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Abstract We consider a stochastic growth model for which extinction eventually occurs
almost surely. The associated complete Fokker–Planck equation describing the law of the
process is established and studied. This equation combines a PDE and an ODE, connected
one to each other. We then design a finite differences numerical scheme under a probabilistic
viewpoint. The model and its approximation are evaluated through numerical simulations.
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1 Introduction

Most of the growth models in population dynamics and ecology are based on ordinary dif-
ferential equations (ODE). Among these models, the logistic population growth model was
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first introduced by Verhulst (1838) to take into account crowding effect, by damping the per
capita growth rate in the Malthusian growth model; this model reads:

ẋ(t) = r x(t)

(
1 − x(t)

K

)
, x(0) = x0 > 0 , t ≥ 0 (1)

where x(t) ≥ 0 is the density of some population, r > 0 the growth rate andK > x0 the car-
rying capacity of the environment. This formulation leaves aside the intrinsic stochasticity
resulting from diversity in the population or from random fluctuations of the environment.
Even so, these demographic and environmental noises are known to be important in ecology,
biology and environmental sciences. The need for stochastic model is therefore grounded,
see e.g. Kendall (1949) .

Beside, this description obscures two issues. On the one hand the model (1) cannot
account for a possible extinction of the population. Consequently, this model cannot be used
to carry inference on the unknown parameters based on an observed data set where extinc-
tion occurs. On the other hand, it does not involve the birth rate λ > 0 and the death rate
µ > 0, but only their balance r = λ−µ. Again, the rates λ and µ cannot be identified from
observations.

Stochastic counterparts of Eq. 1 may overcome these two issues. Stochastic logistic mod-
els can be obtained by adding a random ad hoc perturbation term in Eq. 1. In Nåsell (2001),
a stochastic approach using pure jump Markov processes that feature a logistic mechanism,
is proposed. Diffusion approximations of such processes lead to SDE’s, see Section 2. For
these approaches, there will obviously be many stochastic models derived from or leading
to the same deterministic model (1), but with different qualitative behaviors, see Schurz
(2007). In Skiadas (2010), a stochastic logistic model without extinction is presented.

In this paper, we will consider the stochastic logistic model given by the following SDE:

dXt = (λ − µ − αXt)Xt dt + ρ
√
(λ + µ+ αXt)Xt dBt (2)

where α > 0 the logistic coefficient and ρ > 0 the noise intensity which relates to the
order of magnitude of the underlying population (see Section 2); Bt is a standard Brownian
motion; the law of the initial condition X0 is supported by R+; Bt and X0 are sup-
posed independents. This stochastic model explicitly handles the question of extinction, see
Section 3. It also features the birth and death rates through their difference λ − µ and their
sum λ + µ, allowing statistical inference on the two parameters separately. Hereafter we
will rewrite Eq. 2 as

dXt = b(Xt ) dt + σ (Xt ) dBt , (3)
where b(x) = (λ − µ − α x) x and σ (x) = ρ

√
(λ + µ+ α x) x are the drift and diffusion

coefficients respectively. We also define a(x) def= [σ (x)]2.
Due to the Markov nature of the process (3), the distribution law of Xt is given in a

weak form by the Kolmogorov Forward Equation. For diffusion process that never becomes
extinct, this equation reduces to the Fokker-Planck equation for the transition density. An
originality of this work lies in the fact that the solution of this Kolmogorov equation fails
to have a density with respect to the Lebesgue measure on R+. This problem was already
noticed in Campillo et al. (2014), where the authors derived a closed result for a two–
dimensional model, from a numerical perspective. It is expected that a more thorough study
of the one–dimensional case will be of valuable help in higher dimension.

The model is presented and studied in Sections 2 to 5. We prove existence and uniqueness
in Section 3 and we prove that x = 0 is an exit boundary point according to Feller terminol-
ogy in Section 4. We investigate the complete form of the Fokker-Planck equation (Feller
1952) that gives the evolution of the transition kernel of the diffusion process {Xt }0≤t≤T in
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Section 5. The finite difference numerical scheme is introduced in Section 6. Section 7 is
devoted to numerical experiments.

2 Diffusion Approximation

Although our objective is to study the diffusion process (3), we give hereafter a possible
derivation of this equation. Let us consider at a microscopic scale, a population size Nt

subject to a birth and death process that features a logistic mechanism, e.g.:

P(Nt+h = n′|Nt = n) ≃
h→0

⎧
⎪⎪⎨

⎪⎪⎩

h λ n+ o(h) , if n′ = n+ 1 ,
h

(
µ+ α

κ n
)
n+ o(h) , if n′ = n − 1 ,

1 − h
(
λ + µ+ α

κ n
)
n+ o(h) , if n′ = n ,

o(h) , otherwise

(4)

with λ > 0, µ > 0, α > 0, κ > 0; here the birth per capita rate λ is constant and the death
per capita rate µ+ α

κ n increases linearly with the population size n. The rescaled process:

Xκ
t

def= 1
κ
Nt

is a pure jump Markov process with values in 1
κ N where κ denotes the order of magnitude

of the population sizeNt of interest. Its distribution law is characterized by the infinitesimal
generator:

lim
t→0

E(φ(Xκ
t )|Xκ

0=x)−φ(x)

t = λ x
[
φ

(
x + 1

κ

)
− φ(x)

]
+ (µ+ α x) x

[
φ

(
x − 1

κ

)
− φ(x)

]

defined for any bounded function φ. In large population scale, that is for κ large, a diffusion
approximation of Xκ

t is obtained by performing a second order Taylor expansion of regular
functions φ. This yields the operatorA defined by

A φ(x)
def= b(x)φ′(x)+ 1

2 a(x)φ
′′(x) (5)

= (λ − µ − α x) x φ′(x)+ 1
2 ρ2 (λ + µ+ α x) x φ′′(x)

which is the infinitesimal generator of the diffusion process solution of Eq. 3.
Note that Eq. 3 can be rewritten as

dXt = r

(
1 − Xt

K

)
Xt dt + ρ

√

r ′
(
1+ Xt

K ′

)
Xt dBt

with r = λ − µ, K = r
α , r

′ = λ + µ, K ′ = r ′
α and ρ = 1√

κ
, so that its instanta-

neous mean has the same form as in Eq. 1. However, the deterministic model (1) does not
describe the evolution of E[Xt ] but rather the large population asymptotics of Xt . Diffu-
sion approximation technique is frequently encountered in life sciences. A typical example
of a two–dimensional bioreactor is described in Campillo et al. (2011) or Joannides and
Larramendy-Valverde (2013). The relationship between the distribution laws of the process
Xκ
t and its diffusion approximationXt for large κ is made precise in Ethier and Kurtz (1986,

Chap. 7 and 11).
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3 Existence and Uniqueness for SDE (3)

The drift function b is locally Lipschitz on R but fails to satisfy the usual linear growth
condition. On the other hand, the diffusion function σ is not locally Lipschitz on R.
Nevertheless, we have

Lemma 1 For any non-negative initial condition X0 ∈ L2, there exists a unique non-
negative solution to Eq. 3.

Proof We first deal with the diffusion term. Consider h : R )→ R globally Lipschitz and
of linear growth, suppose also that h(0) = 0. Then introduce for ℓ ≥ 1

σℓ(x)
def=

⎧
⎪⎨

⎪⎩

σ (x) , if 1
ℓ ≤ x ,

ρ
√

1
ℓ

(
λ + µ+ α

ℓ

)
(2 ℓ x − 1) , if 1

2 ℓ < x < 1
ℓ ,

0 , if x ≤ 1
2 ℓ .

This function is globally Lipschitz so that SDE

dY ℓ
t = h

(
Y ℓ
t

)
dt + σℓ

(
Y ℓ
t

)
dBt

has a unique solution with a.s. continuous path, for any initial condition Y0 ∈ L2. If Y0 is
non-negative, then Y ℓ

t remains non-negative by almost sure continuity of the paths and by

the condition h(0) = 0. Define Tℓ = inf
{
t ≥ 0 ; Y ℓ

t ≤ 1
ℓ

}
and note that Y ℓ

t and Y ℓ′
t coincide

up to time Tℓ′ when ℓ′ ≤ ℓ (Durrett (1996), Lemma 2.8, Chap.5). The process Yt = Y ℓ
t is

then well defined up to time T∞ = limℓ↑∞ Tℓ. Now since σℓ and σ coincide on
[
1
ℓ ,+∞

)
,

Yt is a solution to the following SDE

dYt = h(Yt ) dt + σ (Yt ) dBt (6)

on time interval [0, T∞). As above, Yt remains non-negative for any non-negative initial
condition Y0, on [0, T∞). On the event {T∞ < ∞}, we define Yt = 0 for t ≥ T∞, which
is an obvious solution of Eq. 6 with initial condition Ỹ0 = 0. We conclude that Eq. 6 has
a unique non-negative solution for all t ≥ 0 and initial condition Y0, square integrable
non-negative random variable.

Likewise, let for ℓ ≥ 1

bℓ(x)
def=

⎧
⎨

⎩

b(x) , if x ≤ ℓ ,

(λ − µ − α ℓ) (2 ℓ − x) , if ℓ < x < 2 ℓ ,

0 , if 2 ℓ ≤ x .

Since bℓ is globally Lipschitz and bounded, the preceding result applies so that

dXℓ
t = bℓ

(
Xℓ
t

)
dt + σ

(
Xℓ

t

)
dBt

has a unique non-negative solution for each ℓ. Consider the stopping times Sℓ = inf{t ≥
0 ; Xℓ

t ≥ ℓ} and S∞ = limℓ↑∞ Sℓ, and define Xt = Xℓ
t for t ≤ Sℓ. Since bℓ and b coincide

on [0, ℓ], it holds

Xt∧Sℓ = X0 +
∫ t∧Sℓ

0
b(Xs) ds +

∫ t∧Sℓ

0
σ (Xs) dBs .
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The last term is a martingale, so by the optional stopping theorem

E(Xt∧Sℓ) = E(X0)+ E
(∫ t∧Sℓ

0
b(Xs) ds

)

= E(X0)+
∫ t

0
E[1(s≤Sℓ) b(Xs∧Sℓ)] ds

≤ E(X0)+
∫ t

0
E[b(Xs∧Sℓ)] ds

≤ E(X0)+
∫ t

0
E[(λ − µ)Xs∧Sℓ ] ds ≤ E(X0)+ (λ − µ)

∫ t

0
E[Xs∧Sℓ ] ds .

The Gronwall lemma yields E(XT∧Sℓ) ≤ E(X0) exp{(λ − µ) T }, for all T > 0, and from
Fatou’s lemma:

∀ T > 0, E(XT∧S∞) ≤ lim inf
ℓ→∞

E(XT∧Sℓ) ≤ E(X0) exp{(λ − µ) T }

so that P(S∞ ≤ T ) = 0. Hence S∞ = ∞ p.s.and the lemma is proved.

Remark 1 The Lipschitz condition on the diffusion coefficient can be weakened,
see Yamada and Watanabe (1971). If we do so, we obtain existence and uniqueness of a
weak solution. The existence of a strong solution would require a little more effort.

4 Extinction Time

For y ≥ 0, let:

τy
def= inf{t ≥ 0 ; Xt = y}

As a by–product of the proof of the existence and uniqueness of solution of Eq. 3 given
in Section 2, we find that the process remains in the interval [0,+∞). We also show that
Xt = 0 for t ≥ τ0, but whether the boundary 0 could be reach in finite time or not is still to
be determined. A complete description of the possible behavior at the boundary points has
been established by Feller (1952). A detailed review of these results can be found in Chapter
15 of Karlin and Taylor (1981). The following lemma states that 0 is an exit boundary point
according to Feller terminology: it is reached in an almost surely finite time and no interior
point in (0,+∞) can be reached starting from 0.

Lemma 2 Extinction occurs almost surely in finite time, that is for all x ≥ 0, Px(τ0 <

∞) = 1 where Px is the probability measure such that X0 = x.

Proof For 0 < xl < x < xr , we have

Px(τxl < τxr ) =
S(xr) − S(x)

S(xr) − S(xl)

where S is the scale function, see e.g. Klebaner (2005) Theorem 6.17, or Kallenberg (1997)
Chapter 20, defined by

S(x)
def=

∫ x

η
exp

{
−

∫ y

η

2 b(z)
a(z)

dz
}
dy .
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The choice of the lower bound η in the integrals will appear to be unimportant and could be
chosen arbitrarily within (xl, xr ) since the relevant expressions involve only differences of
the function S. A straightforward computation gives for this particular case

S(x) = Cη

∫ x

η
s(y) dy

where

s(y)
def=

(
ey (λ + µ+ α y)−

2 λ
α

) 2
ρ2

and Cη is a constant depending on η only, so that

Px(τxl < τxr ) =
∫ xr
η s(y) dy −

∫ x
η s(y) dy

∫ xr
η s(y) dy −

∫ xl
η s(y) dy

= 1 −
∫ x
xl
s(y) dy

∫ xr
xl

s(y) dy
.

Taking the limit as xl ↓ 0 yields

Px(τ0 < τxr ) = 1 −
∫ x
0 s(y) dy∫ xr
0 s(y) dy

where both integrals are finite since s is continuous on the compact [0, xr ]. For the same
reason, we have limxr↑∞

∫ xr
0 s(y) dy = ∞. Note also that we already have from Section 3,

limxr↑∞ τxr = ∞, a.s. since explosion does not occur. The probability of ultimate extinction
is then

Px(τ0 < ∞) = lim
xr↑∞

Px(τ0 < τxr ) = 1 .

5 Complete Fokker-Planck Equation

We denote by:1

Qt(dy | x) def= P(Xs+t ∈ dy|Xs = x)

the transition kernel of the Markov process {Xt }t≥0 and by πt (dy) = (π0Qt)(dy) the dis-
tribution of Xt . We note that Qt(dy | x) is not absolutely continuous with respect to dy, the
Lebesgue measure on R+, because it gives positive probability to the boundary point 0. The
Lebesgue decomposition of Qt(· | x) into absolutely continuous and singular parts reads

Qt(dy | x) = Et(x) δ0(dy)+ pt (y | x) dy . (7)

The transition kernelQt(dy | x) is a probability measure for any x ≥ 0, so that the extinction
probability starting from x is

Et(x) = 1 −
∫ ∞

0
pt (y | x) dy .

1Let K and K ′ be two transition kernels on R+. Throughout this paper, we use the following notations:

– left action on test function: Kf (x) def=
∫
R+ f (y)K(dy | x),

– right action on measure: (νK)(dy) def=
∫
R+ ν(dx)K(dy | x),
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The transition kernel Qt(dy | x) is absolutely continuous with respect to the reference
measure on R+

m(dy) def= δ0(dy)+ dy

with density

qt (y | x) def= Et(x) , if y = 0 ,
pt (y | x) , otherwise.

(8a)

We suppose also that the initial distribution π0 is absolutely continuous with respect to the
reference measure m(dy), and we let:

q0(y)
def= π0(dy)

m(dy)
=

{
E0 , if y = 0 ,
p0(y) , otherwise.

(8b)

We now establish the evolution equations for Et(x) and pt (y | x), for any x > 0 fixed.
Note that for x = 0, pt (y, | x) = 0 and Et(x) = 1 for all t ≥ 0 and all y ∈ R+. The
Kolmogorov forward equation describes the evolution of Qt in a weak sense:

d
dt
Qtf = Qt(A f ) = Qt

(
b f ′ + 1

2
a f ′′

)
, ∀f ∈ C∞

K (R+) (9)

where A is the infinitesimal generator previously defined by Eq. 5 and C∞
K (R+) is the

set of functions differentiable for all degrees of differentiation and with compact support
included in [0,+∞). Using decomposition (7),

Qt(A f )(x) = A f (0)+
∫ ∞

0
b(y) pt (y | x) f ′(y) dy + 1

2

∫ ∞

0
a(y) pt (y | x) f ′′(y) dy

=
∫ ∞

0
b(y) pt (y | x) f ′(y) dy + 1

2

∫ ∞

0
a(y) pt (y | x) f ′′(y) dy .

Note thatA f (0) = 0 since both the drift and diffusion terms vanish at 0. A first integration
by parts gives
∫ ∞

0
b(y) pt (y | x) f ′(y) dy = [b(y) pt (y | x) f (y)]∞0 −

∫ ∞

0

∂(b pt (· | x))
∂y

(y) f (y) dy

= −
∫ ∞

0

∂(b(y) pt (y | x))
∂y

f (y) dy ,

and similarly
∫ ∞

0
a(y) pt (y | x) f ′′(y) dy = −

∫ ∞

0

∂(a(y) pt (y | x))
∂y

f ′(y) dy

by the same property. In the above integrals, the non-integral terms vanish at∞ because f ∈
C∞
K (R+), but they vanish at 0 because b(0) = a(0) = 0. A second integration by parts

gives

−
∫ ∞

0

∂(a(y) pt (y | x))
∂y

f ′(y) dy

= −
[

∂(a(y) pt (y | x))
∂y

f (y)

]∞

0
+

∫ ∞

0

∂2(a(y) pt (y | x))
∂y2

f (y) dy

= ∂(a(y) pt (y | x))
∂y

∣∣∣∣
y=0

f (0)+
∫ ∞

0

∂2(a(y) pt (y | x))
∂y2

f (y) dy .
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We define A ∗ the formal adjoint operator of A acting on the “forward” space variable y
only by

A ∗pt (y | x) = −∂[b(y) pt (y | x)]
∂y

+ 1
2

∂2[a(y) pt (y | x)]
∂y2

,

and we finally have the decomposition

Qt(A f )(x) = 1
2

∂(a(y) pt (y | x))
∂y

∣∣∣∣
y=0

f (0)+
∫ ∞

0
A ∗pt (y | x) f (y) dy . (10)

In view of Eq. 9, the first term of this decomposition has a nice interpretation: it is the rate
of increase of the extinction probability at time t , expressed as a probability flux through the
boundary 0 (up to a minus sign). Indeed, considering test functions fϵ , such that fϵ(0) = 1,
fϵ(y) = 0 for y ≥ ϵ and with first two derivatives vanishing at 0, we get

d
dt

[
Et(x)+

∫ ∞

0
pt (y|x)fϵ(y) dy

]
= 1

2
∂(a(y) pt (y | x))

∂y

∣∣∣∣
y=0

+
∫ ∞

0
A ∗pt (y|x)fϵ(y) dy .

The integrals vanish as ϵ ↓ 0 so that we obtain the differential equation satisfied by Et(x):

d
dt
Et (x) =

1
2

∂
(
a(y) pt (y | x)

)

∂y

∣∣∣∣∣
y=0

pt (0 | x) , E0(x) = 0 . (11a)

On the other hand, the Fokker–Planck equation for the absolutely continuous part pt (· | x)
is obtained by considering test functions vanishing at 0 in Eq. 10:

∂pt (y | x)
∂t

= A ∗pt (y | x) , lim
t↓0

pt (y | x) dy = δx(dy) (11b)

which is a PDE in a classical sense describing the evolution of the process before extinction.
It follows that y )→ pt (y | x) is the density of a defective distribution. This equation has
been extensively studied by Feller (1952). A notable result of the latter work is that no
boundary condition at 0 is required for Eq. 11b to have a unique solution in L1(0, ∞), the
space of equivalence classes of Lebesgue integrable functions from (0, ∞) to (0, ∞). The
regularity of the density is inherited from that of the coefficients b and a, see Friedman
(1964). In Chapters 5 and 6 of Schuss (2010), the multidimensional case is investigated.

Remark 2 According to Lemma 2, Et(x) increases to 1, so that Qt(· | x) will eventually
degenerate to the Dirac mass at 0. We note that this convergence may be slow, i.e. that the
contribution of the Dirac mass in Eq. 7 may not be significant for the time scale at which
the system is observed. This feature is investigated in Grasman and van Herwaarden (1999).
Related to this point, we can express the density of the process conditioned to non-extinction
from both parts of Qt(· | x) by

y )−→ p̄t (y | x) =
pt (y | x)
1 − Et(x)

.

Even if pt decreases to 0 as t grows, its normalized version p̄t might have a non-trivial limit
that do not depend on x any more, called a Yaglom limit of the process. Yaglom limits are
quasi-stationary distributions, that is stationary distributions for the process conditioned to
non-extinction. An extensive bibliography on this subject can be found in Pollett (2014).
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6 Finite Difference Approximation of the Fokker-Planck Equation

Notice that the density searched for consists of two distinctive parts. The continuous com-
ponent pt can be approximated independently whereas the discrete component Et strongly
depends on pt . This suggests that we must first design an approximation to pt from which
the approximation of Et can be deduced. In all cases, any acceptable approximation should
be a probability density.

Numerical approximations of Eq. 11b can be obtained by classical methods of numer-
ical analysis of PDEs, paying attention to the specific features of our model. Indeed, any
appropriate discretization scheme should correctly handle the degeneracy (vanishing dif-
fusion) at 0. Also the approximated solution should remain non negative and integrate
to at most 1, since it approaches a defective probability distribution. Finally, the mass
default must be a consistent approximation of Eq. 11a. The approach presented in Kush-
ner and Dupuis (1992) seems natural in this context, because it allows a straightforward
interpretation of the discretized operator in terms of generator of a Markov process.
See Campillo et al. (2014) for such a discretization method applied to a two–dimensional
model.

We discretize the space as a regular grid:

xℓ = ℓh , ℓ = 0, . . . , L

for h and L given. Note that this grid is finite so that it does not cover the whole support
of pt (· | x). In numerical experiments, the range of the grid will have to be large enough so
that any artificial boundary condition imposed at xL will cause limited harm. In practice,
any computation leading to a density that differs significantly from 0 should be discarded
and repeated with larger L.

More importantly, the boundary point 0 has a twofold status; as the node x0 of the grid,
it enters the computation of the continuous component pt (0 | x) and as an absorbing state,
it carries the extinction probability Et . It is thus legitimate to introduce an additional ceme-
tery point ϒ at location 0. Indeed, such a decomposition of the point 0 gives the expected
smoothness of p at the boundary observed on Fig. 3.

We now derive the finite difference approximation of the continuous part pt , returning
to the weak formulation. For suitable test function φ,

∫ ∞

0
pt (y | x)A φ(y) dy ≃ h

2
pt (0 | x)A φ(0)+ h

L−1∑

ℓ=1

pt (xℓ | x)A φ(xℓ)

+h

2
pt (xL | x)A φ(xL) ≃

L∑

ℓ=0

Pt (l)A φ(xℓ)

with

Pt (0) ≃ h

2
pt (0 | x), Pt (L) ≃ h

2
pt (xL | x), Pt (ℓ) ≃ hpt (xℓ | x), for 0 < ℓ < L .

(12)

We also need to define Pt (ϒ) ≃ Et(x). When designing our approximation, we expect Pt (·)
to be a discrete probability distribution on {ϒ, x0, . . . , xL}. The differential operator A is
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now replaced by its finite difference approximation, denoted A, using an up–wind scheme,
which reads for an interior point xℓ with 1 ≤ ℓ ≤ L − 1:

φ′(xℓ) ≃

⎧
⎪⎨

⎪⎩

φ(xℓ+1) − φ(xℓ)

h
, if b(xℓ) ≥ 0 ,

φ(xℓ) − φ(xℓ−1)

h
, if b(xℓ) < 0 ,

φ′′(xℓ) ≃ φ(xℓ+1) − 2φ(xℓ)+ φ(xℓ−1)

h2
.

The resulting approximation can be written as

A φ(xℓ) ≃ Aℓ,ℓ−1 φ(xℓ−1)+ Aℓ,ℓ φ(xℓ)+ Aℓ,ℓ+1 φ(xℓ+1), ℓ = 1, . . . , (L − 1) ,

with

∀ ℓ = 1, . . . , L − 1, Aℓ,ℓ−1 = b−(xℓ)

h
+ a(xℓ)

2h2
,

Aℓ,ℓ = − |b(xℓ)|
h

− a(xℓ)

h2
,

Aℓ,ℓ+1 = b+(xℓ)

h
+ a(xℓ)

2h2
.

Appropriate boundary conditions at x0 and xL will be given later on. It is enlightening to
interpret this operator A as the infinitesimal generator of a pure jump Markov process on
the grid (ϒ, x0, . . . , xL). Indeed, the extra–diagonal terms of A, considered as a matrix,
are non–negative and the sum on each row is 0. Pt (ℓ) is then the probability that this pro-
cess occupies site xℓ at time t . From an interior point xℓ, this process jumps to one of its
neighbors with a bias directed according to the drift. This interpretation suggests how to
complete the three lines of A not yet defined. The right boundary is simple: in order for the
jump process to remain on the grid, its behavior at boundary xL has to be prescribed arti-
ficially. There is no canonical choice between absorbing or reflecting boundary condition,
since both corrupt the theoretical behavior.

We choose the reflecting boundary condition at xL that reads:

AL,L−1 =
|b(xL)|

h
+ a(xL)

h2
, AL,L = − |b(xL)|

h
− a(xL)

h2
. (13)

The sum on the last row is 0, so that there is no probability leak at boundary xL. The
boundary condition at 0 requires more care. We set all coefficient of the first line to 0, since
it corresponds to the absorbing state ϒ . We introduce the notation Pt = (Pt (ℓ))ℓ=ϒ,0,...,L
for the law of the jump process at time t starting from x. This probability distribution solves
the Fokker–Planck equation for jump processes that reads

Ṗt = A∗Pt . (14)

Observe that the first ODE of system (14) is

Ṗt (0) = A0,0 Pt (0)+ A1,0 Pt (1)

where

A1,0 =
b−(h)
h

+ a(h)

2h2
.

Author's personal copy



Methodol Comput Appl Probab (2016) 18:499–515 509

Using Eq. 12, this gives an approximation

∂pt (0 | x)
∂t

≃
(
2
b−(h)
h

+ a(h)

h2

)
pt (h | x)+ A0,0 pt (0 | x) . (15)

An analogy with interior points suggests to set A0,0 such that Eq. 15 is a finite difference
approximation for limy↓0A ∗pt (y | x):

lim
y↓0

A ∗pt (y | x) = −b′(0) pt (0 | x)+
1
2
a′′(0) pt (0 | x)+

∂pt (y | x)
∂y

∣∣∣
y=0

a′(0) .

This limit involves only the first derivative of pt (y | x) due to the vanishing diffusion. With

∂pt (y | x)
∂y

∣∣∣
y=0

≃ pt (h | x) − pt (0 | x)
h

we obtain the approximation

∂pt (0 | x)
∂t

≃ pt (0 | x)
[
−b′(0)+ 1

2 a
′′(0) − 1

h a
′(0)

]
+ pt (h | x) 1h a′(0) . (16)

Using

a(h) = h a′(0)+ h2
1
2
a′′(0)

in Eq. 15 we get

∂pt (0 | x)
∂t

≃ 2
b−(h)
h

pt (h | x)+ pt (h | x)
1
h
a′(0)+ 1

2
a′′(0) pt (h | x)+ A0,0 pt (0 | x) .

Also, pt (h | x) ≃ pt (0 | x) gives
∂pt (0 | x)

∂t
≃ pt (0 | x)

[
2
b−(h)
h

+ 1
2
a′′(0)+ A0,0

]
+ pt (h | x)

1
h
a′(0) .

Now since

b−(h) = |b(h)| − b(h)

2
and b(h) ≃ h b′(0)

we finally have

∂pt (0 | x)
∂t

≃ pt (0 | x)
[
|b′(0)| − b′(0)+ 1

2
a′′(0)+ A0,0

]
+ pt (h | x)

1
h
a′(0) .

In order to have an approximation of Eq. 16, we must set

A0,0 = −|b′(0)| − 1
h
a′(0) . (17)

This diagonal term of A is non–negative as expected. We see that the state 0 of the jump
process is not absorbing since A0,0 ̸= 0, but act as a transition state towards extinction ϒ .
Since there is no reason to allow a jump to an interior point, we also set

∀ ℓ = 1, . . . L A0, ℓ = 0, and A0,ϒ = −A0,0 . (18)

Observe that, from Eq. 14 the probability of extinction Pt (ϒ) satisfies the evolution equation

Ṗt (ϒ) = −A0,0 Pt (0) =
(
1
2
a′(0)+ h

2
|b′(0)|

)
pt (0 | x) .

When h ↓ 0, this equation is consistent with Eq. 11a which gives the rate of extinction.
Notice thatA0,0 could have been chosen so that the above equation exactly matches Eq. 11a,
but then Eqs. 15 and 16 would not match so closely. Finally, the complete set of boundary
conditions is given by Eqs. 13, 17 and 18.
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Remark 3 It could be argued that distinguishing the cemetery point ϒ from 0 is not neces-
sary, so that boundary condition (17) is useless. Indeed, the first interior point x1 receives no
probability flux from x0. Therefore, imposing an absorbing boundary condition at x0 would
give the same values for the other points of the grid. Doing so would reduce to considering
Fokker–Planck equation with absorbing boundary condition instead of complete Fokker–
Planck equation. However the value Pt (0)would now be the extinction probability, which is
completely distinct from the value of the density at x0 that we still need, e.g. for parameter
inference.

For a final instant T > 0, Eq. 14 is discretized in time using the Euler implicit scheme
on the interval [0, T ] by

[I − δA]∗ P̃tk+1 = P̃tk , k = 0, . . . , n − 1

where tk
def= k δ with δ = T/n, n given. The initial condition is approximated by

P̃t0(l) =
{
1 , if ℓ = ℓ0 ,

0 , otherwise,

where xℓ0 is the nearest neighbor in the grid of the initial condition x. According to Eq. 12,
the numerical solution P̃T yields a numerical approximation p̃T (xℓ | x) for the density at a
grid point, that can be linearly interpolated to obtain an approximation p̃T (y | x) for 0 ≤
y ≤ xL. The likelihood function is then approximated by

qT (x, y) ≃
{
PT (ϒ) , if y = 0 ,
p̃T (y | x) , if y ∈]0, xL] .

Remark 4 This discretization scheme is unconditionally stable, but h and δ have to be cho-
sen in a coherent way. Indeed,−A(ℓ, ℓ) gives the expectation of the holding time of the pure
jump Markov process. We see that the order of magnitude of the holding time is 1

h2
. The

time step δ should then be chosen small enough to ensure that not too many jumps occur
within an interval of length δ.

The numerical treatment of the Fokker–Planck equation in the degenerate case has
already been considered in the numerical analysis, see for example Cacio et al. (2011). The
approach adopted in this work retains the probabilistic meaning of the objects involved, at
the cost of a possible loss of accuracy.

7 Numerical Experiments

We first explore empirically SDE Eq. 3 by simulatingN trajectories. The simplest algorithm
is the Euler–Maruyama scheme, restricted to non–negative values, that is

X̄tk+1 = max
(
0, X̄tk + δ b(X̄tk )+

√
δ σ (X̄tk ) wk

)
, k = 0, . . . , n − 1 (19)

with X̄0 = x and where (wk)0,...,n−1 are i.i.d. N (0, 1). Figure 1 shows the results for the
parameter sets given by Table 1. These values are chosen so as to observe a short transient
phase where the population grows quickly, starting from a small initial value, and a station-
ary phase with a high noise intensity. Within the time interval of the simulation, we observe
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Fig. 1 On the top plot: simulation of n = 500 trajectories according to dynamics (3). Trajectories in
red become extinct before final time. One of them completes the transient phase. On the bottom plot, the
corresponding extinction frequency

the three possible behaviors:

– Early extinction during the transient phase. This stems from the fact that the initial level
of the population is small and the noise intensity is high.

– Completed transient phase followed by noisy fluctuations around a natural carrying
capacity. Even if it is known that all trajectories will eventually reach 0, all of them but
one survive on the short term.

– Late extinction after reaching the stationary phase. Only one trajectory is concerned.

Table 1 Parameters

Model Simulation

λ µ α ρ x0 T h δ N

20 18 1 10−1 0.25 10 10−3 10−3 500
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Due to early extinction, the estimated extinction probability grows quickly in the first part,
and seems to approach an asymptotic value. Running the simulation on a much larger period
of time will result in an extinction frequency reaching 1 slowly.

Remark 5 The Euler-Maruyama scheme, although widely used for its simplicity suffers
some well known drawbacks. Higher order schemes such as the Milstein scheme, see
e.g. Kloeden and Platen (1992) can be considered if one is concerned with numerical
accuracy. The recent Exact Algorithm (EA) (Beskos and Roberts 2005) is also of interest.
In any case, these alternative algorithms should also be modified to handle correctly the
extinction.

We now evaluate the numerical performance of the finite difference method on the sce-
nario defined by the same model parameters. Figure 2 shows a contour plot of the numerical
solution of Fokker–Planck (11) obtained by implementing the finite difference scheme of
Section 6. Simulation parameters are also given by Table 1. This Figure is to be compared
with Fig. 1. As expected, the first two moments quickly move to stationary values, after a

Fig. 2 Finite difference approximation of Fokker–Planck (11). Diffusion induces a quick loss of mass in
the transient phase. The loss of mass is then much slower
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Fig. 3 Numerical solution of the complete Fokker–Planck equation and empirical distribution at time t = 1
(top row) and t = 10 (bottom row). First plot is within the transient phase. The extinction probability has
already reached a high level, but keeps on growing. The high values of the density near the absorbing point 0
induces a heavy flow of probability mass through this point, increasing the extinction probability. Bottom row
plot is within the stationary phase, with a probability mass loss much slower. For both pictures, the empirical
density closely match the finite difference approximation

transient phase where a large amount of mass is lost. On the long term, the mass keeps on
decreasing slowly, although the latter fact is not clearly readable.

This solution is then plotted at particular instants t = 1 and t = 10 on Fig. 3. As long
as the stationary regime has not yet been reached (top row), the defective density takes
high values near frontier point 0. This induced a probability flow towards 0 and increases
the extinction probability as expected. The extinction probability grows much more slowly
within the stationary regime (bottom row), since the probability flow through boundary
point 0 is low.

8 Concluding Remarks

Growth models featuring a logistic mechanism are numerous in the literature for population
that are subject to limitations imposed by the environment. Choosing the most appropriate
depends strongly on the application one is interested in. We now summarize the main fea-
tures of the model proposed in this paper. Firstly, it is obtained from an individual jump
model by a diffusion approximation principle. This may be viewed as a mesoscopic scale
description, between microscopic (individual based) scale and macroscopic scale, the lat-
ter being described mainly by ODEs. The diffusion coefficient follows naturally from the

Author's personal copy



514 Methodol Comput Appl Probab (2016) 18:499–515

original jump process and is not chosen in an ad hoc way. Consequently, the birth and death
rates appear, under a different form, in both drift and diffusion coefficient. This is a key
point allowing identification of these rates separately, and not only their difference. Sec-
ondly, extinction occurs almost surely in final time. Even if this event happens in a late
future, this feature may be essential for some applications. For example, considering this
model is appropriate for data sets in which extinction does occur for some trajectories.

The present work actually originates from a parameter estimation problem, when the
processes is observed in discrete time. Most likelihood based methods for parameter infer-
ence for diffusion processes generally require that the law of the diffusion at time t > 0 has
a density w.r.t. the Lebesgue measure. This is obviously not the case for processes being
absorbed at 0 in final time. This law is nevertheless dominated by the sum of the Lebesgue
measure and the Dirac mass at 0. In this paper, we found that its density is given by the solu-
tion of the complete Fokker–Planck equation. From this solution, a likelihood function can
be built. Beside, since a further work is needed to conduct parameter inference, the study of
the discretization methods presented here was limited to numerical experiments.

Finally, the approach presented here is not specific to the logistic case but can also be
considered for models for which one or both boundaries are exit points. A correspond-
ing complete Fokker–Planck equation can be derived and numerically solved with the
appropriate boundary conditions.
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