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ABSTRACT
We consider a stochastic logistic growth model given by a stochastic
differential equation, for which extinction can occur. We first propose
appropriate adaptation of some standard inference methods when the
process is observed at discrete time. Second, we show that the individ-
ual birth and death can be identified separately to some extent.

1. Introduction

During the last 20 years, stochastic differential equations (SDEs) have gained a high interest
in population dynamics, biology, ecology, or environmental sciences. Ordinary differential
equations (ODEs) are still widely used, but are not suited to capture the random fluctuations
caused by the demographic and environmental noises. SDEs can be derived fromODEs by just
adding a diffusion term to model the effect of the noise on the dynamics. Alternatively, they
can also be derived as diffusion approximations of pure jump Markov processes. No matter
which way it was obtained, the stochastic process can behave differently depending on the
diffusion coefficient, particularly as it pertains to extinction in population dynamics. Beside,
both deterministic and stochasticmodels are known, up to a set of parameters, to be estimated
from observed data. From this perspective, the diffusion term (i.e., the noise) should not be
considered as harmful but as source of some valuable information.

Consider the classical deterministic logistic population growth model:

ẋ(t ) = r x(t )
(
1 − x(t )

K

)
, x(0) = x0 > 0, t ≥ 0 (1)

where x(t ) ≥ 0 is the density of some population, r > 0 the net growth rate, and K > x0 the
carrying capacity of the environment.When they are not known, the parameters r andK in (1)
are usually identified using least-squaresmethods, based on a dataset of discrete observations.
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This parameterization fails to render the complexity of the growth mechanism. Indeed,
the per capita growth rate results from the balance between a birth rate B(x) and a death
rate D(x):

ẋ(t ) = (B(x(t )) − D(x(t ))) x(t ).

A possible way to arrive at (1) is to postulate the particular form:

B(x) = λ and D(x) = µ + α x

where λ, µ, and α are the meaningful non-negative parameters. The competition for some
critical resource is encoded in the death rate only, through the logistic coefficient α, but there
are other choices. This yields (1) with r = λ− µ andK = λ−µ

α
. It is easily seen that the model

(1) does not allow extinction of the population since the known analytic solution cannot van-
ish. One would have to discard datasets where extinction actually occurs. Second, λ and µ

appear only through their difference. Consequently, even if the coefficient α is known, only
the net growth rate λ− µ can be identified. A stochastic version of this model, obtained by
diffusion approximation, has been proposed in Campillo et al. (2016) as:

dXt = (λ− µ − α Xt )Xt dt + ρ
√

(λ+ µ + α Xt )Xt dBt (2)

where ρ > 0 is the noise intensity that relates to the order of magnitude of the underlying
population; Bt is a standard Brownian motion; the law of the initial condition X0 is supported
by R+; Bt and X0 are supposed independent. Note that (2) can be reparameterized as:

dXt = r
(
1 − Xt

K

)
Xt dt + ρ

√

r′
(
1 + Xt

K ′

)
Xt dBt

with r = λ− µ, K = r
α
, r′ = λ+ µ and K ′ = r′

α
, so that its instantaneous mean is the same

as in (1). The analysis carried over in Campillo et al. (2016) established that, for this model,
extinction occurs almost surely in finite time. More precisely, if τ0

def= inf{t ≥ 0 ; Xt = 0} is
the extinction time, then for all x ≥ 0, Px(τ0 < ∞) = 1 where Px is the probability mea-
sure such that X0 = x and for any values of the parameters. Other stochastic models derived
from or leading to the same deterministic model (1), but with different qualitative behaviors,
have been proposed in, e.g., Heydari et al. (2014) or Schurz (2007). Depending on the diffu-
sion coefficient chosen, the ultimate extinction may or may not occur. Notice that in (2), the
stochastic integral is understood in the Ito sense, since this equation arises from a diffusion
approximation of a pure jump Markov process.

Two separate questions are addressed in this work. First, we provide a technique in order
to adapt the classical inference methods to face the extinction problem. Indeed, these meth-
ods are designed to approximate probability distributions that are absolutely continuous with
respect to the Lebesgue measure. This assumption is not satisfied by the process (2). Second,
we show that, for this model, the death and growth rates can be identified separately with
some degree of precision, thanks to the specific form of the diffusion coefficient.

Section 2 briefly reviews the essential results of Campillo et al. (2016) on the main prop-
erties of the model. We recall the stochastic differential equation defining our model and we
introduce the complete Fokker–Planck equation (CFPE) governing the evolution of the asso-
ciated diffusion process.We then derive the expression of a likelihood function, when discrete
time observations of the process are available. The numerical methods specifically designed
to handle extinction are presented in Section 3. Finally, all of these methods are evaluated
through numerical experiments in Section 4. In particular, we investigate numerically the
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second objective of this article, that is, the ability of the methods to discriminate between
pairs (λ, µ) for a given difference r.

2. Statistical model

Let us denote by θ ∈ & = (0, ∞)p, the unknown parameter to be estimated from a discrete
sample of one trajectory of model (2). The parameter θ may include some or all parameters
(λ, µ,α, ρ) and may also appear in the initial distribution law. Hence, (2) can be rewritten:

dXt = bθ (Xt ) dt + σ θ (Xt ) dBt , 0 ≤ t ≤ T , X0 ∼ πθ0 (dx), (3)

where bθ (x) = (λ− µ − α x) x and σ θ (x) = ρ
√

(λ+ µ + α x) x; πθ0 is the initial distribu-
tion.We denote byPθ the underlying distribution of the process {Xt}0≤t≤T . Observations from
the SDE (3) are available as:

ξ ok = Xtok
, k = 0, . . . ,M,

where, for sake of simplicity, the observation instants are equally spaced, i.e., tok = k* with
*

def= T/M. By the Markov property, the distribution of the measurements vector is:

Pθ (ξ o0 ∈ dξ0, . . . , ξ oM ∈ dξM) = πθ0 (dξ0)
M−1∏

k=0

Qθ*(dξk+1 | ξk).

All likelihood based procedures are grounded on the fact that the transition kernelQθ*(dx | y)
is absolutely continuouswith respect to the Lebesguemeasure onR+. This is obviously not the
case for model (2), since it gives positive probability to the boundary point 0 corresponding
to extinction. Instead, the following decomposition holds:

Qθ*(dy | x) = Eθ*(x) δ0(dy) + pθ*(y | x) dy (4)

where Eθt (x) is the extinction probability starting from x. SinceQθt (dy | x) is a probability mea-
sure for any x ≥ 0, Eθt (x) and pθt (· |x) are linked together by

Eθt (x) = 1 −
∫ ∞

0
pθt (y | x) dy.

Defining the reference measure on R+

m(dy) def= δ0(dy) + dy

we get that Qθt (dy | x) is absolutely continuous with respect tom(dy) with density:

qθt (y | x) def=
{
Eθt (x), if y = 0,
pθt (y | x), otherwise.

(5a)

We also suppose that the initial distribution πθ0 is absolutely continuous with respect to
m(dy), and we let:

qθ0 (y)
def= πθ0 (dy)

m(dy)
=
{
Eθ0 , if y = 0,
pθ0(y), otherwise.

(6)
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Our statistical model is therefore dominated by the product measurem(dξ0) . . .m(dξM), and
a likelihood function is given by

L(θ ) = qθ0(ξ0)
M−1∏

k=0

qθ*(ξk+1 | ξk). (7)

There is no explicit expression for the transition density qθ*(x | y). Throughout the following,
we will rely on the following characterization, proved in Campillo et al. (2016):

Theorem 2.1. Let aθ (y) def= [σ θ (y)]2 and A the infinitesimal generator of the Markov
process (3):

A f (y) def= bθ (y) f ′(y) + 1
2
aθ (y) f ′′(y) , ∀ f ∈ C∞

K (R+) (8)

where C∞
K (R+) is the set of functions differentiable for all degrees of differentiation and with

compact support included in [0, +∞). Then for any fixed x > 0, the transition density qθt (y | x)
satisfies the CFPE:

∂ pθt (y | x)
∂t

= A∗pθt (y | x) , lim
t↓0

pθt (y | x) dy = δx(dy), (9a)

d
dt

Eθt (x) = 1
2
∂(a(y) pθt (y | x))

∂y

∣∣∣∣
y=0

pθt (0 | x), Eθ0 (x) = 0. (9b)

As seen from (9), the law of the process is described by a set of two equations of different
kind. Equation (9a) is a PDE in a classical sense describing the evolution of the process before
extinction. It follows that y ,→ pθt (y | x) is the density of a defective distribution. Equation (9b)
links the rate of extinction to the defective density. This equation has been extensively studied
by Feller (1952) in a general setting.

Remark 2.1. Wealready know thatEθt (x) increases to 1, so thatQθt (· | x)will eventually degen-
erate to the Dirac mass at 0. We note that this convergence may be slow, i.e., that the contri-
bution of the Dirac mass in (4) may not be significant for the time scale at which the system
is observed. This feature is discussed in Grasman and van Herwaarden (1999).

3. Numerical approximations

Estimation of the parameter θ by a likelihood-based procedure requires the computation of
the transition density for which we have no analytic expression. The exact maximum likeli-
hood is therefore out of reach and one has to employ approximation methods. A number of
suchmethods can be found in the most considered regular case, where an absolutely continu-
ous density exists, which satisfies the (simple) Fokker–Planck equation. Solving this equation
by finite difference methods appears in Lo (1988) or Jensen and Poulsen (2002). Aït-Sahalia
(2002) used Hermite expansion. Among other options, simulated maximum likelihood esti-
mation (SMLE) using Monte Carlo samples has proved to be an efficient alternative to the
discretized PDE approach. For a detailed review, see Hurn et al. (2007) and references therein
or Fearnhead (2008) which includes many application examples. The importance sampling
framework appeared in the SDE context with the work of Pedersen (1995) which was later
improved by Durham andGallant (2002). Pastorello and Rossi (2010) introduced the efficient
importance sampling variant. The Bayesian context was also considered, see, e.g., Golightly
and Wilkinson (2008).
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None of the above procedures can be applied straightforwardly, due to the singular part
of the transition density. In this section, we design modifications of some of these methods
enabling them to estimate jointly both absolutely continuous and singular parts. Approxi-
mating the solution of (5) by the use of a specific difference scheme has been considered in
Campillo et al. (2016) and is recalled in the Appendix. We now focus on the Monte Carlo
approach.

The numerical approximations presented hereafter involve simulation of aN-samples with
common law Qθ*(dy | x), for many different initial conditions x. In our case, we will not be
able to draw random variates from Qθ*(dy | x) exactly, but only from approximating distri-
butions. The simplest algorithm for simulating trajectories of (2) is the Euler–Maruyama
scheme, restricted to non-negative values, that is:

X̄tk+1 = max(0, X̄tk + δ b(X̄tk ) +
√
δ σ (X̄tk ) wk), k = 0, . . . , n − 1 (10)

with X̄0 = x and where wk are i.i.d. N (0, 1). One iteration of the approximation scheme
(10) amounts to drawing from the transition kernel Kδ(dz | x) instead of Qδ(dz | x) where
Kδ(dz | x) is defined by:

Kδ(dz | x) def=
{
eδ(x) δ0(dz) + gδ(z | x) dz, if x > 0,
δ0(dz), if x = 0, (11)

with

eδ(x)
def= 1 −

∫ ∞

0
gδ(z | x) dz,

gδ(z | x) def= 1√
2π δ σ (x)

exp
{
− (z − x − δ b(x))2

2 δ σ (x)

}
1R+ (z).

According to Risken (1996, Section 4.4.1), this approximation is sound if δ is sufficiently small.
The numerical scheme (10) produces samples of common law QE

*(dy | x):

QE
*(dy | x) =

∫

{y1≥0}
· · ·
∫

{yn−1≥0}
Kδ(dy1 | x)Kδ(dy2 | y1) · · ·Kδ(dy | yn−1), (12)

which is an approximation of the true transition kernel Q*(dy | x). Notice that, using the
semi-group and the Markov properties, we also have a similar decomposition:

Q*(dy | x) =
∫

{y1≥0}
· · ·
∫

{yn−1≥0}
Qδ(dy1 | x)Qδ(dy2 | y1) · · ·Qδ(dy | yn−1).

Remark 3.1. The recent works Beskos and Roberts (2005) about the Exact Algorithm (EA)
seempromising for drawing exactly fromQ*(dy | x). To our knowledge, this algorithmcannot
be applied directly to our specific case, due to the almost sure extinction. There are also other
alternatives to (10), such as the Milstein scheme, see, e.g., Kloeden et al. (2003), or Euler–
Maruyama scheme for killed diffusion, see Gobet (2001) and Casella and Roberts (2008).
Modifications of these algorithms might be necessary to cope with the extinction problem.

Remark 3.2. If * is itself small enough, there would be no need to simulate the solution of
(2) at intermediate time between 0 and*, since K* has an explicit density with respect tom.
However, for most applications, the observations are not available at such a high sampling
rate.
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3.1. Nonparametric estimation

A simple usage of the approximation scheme (10) is to produce a N–sample X̄ (1)
* , . . . X̄ (N)

*

of QE
*(dy | x). These simulated observations are then fed into a non-parametric estimate of

the density p*(y | x) at y, denoted by p̂*(y | x). Again, the case of extinction should be cared
for by first discarding the values X̄ (i)

* = 0, if there are any, from the estimation. The resulting
approximation reads:

q*(y | x) ≃
{

N−Ns
N , if y = 0,

Ns
N p̂*(y | x), otherwise,

where Ns is the random number of trajectories still alive at time*, that is:

Ns
def= #

{
i = 1, . . . ,N; X̄ (i)

* ̸= 0
}
.

This approach, without extinction, is presented in Hurn et al. (2003). Its efficiency relies on
that of the non-parametric estimation method used and is therefore subject to the classical
problems of choice of bandwidth and leakage of mass in the inaccessible region (R− in our
case).

3.2. Pedersenmethod

It is possible to avoid the nonparametric estimation stage. Indeed from the Markov
property:

Q*(dy | x) = (Q*−δQδ )(dy | x) =
∫

{yn−1≥0}
Q*−δ(dyn−1 | x)Qδ(dy | yn−1), (13)

first approximate Q*−δ(dyn−1 | x) by QE
*−δ(dyn−1 | x), hence:

Q*−δ(dyn−1 | x) ≃ 1
N

N∑

i=1

δX̄ (i)
tn−1

(dyn−1)

where X̄ (i)
tn−1

iid∼ QE
*−δ(dyn−1 | x), i = 1, . . . ,N; then approximating Qδ(dy | yn−1) by

Kδ(dy | yn−1), leads to the following approximation of the kernel Q*(dy | x):

QP
*(dy | x) def= 1

N

N∑

i=1

Kδ
(
dy | X̄ (i)

tn−1

)
(14)

see Fig. 1. Let us re-number the sampled trajectories so that the surviving ones correspond to
i = 1, . . . ,Ns, according to (11) we get:

QP
*(dy | x) = 1

N

N∑

i=Ns+1

Kδ(dy | 0) + 1
N

Ns∑

i=1

Kδ
(
dy | X̄ (i)

tn−1

)

= N − Ns

N
δ0(dy) + 1

N

Ns∑

i=1

[
eδ
(
X̄ (i)
tn−1

)
δ0(dy) + gδ

(
y | X̄ (i)

tn−1

)
dy
]

=
[
N − Ns

N
+ 1

N

Ns∑

i=1

eδ
(
X̄ (i)
tn−1

)
]

δ0(dy) + 1
N

Ns∑

i=1

gδ
(
y | X̄ (i)

tn−1

)
dy
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Figure . The Perdersen approximationQP
* of the kernelQ* is obtained by samplingN independent trajec-

tories X̄ (i)
t0:n−1

from (), then the approximation is given by (). See text for the precise treatment of extinct
trajectories.

so that QP
*(dy | x) admits the following density with respect to the measurem(dy):

qP*(y | x) def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N − Ns

N
+ 1

N

Ns∑

i=1

eδ
(
X̄ (i)
tn−1

)
, if y = 0,

1
N

Ns∑

i=1

gδ
(
y | X̄ (i)

tn−1

)
, otherwise.

This approach is presented in Pedersen (1995) for diffusion onRd having an absolutely contin-
uous density. Evenwith our adaptation allowing for the extinction, it is very easy to implement
and does not involve heavy computations. It suffers however from a well-known problem of
Monte Carlo methods: if few trajectories terminate around the observation y at which the
density is to be evaluated, then only a few terms will significantly contribute to the approxi-
mation of p*(dy | x). In this case, the approximation will be of poor quality. Beside, a number
of trajectories will have been generated uselessly.

3.3. Importance samplingwith amodified Brownian bridge

An improvement of the Pedersen methods was proposed by Durham and Gallant (2002) to
circumvent the above-mentioned problem. The idea, natural in the importance sampling con-
text, is to use a weighted sample of a suitably chosen law for which most trajectories will
contribute to the estimation. Once again, we have to modify the method to account for the

Figure . The approximation QB
* by importance sampling with a Brownian bridge of the kernel Q* is

obtained by sampling N independent trajectories X̃ (i)
t0:n−1

of the approximation of the Brownian bridge ();
then the approximation is given by (). See the text for the precise treatment of extinct trajectories.
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possible extinction. Our choice is to generate the trajectories according to

X̃tk+1 = max

(

0, X̃tk + δ
y − X̃tk

*− tk
+

√
δ σ (X̃tk ) wk

)

, k = 0, . . . , n − 1 (15)

with X0 = x and wk
iid∼ N (0, 1) which is nothing but a (modified for extinction) Euler–

Maruyama scheme for the SDE:

dXt = y − Xt

*− t
dt + σ (Xt ) dWt , 0 ≤ t < *. (16)

The drift term is designed so as to force the trajectories towards the given final value y, see
Fig. 2. Note that solution of (16) would be a “true” Brownian bridge if σ were constant. The
transition kernel associated with (15) depends on t < * and reads:

K̃t,δ(dz | x) =
{
ẽδ(x) δ0(dz) + g̃t,δ(z | x) dz , if x > 0,
δ0(dz) , if x = 0,

where

ẽδ(x)
def=
(
1 −

∫ ∞

0
g̃t,δ(z | x) dz

)
,

g̃t,δ(z | x) def= 1√
2π δ σ (x)

exp

{

−
(z − x − δ

y−x
*−t )

2

2 δ σ (x)

}

1R+ (z).

This transition kernel is absolutely continuous with respect to Kδ(dz | x):

Kδ(dz | x) = ψt,δ(z | x) K̃t,δ(dz | x)

with

ψt,δ(z | x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 −
∫∞
0 gδ(z | x) dz

1 −
∫∞
0 g̃t,δ(z | x) dz

, if z = 0,

∫∞
0 gδ(z | x) dz
∫∞
0 g̃t,δ(z | x) dz

, otherwise,

for x > 0 and ψt,δ(z | 0) = 1R+ (z). We now have another expression for QE
*−δ(dyn−1 | x) as:

QE
*−δ(dyn−1 | x) =

∫ ∞

0
. . .

∫ ∞

0
.(y1, . . . , yn−1 | x) K̃0,δ(dy1 | x) . . . K̃*−2 δ,δ(dyn−1 | yn−2)

where

.(y1, . . . , yn−1 | x) = ψδ,δ(y1 | x) . . .ψ*−2 δ,δ(yn−1 | yn−2).

Hereafter, we will denote by

X̃t1:n−1 = (X̃t1, . . . , X̃tn−1 ) ∈ Rn

a trajectory generated by (15) up to time*− δ, with initial value X̃0 = x.
With this setting, and like in the previous section, in (13) first approximate Q*−δ by a

weighted sample:

Q*−δ(dyn−1 | x) ≃ 1
N

N∑

i=1

.
(
X̃ (i)
t1:n−1

| x
)
δX̃ (i)

tn−1
(dyn−1)
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then, as before, approximate Qδ(dy | yn−1) by Kδ(dy | yn−1); finally, the kernel Q*(dy | x)
defined by (13) is approximated by:

QB
*(dy | x) def= 1

N

N∑

i=1

.
(
X̃ (i)
t1:n−1

| x
)
Kδ
(
dy | X̃ (i)

tn−1

)
. (17)

As before, let us re-number the sampled trajectories so that the surviving ones correspond to
i = 1, . . . ,Ns:

QB
*(dy | x) = 1

N

N∑

i=Ns+1

.
(
X̃ (i)
t1:n−1

| x
)
Kδ(dy | 0) + 1

N

Ns∑

i=1

.
(
X̃ (i)
t1:n−1

| x
)
Kδ
(
dy | X̃ (i)

tn−1

)

= 1
N

N∑

i=Ns+1

.
(
X̃ (i)
t1:n−1

| x
)
δ0(dy)

+ 1
N

Ns∑

i=1

.
(
X̃ (i)
t1:n−1

| x
) [
eδ
(
X̃ (i)
tn−1

)
δ0(dy) + gδ

(
y | X̃ (i)

tn−1

)
dy
]

=
[
1
N

N∑

i=Ns+1

.
(
X̃ (i)
t1:n−1

| x
)
+ 1

N

Ns∑

i=1

.
(
X̃ (i)
t1:n−1

| x
)
eδ
(
X̃ (i)
tn−1

)
]

δ0(dy)

+ 1
N

Ns∑

i=1

.
(
X̃ (i)
t1:n−1

| x
)
gδ
(
y | X̃ (i)

tn−1

)
dy

hence QB
*(dy | x) admits the following density with respect tom(dy):

qB*(y | x) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
N

N∑
i=Ns+1

.
(
X̃ (i)
t1:n−1 | x

)
+ 1

N

Ns∑
i=1
.
(
X̃ (i)
t1:n−1 | x

)
eδ
(
X̃ (i)
tn−1

)
, if y = 0,

1
N

Ns∑
i=1
.
(
X̃ (i)
t1:n−1 | x

)
gδ
(
y | X̃ (i)

tn−1

)
, otherwise.

Remark 3.3. It is possible to use other importance sampler than (15). Durham and Gallant
(2002) used another modified Brownian bridge for which they claim that it reduces further
the variance of the resulting approximation. The generating algorithm reads:

X̃tk+1 = X̃tk + δ
y − X̃tk

*− t
+

√
δ σ (X̃tk )

(
1 − δ

*− t

)
wk.

The drift term is as in (15) but the variance is progressively damped up to final time t =
*− 2 h at which it equals 1

2 σ (Yt ). For this sampler also an adaptation to our singular case is
needed. We also mention the recent work by Bladt and Sørensen (2014).

4. Numerical experiments

We consider a scenario defined by the model parameter given in Table 1 already used in
Campillo et al. (2016) for producing Figs. 4 and 7. For such values, the deterministic model
(dashed line in Figs. 3 and 4) has a classical increasing “S” shape. For our stochastic model,
we will distinguish three types of qualitatively different datasets as illustrated in Fig. 3:! Type 1 is close to the deterministic case. We observe a transient phase of quick growth,

after which the process enters an apparent stationary regime. The population persists at
the final observation time. Recall that it will definitely become extinct in the future.
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Table . Parameters

Model
λ µ α ρ x0 T N

   10−1 .  

Simulation

h δ N
10−3 10−3 

! Type 2 corresponds to early extinction, due to the low initial population. Datasets of this
sort will induce a poor estimation of parameters.! Type 3 shares some of the other attributes. The population collapses within the observa-
tion interval but completes the transient phase before.

A hint on the probability of occurrence of the three types is given in Fig. 4, which shows
the finite difference approximation of the (defective) density. During the transient phase, both
mean and variance of the density increases. During this phase, the high values of the density in
the neighborhood of absorbing point 0 induce an important loss of mass. This corresponds to
trajectories of Type 2.When reaching the (almost) stationary regime, the loss of mass through
boundary 0 goes on imperceptibly (Type 2 trajectories). Type 1 trajectories are associated with
the remaining probability. We clearly see that the deterministic trajectory does not follow the
first moment of the density. These three types of trajectories correspond to the timescales of
interest. Beside, if real data are available, only one trajectory, of some type, is given which is
not sufficient to approximate the law of the extinction time.

Figure . Three datasets qualitatively different. Population persists on the time horizon for Type . Extinction
occurs early for Type  and later for Type . The dashed line is the classical deterministic solution.

Figure . Contour plot of the density approximated by the finite difference scheme. The dashed line is the
classical deterministic solution.
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The simulation parameters of the approximation methods are also given in Table 1. In
particular, the same time step δ is used for the Euler–Maruyama and for the finite difference
scheme.

Growth rate estimation

First, note that there could not be any comparison with the standard algorithms since they
produce probability densities with respect to the Lebesgue measure, which is not appropriate
in our case.

The results presented hereafter have been obtained with a C++ code, computing the likeli-
hood function by the deterministic FD (finite difference) methods and the two Monte Carlo
methods (Pedersen and modified Brownian bridge). Optimization was performed with the
help of the library NLopt nonlinear-optimization package of Steven G. John-
son, freely available at http://ab-initio.mit.edu/nlopt++ which provides the implementation
of various algorithms. We have chosen to use a variant of the Nelder and Mead simplex algo-
rithmdescribed in Rowan (1990). Dependence on the initial conditionwas studied by varying
the starting point of the optimization algorithm. The evaluation of the Monte Carlo methods
uses 200 replicas.

For a given observed trajectory, the FD method always gives the same estimated density,
whereas the randomness of the generated sample persists in the estimation for the twoMonte
Carlo methods. Even worse, we need two independent samples for estimation of the density
at two different locations for the MBB, while a single sample is sufficient for the Pedersen
method. To have a sensible comparison, we will first compare the Monte Carlo methods to
the FDmethods for a given observed trajectory.We will also use independent random sample
for both Perdersen and MBB methods.

We first check that the estimation methods presented above can correctly handle datasets
of all types, with or without extinction. Since we do not want this question to interfere with
the identifiability of λ andµ separately, we will focus on the estimation of λ− µ, with known
values ofα and κ . Figure 5 shows the results obtainedwith the threemethodswith the datasets
of Fig. 3. Although we do not know if the maximum uniquely exists, the results for the FD

Figure . Comparison of the finite difference method and the two Monte Carlo methods, for parameters r
(left) and r′ (right). The horizontal dashed line is the true value. The solid line is the estimation given by the
finite difference method.

http://ab-initio.mit.edu/nlopt++
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method are stable, independently of the initial condition. As we can expect, datasets of Type 2
lead to a poor estimation of the growth rate r = λ− µ. We also check that the quality of esti-
mations with datasets of Type 1 and 3 do not differ significantly. For Type 3, all methods seem
to exploit the information contained in the portion of trajectory preceding extinction. Beyond
the quality of estimation, the Monte Carlo methods agree in mean with the deterministic FD
method.We finally recover the well-known difference between Pedersen andmodified Brow-
nian bridge methods: the variance of the latter is much less, but with a computational cost
much higher. Experiments with Type 1 trajectories sampled with* = 0.5 have been carried
out, without significantly affecting the picture.

Figure 5 also shows the results of the estimation of r′ = λ+ µ but this graphic is mislead-
ing for the two Monte Carlo methods. Indeed, monitoring the optimization algorithm with
these methods reveals that the procedure does not stop because an optimum value has been
found, but because there is no consistent progress from one step to another. The exit value
of the optimization algorithm is then meaningless. This fact is a consequence of the poor
identifiability of the model and is studied in the next paragraph.

Identifying λ andµ separately

We will note ℓ(θ ) = − log(L(θ )) the function to minimize with a fixed dataset of Type 1.
Figure 6 shows the graph of the approximations of ℓ(θ ) for the three methods. We clearly
distinguish two orthogonal directions of variations. Along the axis λ+ µ = r′ for a given r′,
there exists a uniqueminimum that is likely to be detected by all methods. The last plot shows
that this is absolutely not the case for the axisλ− µ = r. Indeed, the randomness of theMonte
Carlo methods induces fluctuations greater than the order of magnitude of the variations of
ℓ(θ ). For these methods, it is therefore predictable that a minimization algorithm will rapidly

Figure. Approximations of ℓ(θ )on a square grid. The characteristic shape is preservedby allmethods. Last
plot is a cross-section of Dplots by the vertical planeλ− µ = 2. Monte Carlomethods exhibit fluctuations
greater than the variation of ℓ(θ ) itself along this axis.
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Figure . Datasets used for estimation by FD approximation. Extinction occurs for  datasets. For one of
these (of Type ), the transient phase is completed.

Figure . Empirical distribution of the MLE, using the finite difference approximation and parameters of
Table . The right plot shows the marginal distribution. On the left plot, the red triangles correspond to
trajectories becoming extinct before final time, see Fig. . Late extinction (the red triangle among green
crosses) does not affect the estimation.

progress along the first axis, to be finally misled by the random fluctuations along the sec-
ond one. As a result, we can rely only on the FD approximation since it is not subject to this
shortcoming.

In Fig. 8, we plot the estimated values for the 200 datasets taken fromCampillo et al. (2016)
showed in Fig. 7.We again notice the asymmetry of the empirical distribution of theMLE. The
variance is much smaller along the second axis, which means that information on (λ− µ) in
the data is better understood than information on (λ+ µ). The drift coefficient depends on
(λ− µ), whereas the diffusion coefficient depends on (λ+ µ). In our case, inferring on the
diffusion appears to be the hardest task.

Finally, we observe the bad quality of the estimation when the dataset is of Type 2. Indeed,
even if we have taken good care of the extinction, the information given by the data is not
sufficient to allow a useful inference on the parameter. On the other hand, the estimation is
not noticeably different for Type 1 and Type 3 datasets.

Concluding remarks

In most practical situations, the observed trajectory does not reach extinction. Indeed, if
λ > µ, ρ is small and X0 is sufficiently large, the mass absorbed at 0 is negligible, so that the
transition kernel is essentially pθ*(y | x) dy. It can then be argued that the interest in the extinc-
tion question is irrelevant. Indeed, since the probability flux through the boundary expressed
in (9b) is almost 0, one can impose a zero-flux boundary condition to the classical FPE. Like-
wise, the classical Pedersen and MBB methods would not differ significantly from the vari-
ants proposed above. Nonetheless, it makes sense to take care of the extinction probability
E*(x) since the two parts are strongly related. Any maximization algorithm will evaluate this
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likelihood for many values of the parameter. For some of these values, neglecting the extinc-
tion could lead to an abnormally high value of the likelihood and thus mislay the maximiza-
tion algorithm. Coupling extinction and non-extinction in the CFPE results in a more robust
and accurate estimation procedure. This approach is not specific to the particular application
under consideration.

A natural extension would be to consider noisy measurements, thus making the state pro-
cess {Xt}0≤t≤T a hidden diffusion. Despite its obvious practical relevance, the literature on this
problem is far from being abundant, even for the regular case. We mention Gloter and Jacod
(2001) or Favetto (2014), where minimum contrast estimators are constructed. These con-
structions should again be adapted to face extinction.
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Appendix

Finite difference approximation

The numerical scheme presented hereafter was introduced and discussed in the previously
cited work Campillo et al. (2016). Its design comes straight from a probabilistic viewpoint,
since the solution looked for is a probability density. We just describe it briefly, focusing on
the key features and referring to Campillo et al. (2016) for details.

The space is first discretized as a regular grid:

xℓ = ℓ h , ℓ = 0, . . . , L

for h and L given, with an additional cemetery pointϒ at location 0, see Fig. A.1. Indeed, notice
that the boundary point 0 has a twofold status as seen from (9): it is the only point appear-
ing in the continuous part pt (y | x) and in the discrete part Et . We distinguish these status by
using the node x0 of the grid to compute the approximation of the continuous component
pt (0 | x), and the cemetery point ϒ to carry the approximation of the extinction probabil-
ity Et . It should be noted that the continuous component pt can be approximated indepen-
dently fromEt ,whereas the latter depends directly on pt . Following the probabilistic approach
presented in Kushner and Dupuis (2001), we replace the operator A by a discrete approxi-
mation A = (Aℓ,k)ℓ, k∈{ϒ,0,...,L}, in such a way that A is the generator of a pure jump Markov
process on the grid. Denote by Pt (ℓ) the probability that this process occupies site ℓ at time t ,

FigureA.. Discretization of the state space as a regular finite grid. Value y = 0 is either the node x0 atwhich
the value of pt is evaluated and the cemetery pointϒ .
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we will consider the approximations (see Fig. A.1):

Pt (ℓ) ≃h pt (xℓ | x), for 0 < ℓ < L

Pt (0) ≃h
2
pt (0 | x), Pt (L) ≃h

2
pt (xL | x), Pt (ϒ) ≃Et (x).

The generatorA obtainedwith an upwind scheme is a tridiagonalmatrix, whose line ℓ is given
for any interior point ℓ = 1, . . . , L − 1 by:

Aℓ,ℓ−1 = b−(xℓ)
h

+ a(xℓ)
2 h2

, Aℓ,ℓ = − |b(xℓ)|
h

− a(xℓ)
h2

, Aℓ,ℓ+1 = b+(xℓ)
h

+ a(xℓ)
2 h2

.

The boundary condition at node 0 gives the coefficients of line ℓ = 0:

A0,ϒ = −A0,0 A0,0 = −|b′(0)| − 1
h
a′(0)

as an approximation of Eq. (9b). All other coefficients are set to 0. Finally, an artificial reflecting
condition at node xL completes the matrix:

AL,L−1 = |b(xL)|
h

+ a(xL)
h2

, AL,L = − |b(xL)|
h

− a(xL)
h2

.

As a remarkable feature of this scheme, we notice ϒ is an absorbing point, but not x0 = 0.
Indeed, the process can jump to x0 and stay there for a while before jumping to cemetery
point ϒ . The occupation probability of site x0 yields an approximation of pt (0|x), while the
occupation probability of site ϒ is an approximation of extinction probability Et .

Time discretization.We introduce the notationPt = (Pt (ℓ))ℓ=ϒ,0,...,L for the law of the jump
process at time t starting from x. This probability distribution solves the Kolmogorov forward
equation for jump processes that reads:

Ṗt = A∗Pt . (18)

Equation (18) is discretized in time using the Euler implicit scheme:

[I − δ A]∗ P̃tk+1 = P̃tk , k = 0, . . . , n − 1

where tk
def= k δ with δ = */n, n given; see Fig. A.2. The initial condition is approximated by

P̃t0 (l) =
{
1 , if ℓ = ℓ0 ,

0 , otherwise,

where xℓ0 is the nearest neighbor in the grid of the initial condition x. The numerical solution
P̃* yields a numerical approximation p̃*(xℓ | x) for the density at a grid point, that can be
linearly interpolated to obtain an approximation p̃*(y | x) for 0 ≤ y ≤ xL. The density q* is

FigureA.. The observation instants are tok = k*with* = T
M ; the time-discretization instants are tk = k δ

with δ = *
n for n given.
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finally approximated by

q*(x, y) ≃
{
P*(ϒ) , if y = 0 ,

p̃*(y | x) , if y ∈]0, xL] .
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