher, 2005; Grasman
t al., 2005; Campillo et al., 2011; Deygout et al., 2013). In particu-
ar, for the demographic noise, according to a now classic approach,
he model is described at the level of the individual as a discrete
tochastic birth and death process that can be approximated at

 meso-scale by a continuous diffusion process when population
izes are large enough, and that reduces at a macro-scale to the
olution of the classic chemostat ODE when these population sizes
re very large.

The individual-based model which we propose in this paper
as been studied mathematically in Campillo and Fritsch (2014)
here we proved in particular its convergence in distribution to

he solution of an IDE similar to that proposed in Fredrickson et al.
1967).

We propose in this article to illustrate this approach on the
odel of chemostat: starting from the classical ordinary differential

quation model in dimension 2, we propose other representa-
ions in the form of an integro-differential equation (continuous
nd deterministic) or as an individual-based model (discrete and
andom) both structured in mass. By model reduction, these rep-
esentations can be reduced to the classical model (continuous
nd deterministic) or as a birth and death process (discrete and
andom). We  explain the links between these different representa-
ions of the same model, as well as their respective advantages and

imitations, specifically in terms of simulation.

In Section 2 we introduce the different models, we  detail in par-
icular the proposed IBM. In Section 3 we describe the (almost)
xact simulation algorithm of the IBM. Using simulations, in
delling 299 (2015) 1–13

Section 4 we highlight the differences between each of these rep-
resentations. The paper ends with a discussion in Section 5.

2. The models

2.1. The ODE model

The classic chemostat model reads:

Ṡt = D(sin − St) − k�(St)Yt (1)

Ẏt = (�(St) − D)Yt, (2)

where St and Yt are respectively the substrate concentration and
the bacterial concentration (mg/l) which are assumed to be uniform
in the vessel; D is the dilution rate (1/h), sin is the substrate input
concentration (mg/l), k is the (inverse of) yield constant. The specific
growth rate � could for example be the classic Monod kinetics:

�(s) = �max
s

Ks + s
(3)

with maximum specific growth rate �max and half-velocity con-
stant Ks.

In biochemical engineering, System (1)–(2) corresponds to the
classic continuous stirred-tank reactor (CSTR) under well-mixing
conditions (Smith and Waltman, 1995).

2.2. The IDE model

Instead of representing the dynamics of the bacterial population
inside the chemostat through the aggregated state variable Yt, one
may  wish to represent the state of the bacterial population struc-
tured in mass, that is to consider the density of population pt(x)
w.r.t. their mass in a reference volume V. Hence

∫ m1
m0

pt(x)dx is the

number of cells which mass is between m0 and m1 and the link with
the bacterial concentration is:

Yt
def= 1

V

∫ mmax

0

xpt(x)dx

where 0< mmax < ∞ is an upper bound for the mass of a bac-
terium. The evolution equation for the couple (St, pt(x)) has been
established by Fredrickson et al. (1967) as the population balance
equations for growth-fragmentation models (see also Ramkrishna,
1979), they read:

Ṡt = D(sin − St) − k

V

∫ mmax

0

�(St, x)pt(x)dx, (4)

∂
∂t

pt(x) + ∂
∂x

(�(St, x)pt(x))+ (�(St, x) + D) pt(x)

= 2

∫ mmax

0

�(St, z)
z

q
(

x

z

)
pt(z)dz (5)

for x ∈ [0, mmax]. Here, like in the previous model St is the substrate
concentration (mg/l) which is assumed to be uniform in the vessel.

In (4) and (5), �(s, x) and �(s, x) are respectively the growth func-
tion and the division rate of a bacterium of mass x with a substrate
concentration s, the mass distribution of the daughter cells is rep-
resented by the probability density function q(˛) on [0]. We  detail
these functions now:
(i) Cell division – Each individual of mass x divides itself at a
rate �(s, x) into two individuals with respective masses ˛x and
(1 − ˛)x:
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where  ̨ is distributed according to a given probability den-
sity function q(˛) on [0], and s is the substrate concentration.
We suppose that the p.d.f. q(˛) is symmetric with respect to
1/2, i.e. q(˛) = q(1 − ˛):

Hence, the p.d.f. of the division kernel of a cell of mass x
is q(y/x) with support [0, x]. In the case of perfect mitosis,
a cell of mass x is divided into two cells of masses x/2 so
that q(˛) = ı1/2(˛). We  suppose that q is smooth (which is not
the case for the perfect mitosis) and that q(0) = q(1) = 0. Thus,
relatively to their mass, the division kernel is the same for
all individuals. This allows us to reduce the model to a sin-
gle division kernel but more complex possibilities can also be
investigated.

ii) Mass growth – The growth function � : R+ × [0,  mmax] �→ R+
describes the evolution of the mass of an individual cell within
the chemostat, i.e. in the model (4) and (5) the mass of an indi-
vidual cell starting from the mass m0 at a given time t0 will
evolve according to:

ẋt = �(St, xt), t ≥ t0, x0 = m0

until the time of division or washout. To ensure the existence
and uniqueness of the solution of (4) and (5) and of this last EDO,
we assume that application �(s, x) is Lipschitz continuous w.r.t.
s uniformly in x. To ensure a coherence to this equations we
also suppose that 0 ≤ �(s, x) ≤ � for all (s, x) ∈ R+ × [0,  mmax],
and that in the absence of substrate the bacteria do not grow,
i.e. �(0, x) = 0 for all x ∈ [0, mmax]. To ensure that the mass of a
bacterium stays between 0 and mmax, it is finally assumed that
�(s, mmax) = 0 for any s ≥ 0.

In a relaxed context where �(s, x) does not satisfy the previous
ypothesis, it is easy to link the model (4) and (5) to the classic
hemostat model (1) and (2). Indeed suppose that:

1
V

∫
X

�(St, x)pt(x)dx = �(St)Yt

hich is the case when the growth function x �→ �(s, x) is propor-
ional to x, i.e. �(s, x) = �(s)x. First (4) reduces to (1) and then we  can
heck that Yt is solution of (2) (see details in Campillo and Fritsch,
014).

.3. The BDP model

We  consider an hybrid model, where the substrate concentra-
ion St follows the same continuous/deterministic dynamic (1):

˙ t = D(sin − St) − k�(St)
m

V
Yt (6)

ut now m is the mean mass of an individual cell and Yt is

he number of cells in the chemostat. The dynamic of Yt is dis-
rete/stochastic, namely a birth and death stochastic process where
t time t and conditionally to Yt = n, the process jumps from n to

 + 1 with rate �(St) and jumps from n to n − 1 with rate D, that is:
delling 299 (2015) 1–13 3

Yt+h = n +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 with probability �(St)nh + o(h),

−1 with probability D n h + o(h),

0 with probability 1 − �(St) n h − D n h + o(h),

i with probability o(h) for alli /= 0, −1
(7)

for infinitesimally small h > 0.

2.4. The IBM model

In the individual-based model (IBM) structured in mass the bac-
terial population is represented as a set of individuals growing in a
perfectly mixed vessel of volume V (l). In this IBM each individual is
characterized, not by its position, but only by its mass x ∈ [0, mmax].
At time t the state of the system is defined by:

(St, �t) (8)

where St is the substrate concentration (mg/l) which is supposed to
be uniform in the vessel; and �t is the state of the bacterial popula-
tion, that is Nt individuals represented only by their mass: xi

t (mg)
will denote the mass of the individual number i for i = 1, . . .,  Nt.

It will be convenient to represent the population {xi
t}i=1,...,Nt

at
time t as the following sum of Dirac delta functions:

�t(x) =
Nt∑
i=1

ıxi
t
(x). (9)

where ıxi
t
(x) is the Dirac delta function in xi

t:
∫

�(x)ıxi
t
(x)dx = �(xi

t)

for any test function �. For example
∫ m1

m0
�t(x)dx is the number of

cells with mass between m0 and m1 at time t; and
∫ m1

m0
x�t(x)dx

is the cumulated mass of cells with mass between m0 and m1 at
time t (see Dieckmann and Law, 2000, for more details on this
representation).

The IBM dynamics combine discrete evolutions (cell division
and bacterial washout) as well as continuous evolutions (the
growth of each individual and the dynamics of the substrate). We
now describe the four components of the dynamics, first the dis-
crete ones and then the continuous ones which occur between the
discrete.

(i) Cell division – Each individual of mass x divides at rate �(s, x)
into two individuals of respective masses ˛x and (1 − ˛)x where

 ̨ is distributed according to the given p.d.f. q(˛) on [0, 1],  and s
is the substrate concentration.

(ii) Washout – Each individual is withdrawn from the chemostat
at rate D. This mechanism is equivalent to a death process. In
perfect mixing conditions, individuals are uniformly distributed
in the volume V independently from their mass. During a time
step ı, a total volume of DVı is withdrawn from the chemostat:

V (tota l volume)

D V δ (volum e remov ed durin g a tim e inter val δ)

and therefore, if we assume that all individuals have the
same volume considered as negligible, during this time inter-
val ı, an individual has a probability Dı to be withdrawn from
the chemostat, D is the dilution rate. This rate could possibly

depend on the mass of the individual.

At any time t, when the division of an individual occurs,
the size of the population instantaneously jumps from Nt to
Nt + 1; when an individual is withdrawn from the vessel, the
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size of the population jumps instantaneously from Nt to Nt− 1;
between each discrete event the size Nt remains constant and
the chemostat evolves according to the following two  contin-
uous mechanisms:

(iii) Growth of each cell – Each cell of mass x growths at speed �(St,
x):

ẋi
t = �(St, xi

t), i = 1, . . .,  Nt (10)

where � : R
2+ �→ R+ is given.

iV) Dynamics of the substrate concentration – The substrate
concentration evolves according to the ODE:

Ṡt = D(sin − St) − k �̃(St, �t) (11)

where

�̃(s, �)def= 1
V

∫
X

�(s, x)�(dx) = 1
V

N∑
i=1

�(s, xi)

with � =∑N
i=1ıxi . Mass balance leads to Eq. (11) and the initial

condition S0 may  be random.

The IBM integrate the function �(s, x), q(˛) and �(s, x) already
efined in the IDE but in a different way: the IDE uses them in an
average way” at the population level in contrast with the IBM that
ses them for the explicit dynamics of each individual cell.

.4.1. Convergence in distribution of the individual-based model
Campillo and Fritsch (2014) proved a result that we will now

omment on from the application point of view. This result states
 “functional” law of large numbers: in large population size the
ensity of population given by the IBM is close to the density of
opulation pt(x) given by (5). The population size should increase
o infinity at any time t, for that purpose we replace the reference
olume V by nV (or simply by n), let:

n = nV

e  also suppose that the initial population size converges toward
nfinity with n:

1
n

�n
0 →[n→∞]

�0weakly

that is
∫ mmax

0
�(x)�n

0(x)dx = (1/n)
∑Nn

0
i=1�(xi,n

0 ) →
mmax

0
�(x)�0(x)dx as n→ ∞,  and we suppose that

∫ mmax

0
�0(x)dx >

. We  suppose that the initial substrate concentration does not
epend on n. Then define (Sn

t , �n
t (x)) the IBM process where V is

eplaced by Vn and the rescaled process:

n
t

def= 1
n

�n
t .

Under these conditions Campillo and Fritsch (2014) stated that
he process (Sn

t , �n
t )0≤t≤T given by the IBM converges toward the

olution (St, pt)0≤t≤T of the IDE model (4) and (5) in a suitable sense
ith initial condition (S0, �0).

. Simulation of the models
The simulation of the ODE system (1) and (2) is straightforward;
or the simulation of the IDE system (4) and (5) we make use of an
xplicit Euler time-scheme coupled with an uncentered upwind
nite difference space-scheme (see details in Appendix A).
delling 299 (2015) 1–13

3.1. Simulation of BDP model

The simulation of the system (6) and (7) is achieved with an
adaptation of the classic “stochastic simulation algorithm” (SSA)
also called “Gillespie algorithm” (Gillespie, 1977). It is an exact sim-
ulation algorithm, up to the approximation scheme for the ODE (6),
in the sense that it simulates a realization of the exact distribu-
tion of the stochastic process (St, Yt) given by (6) and (7). To apply
the algorithm we  need to suppose that there exists � < ∞ such
that:

�(s) ≤ �, ∀s ≥ 0.

Then the SSA is given by the Algorithm 1.

Algorithm 1. Stochastic simulation algorithm (SSA) or Gillespie
algorithm for the Monte Carlo simulation of the BDP model (6) and
(7).
sample (S0, Y0)
Y  ← Y0

t ← 0
while t ≤ tmax do

	 ← (� + D)Y

t ∼ Exp(	)
integrate the equation for substrate (6) over [t, t + 
t]
t  ← t + 
t
u  ∼ U[0, 1]
if u ≤ �(St )/(� + D) then
Y  ← Y  + 1% division

else if u ≤ (�(St ) + D)/(� + D) then
Y  ← Y  − 1% washout

end if
end while

3.2. Simulation of the IBM

We  now detail the simulation procedure of the IBM. The division
rate �(s, x) depends on the concentration of substrate s and on the
mass x of each individual cell which continuously evolves according
to the system (10) and (11), so to simulate the division of the cell
we make use of a rejection sampling technique. It is assumed that
there exists � < ∞ such that:

�(s, x) ≤ �

hence an upper bound for the rate of event, division and washout
combined, at the population level is given by:

	
def= (� + D)N.

Algorithm 2. “Exact” Monte Carlo simulation of the individual-
based model: approximations only lie in the numerical integration
of the ODEs and in the pseudo-random numbers generators.
sample (S0, �0 =

∑N0

i=1
ıxi

t
) initial substrate concentration and population

t  ← 0
N  ← N0 % initial population size
while t ≤ tmax do

	 ← (� + D)N

t ∼ Exp(	)
integrate the equations for the mass (10) and the substrate (11) over [t, t + 
t]
t ← t + 
t
draw x uniformly in {xi

t ; i = 1, . . .,  Nt }
u ∼ U[0, 1]
if u ≤ �(St, x)/(� + D) then

˛ ∼ q
�t← �t − ıx + ı˛x + ı(1−˛)x % division
N  ← N + 1

else if u ≤ (�(St, x) + D)/(� + D) then

�t← �t − ıx % washout
N ← N − 1

end if
end while
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Fig. 1. (Left) Division rate function �(x) defined by (15) with � = 1.5 h−1, m = 0.45 × 10−10 mg and p = 6 ×109. (Right) Maximal growth speed with the Gompertz growth
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peed  function (14) with rmax = 1.0 h−1, mmax = 1.0 × 10−10 mg  (namely the RHS of th

At time t + 
t  with 
t  ∼ Exp(	), we determine if an event has
ccurred and what is its type by acceptance/rejection. To this end,
he masses of the N individuals and the substrate concentration
volve according to the coupled ODEs (10) and (11). Then we choose
niformly at random an individual within the population �(t+
t)− ,
hat is the population at time t + 
t  before any possible event, let

(t+
t)− denotes its mass, then:

(i) With probability:

�

(� + D)

we determine if there has been division by acceptance/
rejection:
• division occurs, that is:

�t+
t = �(t+
t)− − ıx(t+
t)− + ı˛x(t+
t)−

+ ı(1−˛)x(t+
t)−
with ˛∼q (12)

with probability �(St, x(t+
t)− )/�;
• no event occurs with probability 1 − �(St, x(t+
t)− )/�.
In conclusion, the event (12) occurs with probability:
�
(

St, x(t+
t)−
)

�

�

(� + D)
=

�
(

St, x(t+
t)−
)

(� + D)
.

Fig. 2. Initial distributions d (left), d′ (center) and d′′
�

uality (14)).

(ii) With probability:

D

(� + D)
= 1 − �

(� + D)

the individual is withdrawn, that is:

�t+
t = �(t+
t)− − ıx(t+
t)− (13)

Finally, the events and the associated probabilities are:

• division (12) with probability �(St, x(t+
t)− )/(� + D),
• washout (13) with probability D/(� + D)

and no event (rejection) with the remaining probability. The details
are given in Algorithm 2.

Technically, the numbering of individuals is as follows: at the
initial time individual are numbered from 1 to N, in case division the
daughter cell ˛x keeps the index of the parent cell and the daughter
cell (1 − ˛)x takes the index N + 1; in the case of the washout, the
individual N acquires the index of the withdrawn cell.

4. Simulation tests

We present simulations of four different models: the individ-

ual based-model (IBM), the integro-differential equation (IDE) (4)
and (5), the classic chemostat model represented by the system of
ordinary differential equations (ODE) (1) and (2), and the birth and
death process (BDP) (6) and (7). These models can have similar or

(right) respectively defined by Eqs. (16)–(18).
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Fig. 3. From top to bottom: time evolutions of the population size, the biomass concentration, the concentration substrate and the concentrations phase portrait for the
three  levels of population sizes (from left to right: small, medium and large). The blue curves are the trajectories of 100 independent runs of IBM. The green curve is the
m n of th
o

d
c

r
d
g
s



ean  value of these runs. The red curve is the solution of the IDE. (For interpretatio
f  this article.)

ifferent behaviors, depending on the model parameters and initial
onditions.

Simulations of the BDP and of the IBM were performed
espectively by Algorithms 1 and 2. The resolution of the integro-

ifferential equation was made following the numerical scheme
iven in Appendix A, with a discretization step in the mass
pace of 
x  = 5 ×10−14 mg  and a discretization step in time of
t = 0.00125 h. The numerical integration of the ODE (1) and (2)
e references to color in this figure legend, the reader is referred to the web  version

presents no difficulties and is performed by the function odeint of
the module scipy.integrate of Python with the default param-
eters.
4.1. Simulation functions

We  propose ad hoc functions �, q, d for simulation purposes.
At fixed substrate concentration, individual growth is supposed to
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Fig. 4. Mass distribution represented as probability density functions for the time t = 1 h (top), t = 3 h (middle) and t = 80 h (bottom) in small (left), medium (middle) and large
(right) population size. For each graph, the blue histograms represent the empirical mass distributions of individuals for the 100 independent runs of IBM. In order to plot
t e. The
0  popu
r

b
s
c

�

w
k
a

F
r

�

he  histogram we  have adapted the number of bins according to the population siz
.25  h−1. Again we  observe the convergence of the IBM solution to the IDE in large
eader  is referred to the web  version of this article.)

e given by a Gompertz function. Moreover, we assume that the
pecific growth rate of the population depends on the substrate
oncentration and follows a Monod law:

(s, x) = rmax
s

kr + s
log

(
mmax

x

)
x ≤ rmax log

(
mmax

x

)
x (14)

here rmax is the maximum specific growth rate of the population,
r is the half-saturation constant and mmax is the maximal size of
n individual.

We assume that one individual cannot divide below a mass mdiv.
or the simulations, we choose the following increasing division
ate function:

(s, x) = �(x)
= �

log((mmax − mdiv)p� + 1)
log((x − mdiv)p� + 1)1{x≥mdiv}

(15)
 red curve represents the mass distribution given by the IDE. The dilution rate D is
lation limit. (For interpretation of the references to color in this figure legend, the

where p� > 0 is a parameter of curvature of the function, see Fig. 1.
This “ad hoc” function has been chosen as it meets the desired
conditions.

The proportion  ̨ of the division kernel q(˛) will be computed
by a symmetric beta distribution:

q(˛) = 1
B(pˇ)

(˛(1 − ˛))pˇ−1

where B(pˇ) =
∫ 1

0
(˛(1 − ˛))pˇ−1d  ̨ is a normalizing constant.

The initial distribution of individual masses is given by the fol-
lowing probability density function:

d(x) = 1
(

x − 0.5 × 10−10

−10

(
1 − x − 0.5 × 10−10

−10

))5

1{0.5×10−10<x<0.75×10−10 }
Cd 0.25 × 10 0.25 × 10
(16)

where Cd is a normalizing constant. This initial distribution, rep-
resented in Fig. 2, is a beta distribution which charges big masses.
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Table 1
Simulation parameters.

Parameters Values

S0 6 mg/l
sin 10 mg/l
D 0.25 h−1

mmax 1.0×10−10 mg
mdiv 0.45×10−10 mg
� 1.5 h−1

p� 6×109

pˇ 10
rmax 1 h−1
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Fig. 5. Time evolution of the mass distributions represented as probability density
functions for the IDE (5): we represent the simulation until time T = 8 (h) only to

sity d(x) defined by (16). With this initial density both the IDE and
the IBM feature a transient phenomenon described in the previous
section and illustrated in Figs. 5 and 4. Fig. 6 (left) shows a signifi-
cant difference between the IBM and the IDE on the one hand and

Table 2
Simulation parameters.

Parameters Values

S0 5 mg/l
sin 10 mg/l
D 0.2 h−1

mmax 1.0×10−10 mg
mdiv 0.4×10−10 mg
� 1 h−1

p� 10×109
kr 6 mg/l
k  1

imulations starting from this distribution will show a transient
henomenon that cannot be reproduced by the classic chemostat
odel described in terms of ordinary differential equations (1) and

2), see Fig. 6.

.2. Comparison of the IBM and the IDE

In this section we illustrate the convergence of the IBM to the
DE. In order to do this, we increase the volume of the chemostat and
he initial number of individuals in a proportional way. We  perform
imulations at three levels of population size. The small size level is
erformed with V = 0.05 × 10−7 l and N0 = 100, the medium one with

 = 0.5 × 10−7 l and N0 = 1000 and the large one with V = 5 ×10−7 l
nd N0 = 10, 000. The initial distributions of individual masses are
he same, so that the initial biomass concentration is the same for
he three sets of parameters.

For each level of population size, we simulate 100 independent
uns of the IBM in order to observe the reduction of variance when
e increase the number of bacteria. The IDE is numerically approx-

mated using the finite difference schemes detailed in Appendix A.
he parameters, which are in the same order of magnitude than
he one used by Henson (2003), are given in Table 1. Note that
he stoechiometric coefficient k equals 1. This may  seem biologi-
ally questionable but, by a change of variable, it is equivalent to

 > 1 with a different half-saturation constant kr and a different sub-
trate input sin (or equivalently by changing the unit of substrate
oncentration).

Figs. 3 and 4 illustrate the convergence of IBM to IDE. The vari-
nces in the evolution of the biomass concentration and of the
ubstrate concentration, as well as the relative variance of the
umber of individuals, decrease when we increase the number of

ndividuals, see Fig. 3. The normalized size distributions at times
 = 1, 3 and 80 (h) are represented in Fig. 4 for the IDE (red curve)
nd 100 independent runs of the IBM (blue histograms) for the
mall, the medium and the large population. Note that the num-
er of bins was adapted according to the scale of the population in
rder to obtain clear graphics.

The normalized solution of the IDE (5) is represented in Fig. 5. It
orresponds to the time evolution of the normalized mass distribu-
ion. At the initial instant this distribution is given by the function
16). It then becomes bimodal. The lower mode corresponds to
he bacteria from the division. The upper mode represents bacte-
ia of the initial distribution before their division or washout. We
bserve the same phenomenon in the realization of IBMs, see Fig. 4.
n contrast, the classic chemostat model presented below, see Eqs.
1) and (2), cannot account for this phenomenon. After this tran-
ient phenomenon, the normalized mass distribution converges to
 stationary state.
As the IDE is the limit of the IBM in large population size, the

ehavior of the IDE gives informations on the behavior of the IBM.
ut there is no reason that the IDE corresponds to the mean value of
illustrate the transient phenomenon caused by the choice of the initial distribution
(16). After a few iterations in time this distribution is bimodal, the upper mode
growths in mass and disappears before T = 8 (h).

the IBM, because of the correlation between the individuals behav-
iors.

4.3. Comparison of the IBM, the IDE and the ODE

We  now compare the IBM and the IDE to the classic chemostat
model described by the system of ODE’s (1) and (2). The growth
model in both the IBM and the IDE is of Monod type, so for the ODE
model we  also consider the classic Monod kinetics (3). The param-
eters of this Monod law are not given in the initial model and we
use a least squares method to determine the value of the parame-
ters �max and Ks which minimize the weighted quadratic distance
between (St, Xt)t≤T given by (1) and (2) and (St, Xt)t≤T , where St and
Xt are the means of the variable St and Xt = V−1

∫
X x�t(x)dx given

by the IBM (8). This quadratic distance is weighted by the variance
of the IBM.

Fig. 6 represents the evolution of the number of individuals, the
biomass concentration, the substrate concentration and the trajec-
tories in the phase space for 60 independent runs of the IBM and
for the IDE with parameters of Table 2 and with different initial
density. The initial number N0 is adapted so that the average initial
biomass concentration is the same in all three cases.

First we  consider a simulation based on the initial mass den-
pˇ 7
rmax 1 h−1

kr 10 mg/l
k 1
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Fig. 6. Top to bottom: Time evolution of the number of individuals, the biomass concentration, the substrate concentration and the concentration trajectories in the phase
space  according to the initial mass distributions (16) (left), (17) (middle) and (18) (right). In blue, the trajectories of 60 independent runs of the IBM simulated with V = 3 ×10−7

l and N0 = 20000 (left), N0 = 50000 and N0 = 25, 000 (right); in green, the mean of the IBM runs; in red, the solution of IDE (4) and (5); in black, the solution of the system (1)
and  (2). The latter is fitted by the least squares method on the IBM, the parameters of the Monod law (3) are �max = 0.329 and Ks = 2.603 (left), �max = 11.556 and Ks = 200.0
for  EDO1 and �max = 9.219 and Ks = 183.065 for EDO2 (middle), �max = 0.397 and Ks = 3.991 (right). Note that in the case (17) (middle) it is unrealistic to fit a classic EDO
c havio
i to the

t
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hemostat to the IBM, indeed it is not possible for that model to fit the transitory be
nterpretation of the references to color in this figure legend, the reader is referred 

he ODE on the other hand, the latter model cannot account for the
ransient phenomenon. With the first two models, the individual
acteria are withdrawn uniformly and independently of their mass
large mass bacteria have the same probability of withdrawal as
mall mass bacteria). As the initial state d(x) has a substantial pro-

ortion of bacteria with large mass, we have an important division
ate at the population scale and a relatively low growth of individ-
als (see Fig. 1). Therefore at the beginning of the simulation there

s an important increase of the number of individuals whereas the
r of the IBM leading to unrealistic values for the parameters of the chemostat. (For
 web  version of this article.)

biomass decreases. The ODE is naturally not able to account for this
transient phenomenon.

Conversely, if we choose an initial density which charges the
low masses (see Fig. 2), as the following:

d′(x) = 1
(

x − 0.125 × 10−10
(

1 − x − 0.125 × 10−10
))5
Cd′ 0.25 × 10−10 0.25 × 10−10

× 1{0.125×10−10<x<0.375×10−10} (17)
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Fig. 7. Evolutions of the biomass (left) and the substrate (right) concentrations of 60 independent runs of the IBM (blue), the mean of the IBM (green), the IDE (red), the ODE
(black)  fitted by the least squares method on the IBM. The parameters of the Monod law (3) of the ODE are �max = 0.537 and Ks = 4.363. The division rate function is given
b −1 −10 −7 ther p
fi
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y  Eq. (19). � = 5 h , mdiv = 0.5 × 10 mg,  pˇ = 100, V = 1.0 × 10 l, N0 = 10, 000. O
gure  legend, the reader is referred to the web  version of this article.)

here Cd′ is a normalizing constant, we observe an important
ncrease in the biomass at the beginning of the simulation for
he IBM and the IDE whereas the number of individuals decrease
see Fig. 6 (middle)), which is due to fact that at the beginning
f the simulation individuals have masses too low to divide, but
ith a high “speed of growth” (see Fig. 1). As the randomness is

ow at the beginning of the simulation of IBMs, the least squares
ethod, weighted by the variance of IBMs, give an ODE which

ave a strong increase of the biomass concentration and a strong
ecrease of the substrate concentration near the initial instant, but
he stationary state of the ODE (black curves) does not match to
he quasi-stationary state of the IBM or the stationary state of the
DE. If we give a high weight to the quasi-stationary state (between

 = 40 h and t = 80 h), we obtain an ODE (magenta curves) with a sta-
ionary state which matches the quasi-stationary state of the IBM,
ut with a significant difference during the transitory state.

This phenomena no longer appear if we use the following den-
ity (see Fig. 2):

′′(x) = 1
Cd′′

(
x − 0.35 × 10−10

0.3 × 10−10

(
1 − x − 0.35 × 10−10

0.3 × 10−10

))5

1{0.35×10−10<x<0.65×10−10 }

(18)

where Cd′′ is a normalizing constant. Indeed, from Fig. 6 (right), the
ifferent simulations are comparable, the ODE and the IDE match
ubstantially.

Fig. 7 shows simulations with the following division rate func-
ion:

(s, x) = �1{x≥mdiv}, (19)

ith � = 5 h−1, mdiv = 0.5 × 10−10 mg  and the parameter of the divi-
ion kernel is pˇ = 100.

Another interesting phenomenon is that we can observe oscilla-
ions in the evolution of the biomass and substrate concentrations
or the IBM and the IDE, which can not be accounted for by the
DE. These oscillations are due to the distribution which remain
imodal with alternation of the higher density between the lower
nd the upper mode (see Fig. 8). When the lower mode has a higher

ensity than the upper mode, there are a lot of individuals which
row rapidly, the biomass concentration increases and the sub-
trate concentration decreases. When the upper mode has a higher
ensity than the lower mode, there are more individuals with low
arameters are given in Table 2. (For interpretation of the references to color in this

growth, the biomass concentration subsequently decreases and the
substrate concentration increases.

This oscillation phenomenon is artificial and not, to the best of
our knowledge, connected to a real biological case. Our purpose
is to mention a rather obvious but nevertheless important point,
that IBM and IDE models account for phenomena which cannot be
illustrated with the classical ODE model.

4.4. Study of the total washout

One of the main differences between deterministic and stochas-
tic models lies in their way of accounting for the total washout
phenomenon (or extinction phenomenon in the case of an ecosys-
tem). With a sufficiently small dilution rate D, the solutions of
the system (1) and (2) and of the IDE (4) and (5) converge to an
equilibrium point with strictly positive biomass. In fact, the total
washout is an unstable equilibrium point and apart from the line
corresponding to the null biomass, the complete phase space corre-
sponds to a basin of attraction leading to a solution with a strictly
positive biomass asymptotic point. However, from Fig. 9, among
the 1000 independent runs of the IBM, 111 converge to the total
washout before time t = 1000 h; so the probability of total washout
at this instant is approximately 11%. The ODE 1 (dot-dashed black
line) is fitted to the 1000 IBMs. We can observe that it corresponds
to the mean. The ODE 2 (dotted cyan line) is fitted on the non-
extinct IBM and corresponds to the mean conditionally to the non
extinction. It may  be noted that the IDE and the ODE do not cor-
respond to the average value of the IBM since only the latter may
reflect the total washout in a finite time horizon.

Now we consider a sufficiently large dilution rate, D = 0.5 h−1,
corresponding to the total washout conditions. Fig. 10 (top)
presents the evolution of the biomass concentration in the differ-
ent models. The runs of the IBM converge to the total washout in
finite time whereas both deterministic ODE and IDE models con-
verge exponentially to total washout without ever reaching it in
finite time. Fig. 10 (bottom) shows the empirical distribution of the
total washout time calculated from 7000 independent runs of the

IBM (red curve). This total washout time features a relatively large
variance.

It is known that for a birth-death process with constant rates
�̃ and D which corresponds respectively to the rates of birth and
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Fig. 8. Time evolution of the normalized mass distribution for the IDE (5) with
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Fig. 9. Time evolution of the biomass concentration. In blue, 1000 independent
realizations of the IBM simulated with V = 0.5 × 10−7 l and N0 = 30; in green, the mean
of  these runs; in red, the solution of the IDE; in black, the solution of the ODE  1 with
parameter values �max = 0.432 and Ks = 5.050, fitted on the IBM, weighted by the
variance. In cyan, the solution of the ODE 2 with parameters values �max = 0.406 and
Ks = 4.142, fitted on the IBM given by the non extinction of the population, weighted
by the variance of non-extinct populations. Parameters are given in Table 2. The
dilution rate D is 0.275 h−1. Among the 1000 independent runs of the IBM, 111 lead
to  total washout while the deterministic models converge to an equilibrium with
strictly positive biomass. The mean value of the 1000 runs of the IBM gives account

from the mass-structured models to unstructured ones is obtained
he  division rate function (19), � = 5 h−1, mdiv = 0.0005 mg,  pˇ = 100, V = 1.0 × 10−7 l,
0 = 10, 000. Other parameters are given in Table 2.

eath and with �̃ < D, the probability density function of the time
f extinction T is

(t) = N0D
(�̃− D)

2
e(�̃−D)t

(�̃e(�̃−D)t − D)
2

(
De(�̃−D)t − D

�̃e(�̃−D)t − D

)N0−1

. (20)

When the birth rate is not constant, we can expect that the prob-
bility density function of the time of extinction is of the form (20)
here �̃ is the average birth rate of the population. Fig. 10 shows

he probability density function (20) (green dotted curve) where �̃

s computed by a least squared method in order to be fitted to the
mpirical distribution of the total washout time (red solid curve).
his constant �̃ depends on the model parameters, in particular on
he initial number of individuals N0 and on the initial distribution of
ndividuals. In our example the initial distribution contains bacteria

ith higher mass than the quasi-stationary distribution, then in this
ase the effective division rate near the time t = 0 is higher than the
uasi-stationary effective division rate and therefore, the constant

˜
 will also be higher. Moreover, the higher the initial number of

ndividuals N0 is, the more negligible is the time taken to reach the
uasi-stationary distribution. The dashed blue curve represents the
mpirical law of the extinction time of the BDP, calculated from

000 independent runs of the BDP (performed with Algorithm 1),
here the function � in Eqs. (6) and (7) is a Monod function (3)
ith the same parameters as the ODE fitted on the IBM.
for  the total washout probability while IDE and ODE models do not account for
this question. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5. Discussion

In this work we presented four models of the chemostat together
with the analytical and algorithmic gateways bridging one to the
other:

On the one hand we considered the classic deterministic model
of chemostat as a system of ODE’s, and also a birth and death
stochastic process hybridized with an ODE describing the substrate
dynamics; on the other hand their mass-structured counterparts, a
deterministic IDE and also a stochastic IBM hybridized with an ODE.
In all cases the evolution of the substrate is represented as an ODE
meaning that this part of the model is reasonably represented as a
fluid dynamic limit deterministic process. The stochastic model are
Markov processes with values in R+ × N  for the unstructured model
and with values in R+ × M([0,  mmax]) for the mass-structured
model. The Markov property allows us to analytically prove the
convergence of the stochastic models toward their deterministic
counterpart in large population size limits. Moreover, the reduction
by a simplification of the growth function.
The numerical simulations of deterministic models are straight-

forward and are done using classic integration schemes. The
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Fig. 10. (Top) Evolution of biomass concentration between t = 20 and t = 90 h: blue,
1000 independent runs of the IBM; in green, the mean value of these runs; in red the
solution of the IDE; in black, the solution to the ODE with parameters �max = 0.578
and Ks = 10.0. The parameters are V = 10 × 10−7 l and N0 = 10, 000, the dilution rate D
is  0.5 h−1, others parameters are the same as those in Table 2. For both deterministic
models, the size of the population decreases exponentially rapidly to 0 but remains
strictly positive for any finite time. However, all the runs of the IBM reach total
washout in finite time. (Bottom) The continuous red line is empirical distribution
of  the total washout time calculated from 7000 independent runs of the IBM and
plotted using a time kernel regularization. The dashed blue line is the empirical
distribution of the total washout time calculated from 7000 independent runs of
the birth-death process with the same parameters as the ODE matched on the IBMs.
The  distribution is also plotted using a time kernel regularization. The green dotted
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ine is the p.d.f. (20) with N0 = 10000, D = 0.5 et �̃ = 0.2922. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his  article.)

umerical simulation of random models uses almost exact Monte
arlo algorithms, indeed the models are hybrid and the integration
f the ODE part of the model is achieved through approximation
chemes. These latter algorithms are not computationally realistic
n large populations as all events, cell division and cell washout, are
xplicitly simulated; but it is precisely at this level that the simu-
ation of the deterministic models took over, the whole framework
eing perfectly consistent.

Still discrete/stochastic models allow the practitioner to explore
oncepts that are not within the scope of continuous/deterministic
pproaches. For example, questions of diversity and dynamics
ithin species reduced to small number of individuals can be
pprehended only through the former models. The same remark
s valid for the question of extinction.

It is important to evaluate the complexity of the models in
erms of analysis as well as simulation. For example, it is difficult
delling 299 (2015) 1–13

to determine an optimal control law for the IBM while this task is
relatively easy in the case of the classic ODE model. In this latter
case there is already a large number of results, while in the former
case the criteria to optimize are still not well established. However,
it is pertinent to test a control law developed on the ODE model (1)
and (2) not on the same model but on simulated data generated
from the IBM.

Despite their relative complexity, stochastic discrete models
are essential in more than one aspect for population dynamics
(Hellweger and Bucci, 2009). On the one hand, they allow us to
explore situations where deterministic models are totally blind,
this is particularly the case for situations close to extinction con-
ditions or near wash-out conditions in the case of chemostat. This
question may  also be relevant in larger population size (Campillo
and Lobry, 2012). On the other hand, they offer a non-reproducible
simulation tool close to conditions encountered in practice. As the
biologist Georgy Gause pointed out in 1934: “When the microcosm
approaches the natural conditions [. . .]  the struggle for existence
begins to be controlled by such a multiplicity of causes that we are
unable to predict exactly the course of development of each individ-
ual microcosm. From the language of rational differential equations
we are compelled to pass on to the language of probabilities, and
there is no doubt that the corresponding mathematical theory of
the struggle for existence may  be developed in these terms” (Gause,
1934).

However, stochastic and discrete modeling is essentially
devoted to evolutionary population dynamics. It is only more
recently that this approach has been extended to all areas of pop-
ulation dynamics with a similar concern to encourage cooperation
between different representations of a model (Andrews et al.,
2009). It is interesting to note that the same approach is now also
adopted in epidemiology where considerations of discrete and ran-
dom aspects of population dynamics in small sizes are essential
(Allen and Lahodny, 2012; Allen and van den Driessche, 2013).

The IBM proposed here is certainly not the most efficient in
terms of computational speed: it is asynchronous and requires the
simulation of each individual event. There are strategies that accel-
erate this IBM thanks to approximation techniques. The proposed
IBM has the advantage of being an exact Monte Carlo simulation, up
to approximation schemes of the ODE, of the very stochastic pro-
cess which we  can analyze and prove the weak convergence in large
population toward the ID model. This important property is due to
the fact that all the models considered here, including the determi-
nistic ones, are Markovian and that the study of weak convergence
of these processes is an important tool in terms of mathematics but
also on a practical level in simulation terms.

Finally, this work advocates for the development of hybrid mod-
els relevant when the size of a given population fluctuates between
large and small values, or when multiple populations are involved
some in large sizes, others in small sizes.
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Appendix A. Numerical integration scheme for the IDE

To numerically solve the system of integer-differential equa-
tions (4) and (5), we  make use of finite difference schemes.
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Given a time step 
t  and a mass step 
x  = L/I, with I ∈ N
∗, we

iscretize the time and mass space with:

n = n
t, xi = i
x.

We  introduce the following approximations:

n,i  ptn (xi), sn  Stn .

We  also suppose first that at the initial time step there is no
ndividual with null mass in the vessel, i.e. p0,0 = 0; and second that
ndividual with null mass cannot be generated during the cell divi-
ion step, i.e. q is regular with q(0) = 0. This assumption was not
ecessary in the mathematical development presented in the pre-
ious sections but is naturally required to obtain reasonable mass
f individuals in the simulation.

For time integration we use an explicit Euler scheme, for space
ntegration, an uncentered upwind difference scheme, which leads
o the coupled integration scheme:

pn+1,i − pn,i


t
= −�(sn, xi)

pn,i − pn,i−1


x
− ∂

∂x
�(sn, xi)pn,i

− (�(sn, xi) + D) pn,i + 2
x

I∑
j=1

�(sn, xj)
xj

q

(
xi

xj

)
pn,j,

sn+1 − sn


t
= D(sin − sn) − k

V

x

I∑
j=1

�(sn, xj)pn,j

or n ∈ N  and i = 1, · · · I, with the boundary condition:

n+1,0 = 0

nd given initial conditions p0,i and s0.
We finally get:

n+1,i = pn,i + 
t

⎧⎨
⎩− �(sn, xi)

pn,i − pn,i−1


x
− ∂

∂x
�(sn, xi)pn,i

− (�(sn, xi) + D) pn,i + 2
x,

I∑
j=1

�(sn, xj)
xj

q

(
xi

xj

)
pn,j

⎫⎬
⎭

n+1 = sn + 
t

⎧⎨
D(sin − sn) − k


x

I∑
�(sn, xj)pn,j

⎫⎬

⎩ V

j=1
⎭

or n ∈ N  and i = 1, . . . I with boundary condition pn+1,0 = 0 and given
nitial conditions p0,i and s0.
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