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Abstract
The conductance-based refractory density (CBRD) approach is a parsimonious
mathematical–computational framework for modelling interacting populations of reg-
ular spiking neurons, which, however, has not been yet extended for a population of
bursting neurons. The canonical CBRD method allows to describe the firing activity
of a statistical ensemble of uncoupled Hodgkin–Huxley-like neurons (differentiated
by noise) and has demonstrated its validity against experimental data. The present
manuscript generalises the CBRD for a population of bursting neurons; however, in
this pilot computational study, we consider the simplest setting in which each indi-
vidual neuron is governed by a piecewise linear bursting dynamics. The resulting
population model makes use of slow–fast analysis, which leads to a novel methodol-
ogy that combines CBRD with the theory of multiple timescale dynamics. The main
prospect is that it opens novel avenues for mathematical explorations, as well as, the
derivation of more sophisticated population activity fromHodgkin–Huxley-like burst-
ing neurons, which will allow to capture the activity of synchronised bursting activity
in hyper-excitable brain states (e.g. onset of epilepsy).
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1 Introduction

An intense area of research in mathematical and computational neuroscience is the
study of population dynamics of excitable neuronswithin a neuronal tissue as observed
via electro-chemical observables.Advancing this topic constitutes a critical stepwhich,
if further progress is made, will provide insights as to how the brain orchestrates
information and performs computations. Assuming the postulates put forth by the
Hodgkin–Huxley formalism then it is arguably safe to say that single neuron activ-
ity is computationally understood. From a mathematical viewpoint, slow–fast theory
has made considerable progress in characterising and classifying precisely the electri-
cal patterns of single neurons. In contrast, the understanding of neuronal population
dynamics lags behind and a number of approaches have been proposed to express
macroscopic spatio-temporal observables (e.g. LFP, EEG, etc). To name a few, these
approaches include Neural Mass models (Freeman 1972, 1975; Breakspear et al.
2005; Rodrigues et al. 2009; Marten et al. 2009), Firing rate models (Wilson and
Cowan 1972; Chizhov et al. 2007), Neural Fields (Amari 1977; beim Graben and
Rodrigues 2013; Avitabile et al. 2016), the Ott-Antonsen ansatz (Ott and Antonsen
2008;Montbrió et al. 2015), Population densitymodels (Knight at al. 1996; Brunel and
Hakim 1999; Knight et al. 2000; Nykamp and Tranchina 2000b; Apfaltrer et al. 2006;
Ly and Tranchina 2007, 2009; Chizhov and Graham 2007, 2008) and Kinetic theory
(Ventriglia 1974). The difficulty in progress is largely due to the fact that neurons are
excitable open systems and there is strong coupling between the different temporal and
spatial neuronal scales. The complex network synaptic connectivity shows lognormal
distribution (with heavy tails) as well as extracellular characteristics. The temporal
dynamics have a variety of oscillations (due to the neurons’ intrinsic physiological
properties).

In general, population density models for complex multidimensional neurons are
expressed via multidimensional equations in partial derivatives (PDEs). In large-scale
simulations, these multidimensional equations can lead to computational bottlenecks.
Standard population density models do not attempt to reduce the dimensionality
of these models. Presently, one of the stand-out paradigms for modelling neuronal
populations is the refractory density (RD) approach, which belongs to the class of
probability density methods (Knight et al. 2000). It is an efficient computational
method to simulate neuronal populations (seen as statistical ensembles) of uncou-
pled neurons receiving similar input and dispersed by noise (or each neuron receiving
individual Gaussian noise and a common for all neurons of a population, time-varying
input). In first approximation, the RD method is akin to the methods developed in
statistical physics, in particular the Boltzmann molecular chaos hypothesis, which
allows to decorrelate elastic collisions between pairs of particles within a gas (due to
conservation of momentum). As a consequence, it provides a plausible construct of a
macroscopic description of the population by a single density. The RD method was
first developed for simple, one-parametric integrate-and-fire-like neurons (Eggert and
van Hemmen 2001; Gerstner and Kistler 2002). A significant step forward was taken
by showing that the method could be extended for Hodgkin–Huxley-like neurons in
Chizhov et al. (2006) and Chizhov and Graham (2007), which was then denoted as the
conductance-based refractory density (CBRD) approach. The key point for consider-
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ingHodgkin–Huxley-likemodels is because thesemodels have shown to provide good
accurate approximations of neuronal firing and bursting as observed in a variety of
experimental protocols that not only consider synaptic voltage-independent currents
as an input but also synaptic conductances (Fernandez andWhite 2010; Smirnova et al.
2015), which is in contrast to the majority of simplified models that generally assume
1D input. These two inputs are crucial, which allow to relate to numerous experimental
electrophysiological paradigms, experimental constraints (e.g. on neurophysiological
parameters such as conductances) as those imposed in dynamic clamp, and therefore
addressing questions imposed by these experimental setups. Having said that we note
that progress is being made with new generation of simplified models with adaptive
threshold dynamics, which have been shown to reproduce double-electrode current-
clamp recordings (Gerstner and Naud 2009). While, these new generation models
can be considered within the framework of the RD approach (Schwalger et al. 2017),
we will still rely on the Hodgkin–Huxley neuron framework. Therefore, an important
advantage of theCBRDapproach is its computational efficiency, because it reduces the
description of Hodgkin–Huxley neuron population to 1D transport equations, whereas
the conventional probability density approach formally leads to computationally inef-
ficient multidimensional PDEs.

The reduction to 1D PDEs in the CBRD approach (see Sect. 2.2) is possible due to
a key insight, which is to parameterise the neuronal state variables by a single-phase
variable, the time elapsed after spike t∗ (Chizhov and Graham 2007). Specifically, the
neuronal membrane voltages and possibly other neuronal state variables are functions
of only time t and t∗. This is certainly valid for neurons with a renewal process at a
spike (action potential), such as neurons modelled by integrate-and-fire models, spike-
response (Gerstner and Kistler 2002) or fast-spiking neurons (Chizhov et al. 2006).
It is approximately true for neurons with slow gating variables, like adaptive neurons
(Chizhov and Graham 2007). This approximation is valid if the relaxation of each
adaptive variable between spikes is roughly the same for different neurons within the
population, which induces the inter-spike intervals of all neurons to become more
or less comparable. Moreover, similarly to the typical RD approaches, an important
assumption is to assume that all neurons within a population are governed by the
same dynamics and are de-coupled, however are driven by the same input (possibly
differentiated by noise). Thus, when a time-dependent input drives (in a similar fashion
all neurons within the population), the state variables of the neurons, parameterised
by t∗, fluctuate close to the average value of the population activity. This is the basis
to split the problem into the solution of the equations for the average state variables
and the fluctuations due to noise. The noise effect is captured by the so-called hazard
function, which evaluates a probability for a single neuron to fire provided that the
expected values of its states are known. The approximation of the hazard function was
derived Chizhov and Graham (2007, 2008) by considering certain assumptions on the
noise term. Interestingly, it is independent on the neuron model and substitutes former
phenomenological approximations.

The CBRD has shown to be capable of modelling coupled/heterogeneous networks
where each population node is a different CBRD model and more importantly has
shown its validity in experimental studies. For example, a comparison of the CBRD
model to a standard mean-field EEG model was made, which demonstrated improve-
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ment gains (Chizhov et al. 2007) and subsequently, a number of modelling extensions
followed. These included the case of temporally correlated noise (Chizhov and Gra-
ham2008), two-compartment neurons (Chizhov 2014), lognormal distribution of input
weights (Chizhov 2017) and finite-size population (Schwalger et al. 2017; Dumont
et al. 2017). Thevalidity of theCBRDmethodwas also tested against data. In particular,
it hasmodelled the visual cortex activity via two 2D layers of two-type populations that
respond to both electrical and visual stimulation (Chizhov 2014). It has also provided
insights in modelling epileptic discharges, such as, interictal discharges modelled via
two populations (Chizhov et al. 2017), three populations with ionic dynamics for ictal
discharges (Chizhov et al. 2019b), 2D lattice of two-type populations for spreading
interictal discharges (Chizhov et al. 2019a).

In the present paper, we want to show that CBRD can be further extended to capture
more complex electrical oscillations like bursting. Bursting neurons are characterised
by the alternation between two distinct activity regimes, namely quiescent phases
where the voltage slowly follows a quasi-steady-state and burst phases where groups
of spikes are fired consecutively. There are twomain modelling frameworks to capture
bursting dynamics. The first framework corresponds to smooth continuous-time so-
called slow–fast or singularly perturbed dynamical systems with at least three state
variables, two fast and one slow. Indeed, in the context of geometric singular per-
turbation theory (GSPT) (Fenichel 1979; Jones 1995), the so-called fast subsystem,
obtained as the slow variable is frozen and considered as a parameter, is a planar
dynamical system with one distinguished parameter (the frozen slow variable). This
planar system displays bistability between stable limit cycles and stable equilibria
for a range of values of the frozen slow variable. What is more, this bistable region
of the bifurcation diagram of the fast subsystem possesses a hysteretic loop, that is,
a pair of bifurcations which connect in parameter space both families of attractors,
equilibria and limit cycles. Hence, in the full system, the dynamics of the slow variable
is organised (often through a feedback term involving one of the two fast variables)
so that it oscillates in the region of bistability and switches between quasi-stationary
(quiescent phase) to quasi-periodic (burst phase) regimes when slowly passing near
the bifurcations of the fast subsystem that organises this hysteretic loop. Therefore,
the two fast variables of a smooth bursting model account for the burst phase and the
slow variable for the quiescent phase while also driving slowly (on average) the mem-
brane potential through the burst; for more details, see Rinzel (1986) and Izhikevich
(2000).

The second framework is that of hybrid dynamical systems, which are effectively
a combination of smooth continuous-time dynamical systems together with a map.
This map is applied to one or several variables each time they reach a predefined value
(threshold), at which point the continuous-time system stops and these variables are
mapped (instantaneously) to new values or resets. Classical example of hybrid neuron
models is integrate-and-fire model (Knight 1972) where typically only the membrane
potential gets reset upon threshold, which provides a spikingmodel with only one state
variable (voltage). In the case of bursting neurons, hybrid models have two variables
which both undergo reset upon threshold: membrane potential and a recovery variable
which mimics gating dynamics. In this work, we consider for simplicity the hybrid
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dynamical systems framework, but with an outlook for future work with the smooth
case.

It is worth remarking that previous studies using the RD approach have also con-
sidered bursting neurons. However, we note that in these studies (for example, Casti
et al. 2002), the derivation of the RD model from a simple bursting neuron retains
the dimensionality of the neuronal equations. Moreover, an extension of this approach
to more complex neurons would increase the dimension even more, which implies a
loss in computational efficiency. In contrast, the CBRD approach always reduces the
dimensionality, while fully representing the fast and slow variables of the underlying
neuron model and therefore allows to model intrinsic bursting and is applicable to
coupled populations and therefore offers significant advantages. To compare, in the
setting of bursting dynamics with hybrid models, the RD approach gives rise to a 2D
transport equation (as opposed to 1D transport for spiking regime). Moreover, the two
state variables are parameterised by the time since last spike and the time since last
burst. Specifically, the transport equations correspond to these twomain state variables
while the neuronal density describes neuronal dynamics and dispersion across popu-
lation due to noise. The loss of computational efficiency in this case is probably the
main reason as to why such 2D approach has not been developed (or attempted). How-
ever, we note that the dissipation is negligible during bursts because of their relatively
short duration and high-conductance state that shunts the noisy currents. We make use
of this property (as an advantage) to reduce the system to one-dimensional, and as a
consequence, we obtain a computationally effective 1D RD model for a population
of bursting neurons. The present work has to be seen as a pilot computational study,
where for simplicity, we model bursting dynamics with hybrid models. However, we
envisage that this work will stimulate the use of smooth slow–fast systems and will
provide future challenging mathematical questions as well as the possibility of testing
experimental data from bursting populations.

2 Methods

2.1 Single NeuronModel: Leaky Integrate-and-Fire Neuron with Noise

The framework setting underwhichwe start ourwork iswith hybrid dynamical systems
but with the future outlook to develop and enhance it to smooth continuous-time
slow–fast systems and their corresponding conductance (Hodgkin–Huxley) equivalent
models. To this end, our starting point is the LIF spiking neuron model (i.e. hybrid
dynamical system) since we will show that when we pass onto the bursting hybrid
model, many of the LIF features will be retained within the macroscopic refractory
density formulation. Specifically, the LIF neuron is given by the equation

C
dV

dt
= −(gL + s(t))(V − Vrest) + I (t) + σI ξ(t), (1)

where ξ(t) is a Gaussian white noise process characterised by its mean value, 〈ξ(t)〉 =
0, and auto-correlation 〈ξ(t)ξ(t ′)〉 = C/gL δ(t − t ′); the standard deviation, σI , is
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the noise amplitude. The neuron fires when the potential V crosses a threshold UT .
Immediately after a spike, V is reset to Vreset. The LIF neuron is characterised by the
capacitanceC and the leak conductance gL . The input is determined by two signals, the
synaptic current measured at the voltage level equal to Vrest, I (t) and the total synaptic
conductance s(t). The effective membrane time constant is τm = C/(gL + s(t)).

We can then derive the equations of motion for a population of an infinite number
of Eq. (1)-based LIF neurons receiving a common 2D input [I (t), s(t)] and noise,
individual for each neuron. The population firing rate is defined as a sum of all spikes,
nact, from neurons of the population over a short time window Δt , divided by the
number of neurons N . After taking the limits of N → ∞ and Δt → 0, the firing rate
ν is obtained as

ν(t) = lim
Δt→0

lim
N→∞

1

Δt

nact(t; t + Δt)

N
. (2)

The direct approach to calculate the firing rate is via Monte Carlo simulations.

2.2 PopulationModel: CBRD Approach for Integrate-and-Fire Neurons

The firing rate for a population of LIF neurons receiving a common deterministic
input and Gaussian noise is well approximated by the CBRD model Chizhov and
Graham (2007) and Chizhov and Graham (2008). The CBRD model is expressed by
a system of transport equations for two variables: the neuronal density in t∗-space
ρ(t, t∗), so-called refractory density, and U (t, t∗), the membrane potential averaged
across noise realisations, where t∗ is the time elapsed since the last spike. The state
of each neuron is parameterised by this phase variable. For the particular case of
a LIF neuron, its only state variable is V (t, t∗) (with its mathematical expectation
U (t, t∗)). (For more complex neuron models, the gating variables of ionic channels
are also parameterised by t∗, which allows to preserve the number of independent
variables and thus leads to 1D PDEs (see Sect. 3.4).) This parameterisation leads
to a reduced description with only one phase variable, which nevertheless preserves
the information about neuronal states, provided all neurons they are subject to the
same input history. The equation for U (t, t∗) is derived from the original ordinary
differential Eq. (1) by substituting the total derivative in time by a sum of partial
derivatives: d/dt = ∂/∂t + ∂/∂t∗. The equation for ρ(t, t∗) is derived from the
neuron number conservation law ∂ρ/∂t+div ρv = −ρH , where div is the divergence
operator in the coordinate space (t∗-space); v is the velocity of neuronal flux in the
t∗-space, which is v ≡ dt∗/dt and equal to 1 by the definition of t∗, i.e. v ≡ 1. The
expression−ρH is the source term that describes firing, where H = H(U (t, t∗), s(t))
is the probability for a single neuron to fire and s(t) is a synaptic conductance which
together with I (t) drives equally all neurons within a population; for details, see our
earlier work (Chizhov and Graham 2007) and further information that is provided
below. Finally, the equations for ρ(t, t∗) and U (t, t∗) are as follows:

∂ρ

∂t
+ ∂ρ

∂t∗
= −ρH(U (t, t∗), s(t)), (3)
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C

(
∂U

∂t
+ ∂U

∂t∗

)
= −(gL + s(t))(U − Vrest) + I (t), (4)

where I is the synaptic current; gL is the leak conductance, C is the membrane capac-
itance and t∗ is a time parametrisation, which denotes the time since last spike. The
boundary conditions are

ν(t) ≡ ρ(t, 0) =
∞∫

+0

ρHdt∗ and U (t, 0) = Vreset,

where ν(t) is the population firing rate. When calculating the dynamics of a neural
population, the integration of Eq. (4) defines at each time moment t the distribution of
deterministic (i.e. devoid from noise) voltageU along t∗. Then, the effect of threshold
crossing and diffusion by noise are taken into account by the so-called hazard function
(H -function), and the result of the integration of Eq. (3) is expressed in the distribution
of ρ along t∗ and the firing rate ν.

It is worth emphasising the rationale behind splitting the input signals into com-
mon inputs (I (t), s(t)), which all neurons are subject to and the effects of individual
noise for each neuron and in turn how this leads to the H -function. We emphasise
this because our approach is markedly in contrast to other probability density frame-
works, for example, as described in Apfaltrer et al. 2006 that leads to a 2D probability
density as opposed to ours which results in a 1D probability density. The central idea
behind splitting is as follows. First, the common signals can be of any kinetic form.
The individual noise can either be instantaneous (e.g. Gaussian white noise) or noise
current (e.g. Ornstein-Uhlenbeck process), and in both cases, the noise effect is cap-
tured by the hazard function; for derivations, see Chizhov and Graham 2007, 2008.
Secondly, only voltage fluctuations affect threshold crossing, thus only the fluctua-
tions of membrane potential are considered. The voltage fluctuations around the mean
voltage are governed by a linearised stochastic voltage equation, which is the same
for different type neurons. The associated Langevin equation is equivalent to its alter-
native Fokker–Planck (FP) representation (1D for white noise and 2D for coloured
noise) and is governed by the mean membrane potential U (t) and mean membrane
conductance s(t). The hazard function is derived as a solution of the first-time passage
problem based on the Fokker–Planck equation for the statistical distribution of volt-
age fluctuations due to white Gaussian noise near the deterministic mean potential U
(Chizhov and Graham 2007). The problem has exact analytical solutions in two par-
ticular cases. In the first case of stationary stimulation, whenU and s are constant, the
solution is self-similar, with a constant shape distribution for a given value ofU . Thus,
the Fokker–Planck equation is reduced to an analytically solvable ordinary differen-
tial equation. In the second extreme case of an abrupt excitation with dU/dt → 0,
the solution is obtained from a frozen Gaussian distribution passing the threshold. As
shown in Chizhov and Graham 2007, a solution for H in an arbitrary case is well
approximated by a sum of the two extreme solutions. This solution is universal for
different single neuron models; it was approximated with a relatively simple function
of U varying in time t at a given t∗, depending as well on σI , UT and s(t):
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H(U (t, t∗), s(t)) = 1

τm

(
A(t, t∗) + B(t, t∗)

)
,

A(t, t∗) = exp(6.1 · 10−3 − 1.12 T − 0.257 T 2 − 0.072 T 3−0.0117 T 4),

B(t, t∗) = −2 τm√
π

[
dT

dt

]
+

exp(−T 2)

1 + erf(T )
,

T (t, t∗) = UT −U (t, t∗)√
2 σV

, σV = σI√
2 gL(gL + s(t))

. (5)

In our simulations, unless otherwise stated, wewill considerUT = 0, s(t) ≡ 0, τm = 1
and gL = 1.

3 Results

3.1 Single NeuronModel: Simple Bursting Neuron

For the bursting neuron dynamics, we consider a modified version of the model devel-
oped in Izhikevich (2003) and analysed in Coombes et al. et al. (2012) (using a
piecewise linear approximation). The equations are defined as follows

dV

dt
= |V | − a + I (t) − s(t)V , (6)

τa
da

dt
= −a, (7)

if V > Vth then V = Vreset, a = a + Δa, (8)

with parameters set to the following values:

Vth = 1, Vreset = 0.2, τa = 75, Δa = 4/75, I = 0.1.

These equations define a hybrid model with a planar piecewise linear (PWL) vector
field together with a map, defined by reset conditions for the membrane voltage V , as
well as an increment for a recovery variable a. The fact that τa 
 1 induces a timescale
separation in the model, where the membrane potential V acts as a fast variable,
while the recovery variable a is, in comparison, slower. The algebraic conditions (i.e.
reset conditions) enable the emergence of limit cycle dynamics in the model, more
specifically bursting oscillations (i.e. the dynamics converge to an attracting cycle
instead of exploding in finite time). As depicted in Fig. 1 (bottom panel), the V-shaped
PWL fast nullcline (so-called critical manifold S0 of the system) has two branches,
the left one is attracting and the right one is repelling. The dynamics along the left
(attracting) branch of S0 is slowand corresponds to the subthreshold part of the bursting
cycle shown in Fig. 1 (bottom panel). Outside of the reset zone, the dynamics of the
slow variable a is always decaying, which implies that once in the vicinity of the
left branch of S0, the trajectory moves slowly down towards the corner point of S0,
where its attractivity changes. Then, as typical in slow–fast systems near points where
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Fig. 1 (Color figure online)
Hybrid model for bursting
neuron. Voltage trace (top) and
phase-space plot (bottom) with
nullclines (red and blue) and a
trajectory (green). The red
nullclines intersect at hyperplane
V = 0, which corresponds to the
true neurophysiological
threshold (seen from the
perspective of smooth
continuous-time slow–fast
systems). The dashed blue line
(left) corresponds to the Vreset
and the dashed blue line (right)
corresponds to Vth

t

V
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a one-dimensional critical manifold changes from being attracting to being repelling
(where so-called normal hyperbolicity fails), the overall dynamics switch from slow
to fast and gets away from S0 on the fast timescale.

This transition past, the two reset conditions allow for fast oscillations in between
Vreset and Vth as long as the intersection point of the trajectory with the reset line
{V = Vreset} stays below the right branch of S0, where the flow points rightwards
towards the threshold line {V = Vth}. However, the reset also affects the slow variable
a by incrementing its value each time by a quantity Δa. After a number of fast
oscillations in between Vreset and Vth, the intersection point between the trajectory and
the reset line crosses the right branch of S0, where the flow now points leftwards. As
a result, the trajectory goes back to the attracting branch of S0 where slow dynamics,
corresponding to the quiescent phase of the bursting cycle, resumes again.

Note that the notion of threshold for such IF models slightly differs from what is
typically meant by threshold in their smooth counterparts, which then corresponds
more to the excitability threshold of the membrane model. Indeed, models such as
system (6) would explode in finite time without a reset in the membrane potential as it
would grow unboundedly past the kink at V = 0. The threshold value Vth is introduced
simply to avoid that the system explodes and tomark the occurrence of a spike (i.e. this
is not a strict threshold in neurophysiological terms). ThevalueVth is higher than theV -
level that one wouldwant to associate with the excitability threshold. This is done so as
to ensure that multiple spikes can be fired successively, hencemimicking a burst. In the
context of smooth bursting models such as the extended Morris–Lecar system studied
in Terman (1991), the reset value Vreset corresponds to the approximate minimum
along the families of limit cycles of the fast subsystem. In such smooth bursters, with
a similar geometry as system (6)–(8), the excitability threshold corresponds instead
to a small perturbation of the unstable branch of the V -nullcline and is well captured
by a so-called maximal canard segment (Desroches et al. 2013). More precisely, for
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system (6)–(8), the excitability threshold can be approximated by a perturbation of
order 1/τa of the right branch of the V -nullcline.

A complete analysis of the bursting dynamics of system (6)–(8) is beyond the scope
of the present work and will be an interesting topic for future work. In particular, it
is convenient to focus on slow–fast spike-adding mechanisms present in this model,
which allow to understand the burst size and timing. Already, as we will see below,
the CBRD method can capture bursting dynamics within a population of neurons of
the type given by system (6)–(8) with the noise as in (1). For a population, we set the
noise amplitude to be σI = 0.02

√
2 (i.e. σV = 0.02).

3.2 CBRDModel for Simple Bursting Neurons

To derive the CBRD for bursting neurons, we additionally require an extra time param-
eter, say t∗∗, which denotes the time since last neuronal bursting activity. Relying on
the Hybrid model (6)–(8) and its corresponding phase-plane diagram shown in Fig. 1,
then t∗∗ quantifies the time spent by the trajectory between the termination of the last
spike (belonging to the previous burst) until the moment the trajectory reaches the
hyperplane V = 0, corresponding to the apex where the two red nullclines intersect.
The time parameter t∗ has the same meaning as in previous work, where it denotes the
time since last spike (i.e. defined as the time moment when V reaches Vth). However,
we note that during bursting activity, t∗ can be neglected because realistic neurons are
driven towards high-conductance states and as a consequence noise is shunted. The fact
that noise is shunted during burst implies that there is no need to evaluate the hazard
function and describe the density leak during bursts. Moreover, the neurons become
perfectly synchronised within a burst (i.e. the distribution along t∗ is a delta function).
Thus we drop t∗, but rename t∗∗ as t∗ for convenience. To discriminate the neuronal
states where the noise is functioning and where it is not, we introduce a discrete state
variable φ(t, t∗) that describes the states, either bursting or quiescent (leak), accord-
ing to the (V , a)-plane (Fig. 1). The variable φ(t, t∗) takes discrete states of either
1—“leak”, obtained when voltage U (t, t∗) decreases below the boundary U = 0,
or 0—“burst”, obtained at the onset of a burst. Moreover, we assume that the slow
variable a is reset at t∗ = 0 to a some constant or variable areset(t) to be given below.

Consequently, Eqs. (3)–(4) for the neuron based on Eq. (6)–(7) instead of Eq. (1)
is obtained as follows:

∂ρ

∂t
+ ∂ρ

∂t∗
= −ρH(U ) φ, (9)

∂U

∂t
+ ∂U

∂t∗
= −|U |−a + I (t)−s(t)U + δ(U − Vth)(Vreset − Vth), (10)

∂a

∂t
+ ∂a

∂t∗
= − a

τa
+ δ(U − Vth) Δa, (11)

∂φ

∂t
+ ∂φ

∂t∗
= −δ(U ) φ, (12)

The H -function is effective only for φ = 1.
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The firing rate is defined as a sum of all neurons that reached spike threshold:

ν(t) =
∞∫

+0

ρ(t, t∗) δ(U (t, t∗) − Vth) dt
∗ (13)

The boundary conditions at the onset of burst are as follows:

ρ(t, 0) =
∞∫

+0

ρH dt∗, (14)

U (t, 0) = Vreset, (15)

a(t, 0) = areset, (16)

φ(t, 0) = 1 (17)

The additional parameter is areset, which approximates a just before a burst if it
initiates at the current time t . Indeed, areset tends to approach the value at the kink point
of the red nullclines shown in Fig. 1. The kink point is given by the zero of the right-
hand side of Eq. (6) for a single neuron, where V = 0, as well. From this, we would
get areset = I (t). However, this condition may lead to fast variation of areset, if I (t)
changes fast. Thus, we introduce an approximation areset = (1 + s(t)) U (t, t∗ = ∞),
which is valid because U (t, t∗ = ∞) is close to the term I (t)/(1 + s(t)) averaged
over time period of 1 (i.e. normalised time period), which follows from the zeroed
right-hand side of Eq. (10).

3.3 Single NeuronModel: Bursting Neuron with Potassium Current

As an example of a more complex bursting neuron model with conductance-based
description of ionic currents, we add to the model Eqs. (6)–(8) a potassium current
IK (V , t), adopted from Yu et al. (2008). For this, Eq. (6) is rewritten as

dV

dt
= |V | − a + IK (V , t) + I (t) − s(t)V , (18)

where the potassium current is approximated as follows

IK (V , t) = −gK n(V , t) (V − VK ), (19)
dn

dt
= n∞ − n

τn
, (20)

n∞(V ) = α

α + β
, τn(V ) = 1

α + β
, (21)

α(V ) = 2(−V + 0.85)

exp ((−V + 0.85)/0.09) − 1
, (22)

β(V ) = V − 0.85

exp ((V − 0.85)/0.09) − 1
. (23)
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The integrate-and-fire model requires an additional reset condition:

if V > Vth then n = 0.5. (24)

The parameters are gK = 0.015, VK = −0.3 and nreset = 0.5. After a spike, the
voltage is partially reset due to the potassium channel; that is why Vreset is set to be
larger, Vreset = 0.5.

3.4 CBRDModel for Bursting Neurons with Potassium Current

Generalisation of the CBRD model based on Eqs. (9)–(17) to more realistic neurons
with explicit approximation of different ionic currents requires to account for the
currents in Eq. (10) and adding the equations for the ionic channel gating variables.
For a population of neurons with potassium channels, the equation for the refractory
density Eq. (9) remains the same and Eq. (10) is substituted by

∂U

∂t
+ ∂U

∂t∗
= −|U |−a − gK n(V − VK ) + I (t)−s(t)U

+ δ(U − Vth)(Vreset − Vth). (25)

Additionally, the following equation for the potassium gating variable n is derived
from Eq. (20)

∂n

∂t
+ ∂n

∂t∗
= n∞ − n

τn
, (26)

with the supplementary expressions Eqs. (21), (22) and the boundary condition

n(t, 0) = nreset. (27)

The remaining equations are Eqs. (11)–(17), which completes the description. Note
that the parameterisation of n by t∗ helped to preserve the dimension of PDEs.

3.5 Simulations

Simulations with the CBRD model (Eqs. 3–5) for the LIF neuron population are
shown in (Fig. 2). Here, we test the CBRD by considering two test problems, namely,
stimulation with a current step and a complex input, which demonstrate that CBRD
accurately reproduces the solutions obtainedwith theMonteCarlo simulations (Fig. 2).
As an example of a complex-shaped input, we consider a sinus with an increasing
frequency (Fig. 2d) as the current I (t), and the absolute function of similar sinus
function with twice smaller frequency as the conductance s(t) (Fig. 2d). Note that
the model performs well in the case of stimulation by both the voltage-independent
current I (t) and the conductance s(t).

We subsequently simulate theCBRDmodel for simple bursting neurons (Eqs. 9–17)
for a test problem of a current step stimulation (Fig. 3a). The firing rate as a population
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Fig. 2 (Color figure online) Population of LIF neurons. a–c Response to stepwise stimuli. d–f Response to
a complex-shaped current. a, d Input current I (t) and conductance s(t). b, eMembrane voltage of a single
neuron. c, f Population firing rate, calculated in Monte Carlo simulation and the CBRDmodel. 50000 trials
were used in the Monte Carlo simulations

response to the stimulus is shown in Fig. 3c. The corresponding voltage response of
an individual neuron is depicted in Fig. 3b. Due to synchronised initial state of the
neurons within the population, the first burst turns out to be hyper-synchronous. Peaks
of the firing rate during the first burst correspond to separate spikes. At the interval
between the first and second burst, neuronal states desynchronise, which gives rise to
a smoothing effect of the firing rate in subsequent bursts. In fact, this smoothing effect
amplifies in subsequent bursts and thus a total desynchronisation occurs. The firing
rate obtained with the population model is compared to the one from Monte Carlo
simulation (Fig. 3c), which shows satisfactory agreement, though showing weaker
fading of the response oscillations. An important property of the proposed model is
that the timing of the population firing rate bumps is reproduced accurately.

Wenote that the voltageU does not depend on ν. As a consequence, for constant step
stimulation, the voltage profile in t∗-space is stationary (Fig. 4b). The corresponding
time profile in t∗-space is shown (as green) in Fig. 4c. At t∗ close to 100ms, the voltage
approaches the threshold (orange). As a consequence, and according to Eq. (5), the
hazard function increases (blue). As expected, this implies that a significant fraction
of neurons with t∗ close to 100 ms switch to the bursting phase, upon which there
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Fig. 3 (Color figure online) Population of bursting neurons. a–cResponse to a step of current. d–fResponse
to a complex-shaped current. a, d Input current I (t) and conductance s(t). b, e Membrane voltage of a
single neuron. The green traces are the voltage responses, while the time trajectory of the recovery variable,
a is shown in purple. c, f Population firing rate, calculated in Monte Carlo simulation and the CBRDmodel.
Twenty thousand trials were used in the Monte Carlo simulations

is a reset of t∗ (i.e. t∗ = 0). Moreover, according to Eq. (9), the neuronal density
(red) decreases with t∗ at t∗ close to 100 ms and increases at t∗ = 0. At t∗ from 0
until about 80 ms, the neuronal density shifts to the right and then decays. Note that
because the flux to the reset point t∗ = 0 affects ρ and depends on it, the neuronal
density converges to the steady state much slower than the voltage, as seen from the
comparison between Fig. 4a, b.

The proposed model works with an arbitrary input. Again, we consider a complex-
shaped input with variable current I (t) and conductance s(t) (Fig. 3d), as in Fig. 2d.
A single neuron fires irregularly in response to such input (Fig. 3e). The firing rate
obtained with the population model is well compared to the one from Monte Carlo
simulation (Fig. 3f) in respect to qualitative behaviour with fading oscillations, the
amplitudes of the firing rate peaks and the timing of the peaks. The residual difference
is due to the approximate nature of two assumptions: the one about areset and the
other one that neglects by the effects of noise during the bursts. Note that the second
assumption would be more relevant to more realistic neurons with shunting, for which
the noise effect vanishes at the high-conductance state during bursts.

Finally, we demonstrate that the CBRDmodel for bursting neurons with potassium
current have similar qualitative behaviour (Fig. 5). The effect of the potassium current
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Fig. 4 (Color figure online) This plot extends Fig. 3a–c. Specifically, it depicts t∗ − t-plots for the neuronal
density ρ (a) and voltage U (b), that lead to the firing rate response shown in Fig. 3c. c Shows the profiles
in t∗-space at t = 500 ms for the neuronal density ρ and the source term ρH (middle panel) and the mean
voltage U and adaptation a (bottom panel)

on voltage is seen from comparison of the traces from the insets in Figs. 3b and 5b.
After spikes, the voltage is partially reset due to the potassium channel. The potassium
current is reset at each spike and it vanishes between the spike bursts. Qualitatively,
the bursts are similar to those in the simple bursting model. The firing rate is similar
to that for the simple bursting neuron population.

All together, these derivations and simulations demonstrate that CBRD framework
can be extended to a population of intrinsically bursting neurons.
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of current. d–f Response to a complex-shaped current. a, d Input current I (t) and conductance s(t). b, e
Membrane voltage of a single neuron. The green traces are the voltage responses, while the time trajectory of
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3.6 Discussion

This is a preliminary computational study that demonstrates the plausibility of extend-
ing CBRD framework towards bursting dynamics. There are however a number of
mathematical challenges (and further computational ones), as well as experimental
validations to consider in the near future. From the mathematical viewpoint, it will be
essential to analyse the properties of the nonlinear renewal system of Eqs. (9)–(11),
in particular its asymptotic time behaviour (Perthame and Tumuluri 2008; Cañizo
and Yoldaş 2018). Additionally, it will be interesting to bridge the CBRD (i.e. PDEs)
proposed in the present paper with detailed piecewise deterministic Markov processes
(PDMP) approaches where spike trains events are explicitly described with the help of
stochastic point processes (Chevallier et al. 2015). Indeed, system (9)–(11) is the large
population mean-field approximation of systems of coupled PDMP models. This will
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help to assess the stochastic disparity between the two approaches in terms of mar-
tingale problems. In this perspective, an intermediate model could be proposed, as a
stochastic PDE, using a diffusion approximation (Dumont et al. 2017).

Another future direction for the present work will be to enhance the slow–fast
analysis of the single neuron model used in the population density model that we have
proposed here. Indeed, CBRD for bursting models allows to finely analyse both the
quiescent and the burst phases. In particular, their duration and timing can be more
precisely estimated by combining the knowledge of the fast subsystem’s bifurcation
structure together with the slow oscillation that passes through it in the full system.
Besides, this analysis can be simplified when the underlying model is piecewise linear
(Desroches et al. 2016). Such a slow–fast study will shed further light onto the role of
the two main parameters of the density model, namely time since last spike and time
since last burst. Finally, the interactions between slow–fast timescales and stochasticity
can be analysed using a mix of CBRD and probability theory (Berglund and Gentz
2006); we plan to extend the theoretical aspects of the modelling framework proposed
in the present work by using such methods.

From a biophysics point of view, it will be worth to reinterpret themacroscopic neu-
ronal density. In particular, note that the starting point of the CBRD is the assumption
of a statistical ensemble of uncoupled neurons (possibly differentiated by noise). This
assumption of uncoupled neurons invokes the Boltzmann molecular chaos hypothesis
(also called Stosszahlansatz), where the collision of particles (effectively the cou-
pling) is neglected. This is justified by the fact that the collisions are elastic and, due
to conservation laws, the colliding gas particles effectively forget the effects of the
previous collisions (i.e. collisions de-correlate exponentially fast). In this view, there
is the tantalising question as to what would be the corresponding conservation law (if
any) and in what physiological conditions would it be valid.

The proposed model has been validated by comparison with an alternative model,
the Monte Carlo simulations. From an experimental point of view, it will be also
important to validate the CBRD for bursting dynamics. We recall that the CBRD for
spiking dynamics has been validated against data. Specifically, in a previous work
carried out in Chizhov (2017), a CBRD model for adaptive, regular spiking neurons
was comparedwith electrophysiological recordings in a single pyramidal cell, obtained
by Tchumatchenko et al. (2011). These experiments were in whole-cell patch-clamp
recordings, and the perturbation protocol followed a time-varying weak piecewise
current (i.e. changing stepwise current) that was injected into the neuron. The statistics
of spiking response were characterised by the post-stimulus spike-time histogram,
which in the CBRD framework corresponds to the firing rate for a neuronal population.
In simulations, the spike trains in response to stepwise current injection revealed that
the CBRD model responses replicate and explain experimental neuronal responses,
including the effects of the adaptation. Taking these experiments as a starting point,
we propose similar future experiments for bursting cells, which we believe is feasible
but has not yet been done. These envisaged experiments could then be compared to
the bursting CBRD approach.

The probability density approach (PDA), and particularly the refractory density
approach are an important class of modelling framework that have potential to solve
neurobiological questions. For instance, a PDA-based model of a single population
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revealed the effects of synaptic noise filtering by LIF neurons (Brunel et al. 2001).
A problem of gain modulation in refractory integrate-and-fire neurons receiving an
input with shunt-dependent fluctuations has been solved with the help of a PDA-
based model (Ly and Doiron 2009). Networks of coupled excitatory and inhibitory
integrate-and-fire neurons have been simulated with a PDA (Nykamp and Tranchina
2000a; Apfaltrer et al. 2006). The CBRD approach refines the PDA approach and has
further shown to be well suited to efficiently study cortical activity and also to have
good agreements with some experiments. For example, the CBRD has been applied
to study the visual cortex activity (Chizhov 2014), where a cortical domain was
considered as a layered continuum of interacting excitatory and inhibitory neuronal
populations. The simulations allowed to reproduce evoked responses of the cortical
network that were registered by the patch-clamp electrophysiological methods and
the optical recordings performed in vivo. Another study with a CBRD model has
revealed mechanisms of epileptic interictal discharges (Chizhov et al. 2017). In this
study, the quality of the CBRD method was important to reproduce abrupt onset of
spontaneous pulses of hyper-synchronised activity as observed by electrophysiological
measurements. Aspects of spatial propagation of the interictal discharges have been
further simulated in Chizhov et al. (2019a) and found to be consistent with paired
patch-clamp recordings.

The CBRD approach proposed for simplified bursting neurons challenges a future
derivation of more sophisticated population activity models for Hodgkin–Huxley-like
bursting neurons, which will enable modelling of synchronised bursting activity in
hyper-excitable brain states as epilepsy. It is well-known that an increase in intrin-
sic excitability can cause bursting in cells which usually fire single action potentials.
Extracellular potassium concentration has been shown to modulate intrinsic excitabil-
ity (Jensen and Yaari 1997). It is well established that the extracellular potassium
concentration increases during epileptogenesis and may be critically involved in
synchronised burst oscillations during seizures. Moreover, nonsynaptic, spontaneous
activity switches from single spikes to bursting when the concentration is increased
(Frohlich and Bazhenov 2006). With the proposed model, an application of the CBRD
approach to study epilepsy may be extended to the case of significant contribution of
intrinsically bursting cells.
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