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Abstract We propose a model of chemostat where the bacterial population is
individually-based, each bacterium is explicitly represented and has a mass evolving
continuously over time. The substrate concentration is represented as a conventional
ordinary differential equation. These two components are coupled with the bacterial
consumption. Mechanisms acting on the bacteria are explicitly described (growth,
division and washout). Bacteria interact via consumption. We set the exact Monte
Carlo simulation algorithm of this model and its mathematical representation as a
stochastic process. We prove the convergence of this process to the solution of an
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1 Introduction

Individual-based models (IBM) are in constant development for a couple of decades in
the field of ecology and biology [10]. Proposed as alternatives to conventional continu-
ous models based on differential or integro-differential equations (IDE), they are even
sometimes presented in opposition to these models: the former being described in terms
of discrete variables usually with a stochastic dynamic as the latter are described in
terms of continuous variables usually with a deterministic dynamic. Moreover, com-
monly IBM’s are described as computer models while the IDE’s are described as
mathematical models.

This apparent antagonism is only formal as these approaches are complementary.
Many IDE’s models are actually continuous/deterministic macroscopic representa-
tions of discrete/stochastic microscopic models. So it is particularly relevant to demon-
strate that the latter models are approximations, in large population, of the former ones;
that is to prove a functional law of large numbers. The IDE models will be valid in
large population while the IBM’s apply to all population sizes but in practice can only
be simulated for relatively small population sizes.

Many IBM’s, like the one we will present here, can be expressed as Markov
processes with values in a space of punctual measures and we can rely on the theory
of weak convergence of Markov processes [12] to prove that this process converges in
law, after renormalization, to the solution of a deterministic IDE. This approach has
been developed in a series of papers: for a simple model of position [14], for the evo-
lution of trait structured population [5], which is then extended to take into account
the age of individuals [29,30]. Finkelshtein et al. [13] proposed also an equivalent
approach.

In Sect. 2 we introduce an IBM for a chemostat model where each individual in
the bacterial population is explicitly represented by its mass. In Sect. 3 we introduce
some notation, then in Sect. 4 we construct the stochastic process associated with
the IBM as a Markov process with values in the space of finite measures over the
state-space of masses and we derive its infinitesimal generator. In Sect. 5 we prove
the convergence, in large population limit, of the IBM towards an integro-differential
equation of the population-balance equation type [15,24,25] coupled with an equation
for the dynamics of the substrate. Finally in Sect. 6 we present several numerical
simulations.

2 A Model of Chemostat Structured in Mass

The chemostat is a biotechnological process of continuous culture developed in the
50s [22,23] and which is at the heart of several industrial applications as well as
laboratory devices [28]. Bioreactors operating under this mode are maintained under
perfect mixing conditions and usually at large bacterial population sizes.

These features allow such processes to be modeled by ordinary (deterministic)
differential systems since, in large populations and under certain conditions, demo-
graphic randomness can be neglected. Moreover, perfect mixing conditions permit
us to neglect the spatial distribution and express these models in terms of mean con-
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centration in the chemostat. In its simplest version, the chemostat model is expressed
as a system of two coupled ordinary differential equations respectively for biomass
and substrate concentrations [28]. This approach extends to the case of several bacte-
rial species and several substrates. The simplicity of such models makes possible the
development of efficient tools for automatic control and the improvement of the asso-
ciated biotechnological processes. However, it is increasingly necessary to develop
models beyond the standard assumption of perfect mixing with a bacterial population
possessing uniform characteristics. For this purpose, several paths are available which
take into account the different sources of randomness or the structuring of the bacterial
population and its discrete nature. All these aspects have been somewhat neglected in
previous models.

Beyond classic models based on systems of (deterministic) ordinary differential
equations (ODE) which neglect any structuring of the bacterial populations, have also
appeared in the 60s and 70s bacterial growth models structured in size or mass based
on IDE [15,24], see also the monograph [25] on these so-called population balance
equations for growth-fragmentation models.

Also various research papers have been devoted to the stochastic modeling of the
chemostat (see references in [4]). In recent years, many models for the evolution
in chemostats have been proposed either using integro-differential equations (IDEs)
[11,20,21] or IBM [6]. In the latter model the dynamics of the substrate is described by
deterministic differential equations. Indeed, the difference in scale between a bacterial
cell and a substrate molecule guaranties that, at the scale of the bacterial population,
the dynamics of the substrate can be correctly represented by the fluid limit model,
while the dynamics of the bacterial population is discrete and random.

We describe the phenomenon which the model will take into account at a micro-
scopic scale: individual cell growth, cell division, washout (substrate and bacteria are
constantly withdrawn from the chemostat vessel), as well as the individual consump-
tion described as a coupling with the ordinary differential equation which models the
dynamics of the substrate. Then we describe the associated Monte Carlo algorithm,
noting that this algorithm is asynchronous in time, i.e. different events occur at random
instants which are not predetermined.

2.1 Description of the Dynamics

We consider an individual-based model (IBM) structured in mass where the bacterial
population is represented as individuals growing in a perfectly mixed vessel of volume
V (l). Each individual is solely characterized by its mass x ∈ X def= [0, mmax], this
model does not take into account spatialization. At time t the system is characterized
by the pair:

(St , νt ),

where

(i) St is the substrate concentration (mg l−1) which is assumed to be uniform in the
vessel;
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(ii) νt is the bacterial population, that is Nt individuals and the mass of the individual
number i will be denoted xi

t (mg) for i = 1, . . . , Nt . It will be convenient to
represent the population {xi

t }i=1,...,Nt at time t as the following punctual measure:

νt (dx) =
Nt∑

i=1

δxi
t
(dx). (1)

The dynamics of the chemostat combines discrete evolutions, cell division and
bacterial washout, as well as continuous evolutions, the growth of each individual and
the dynamics of the substrate. We now describe the four components of the dynamics,
first the discrete ones and then the continuous ones which occur between the discrete
ones.

(i) Cell division Each individual of mass x divides at rate λ(s, x) into two individuals
of respective masses α x and (1 − α) x :

x

α x

(1 − α) x

rate λ(s, x)

where α is distributed according to a given probability distribution Q(dα) on [0, 1],
and s is the substrate concentration.

For instance, the function λ(s, x) does not depend on the substrate concentration s
and could be of the following form which will be used in the simulation presented in
Sect. 6:
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mass x (mg)

0.0

0.4

0.8

1.2

1.6

di
vi

sio
n

ra
te

λ
(x

)
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Thus, below a certain mass mdiv it is assumed that the cell cannot divide. There are
models where the rate also depends on the concentration s, see for example [8,16].

We suppose that the distribution Q(dα) is symmetric with respect to 1
2 , i.e. Q(dα) =

Q(1 − dα). It also may admit a density Q(dα) = q(α) dα with the same symmetry:

0 1

q(α)
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Thus, the division kernel of an individual of mass x is K (x, dy) = Q( 1
x dy) with

support [0, x]. In the case of perfect mitosis, an individual of mass x is divided into
two individuals of masses x

2 and then Q(dα) = δ1/2(dα).
It is therefore assumed that, relative to their mass, the division kernel is the same

for all individuals. This allows us to reduce the model to a single division kernel. More
complex scenarios can also be investigated.

(ii) Washout Each individual is withdrawn from the chemostat at rate D. One places
oneself in the framework of a perfect mixing hypothesis, where individuals are uni-
formly distributed in the volume V independently from their mass. During a time step
δ, a total volume of D V δ is withdrawn from the chemostat:

V (total volume)

D V δ (volume removed during a time interval δ)

Therefore, if we assume that all individuals have a negligible volume, each individ-
ual has a probability D δ to be withdrawn from the chemostat during the time interval
δ, where D is the dilution rate.

Under a non-perfect mixing hypothesis, one could imagine a more complex model
where the washout rate of the cells from the chemostat depends on their mass, in
this case the rate no longer coincides with the dilution rate. The results presented
here generalize without difficulty to the latter case provided that the washout rate is
bounded and regular.

When the division of an individual occurs, the size of the population instantaneously
jumps from Nt to Nt +1; when an individual is withdrawn from the vessel, the size of
the population jumps instantaneously from Nt to Nt − 1; between each discrete event
the size Nt remains constant and the chemostat evolves according to the following
two continuous mechanisms:

(iii) Growth of each individual Each individual of mass x growths at speed ρg(St , x):

ẋ i
t = ρg(St , xi

t ) i = 1, . . . , Nt , (2)

where ρg : R2
+ #→ R+ is given. For the simulation we will consider the following

Gompertz model:

ρg(s, x)
def= r(s) log

(mmax

x

)
x,

where the growth rate r(s) depends on the substrate concentration according to the
Monod kinetics:

r(s) = rmax

s
kr + s
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here mmax is the maximum weight that an individual can reach. In Sect. 5.2 we also
present an example of a function ρg(s, x) linear in x which will lead to the classic
model of chemostat.

(iv) Dynamic of the substrate concentration The substrate concentration evolves
according to the ordinary differential equation:

Ṡt = ρs(St , νt ), (3)

where

ρs(s, ν)
def= D(sin − s) − k µ(s, ν) ,

µ(s, ν)
def= 1

V

∫

X
ρg(s, x) ν(dx) = 1

V

N∑

i=1

ρg(s, xi )

with ν = ∑N
i=1 δxi ; D is the dilution rate (1/h), sin is the input concentration (mg l−1),

k is the stoichiometric coefficient (inverse of the yield coefficient), and V is the rep-
resentative volume (l). Mass balance leads to Equation (3) and the initial condition S0
may be random.

To ensure the existence and uniqueness of solutions of the ordinary differential
Eqs. (2) and (3), we assume that application ρg(s, x) is Lipschitz continuous w.r.t. s
uniformly in x :

∣∣ρg(s1, x) − ρg(s2, x)
∣∣ ≤ kg |s1 − s2| (4)

for all s1, s2 ≥ 0 and all x ∈ X . It is further assumed that 0 ≤ ρg(s, x) ≤ ḡ for all
(s, x) ∈ R+ × X , and that in the absence of substrate the bacteria do not grow, i.e.
ρg(0, x) = 0 for all x ∈ X . To ensure that the mass of a bacterium stays between 0
and mmax, it is finally assumed that ρg(s, mmax) = 0 for any s ≥ 0.

We also assume that λ(s, x) is Lipschitz continous w.r.t. s uniformly in x :

∣∣λ(s1, x) − λ(s2, x)
∣∣ ≤ kλ |s1 − s2| (5)

for all s1, s2 ≥ 0 and all x ∈ X . This hypothesis as well as Hypothesis (4) will be
used to demonstrate the convergence of IBM, see Theorem 5.2.

2.2 Algorithm

The law of the Markov process which we have presented is characterized by its infin-
itesimal generator which we will introduce further on in the paper. This characteri-
zation is relatively abstract, so we subsequently propose now an exact Monte Carlo
algorithm that simulates a trajectory of the Markov process that provides an empirical
representation of this law. The method is exact as, up to the pseudo-random numbers
generator approximation and the numerical integration of the coupled ODEs (2) and
(3), it generates a trajectory of a process which has the same law as the considered
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process. Moreover it will permit us to propose an explicit representation of the process
in Sect. 4.

t ← 0
sample (S0, ν0 = N0

i=1 δxi
t
)

while t ≤ tmax do
N νt, 1
τ ← (λ̄ + D) N
∆t ∼ Exp(τ)
integrate the equations for the mass (2) and the substrate (3) over [t, t + ∆t]
t ← t + ∆t
draw x uniformly in {xi

t ; i = 1, . . . , Nt}
u ∼ U [0, 1]
if u ≤ λ(St, x)/(λ̄ + D) then

α ∼ Q
νt ← νt − δx + δα x + δ(1−α) x % division

else if u ≤ (λ(St, x) + D)/(λ̄ + D) then
νt ← νt − δx % washout

end if
end while

Algorithm 1: “Exact” Monte Carlo simulation of the individual-based model: approxima-
tions only lie in the numerical integration of the ODEs and in the pseudo-random numbers
generators.

In the model described above, the division rate λ(s, x) depends on the concentra-
tion of substrate s and on the mass x of each individual which continuously evolves
according to the system of coupled ordinary differential Eqs. (2) and (3), so to simulate
the division of the cell we make use of a rejection sampling technique. It is assumed
that there exists λ̄ < ∞ such that:

λ(s, x) ≤ λ̄

hence an upper bound for the rate of event, division and washout combined, at the
population level is given by:

τ
def= (λ̄ + D) N .

At time t +'t with 't ∼ Exp(τ ), we determine if an event has occurred and what
is its type by acceptance/rejection. To this end, the masses of the N individuals and
the substrate concentration evolve according to the coupled ODEs (2) and (3). Then
we chose uniformly at random an individual within the population ν(t+'t)− , that is
the population at time t + 't before any possible event, let x(t+'t)− denotes its mass,
then:

(i) With probability: λ̄
(λ̄+D)

we determine if there has been division by accep-
tance/rejection:
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• division occurs, that is:

νt+'t = ν(t+'t)− − δx(t+'t)− + δα x(t+'t)− + δ(1−α) x(t+'t)− with α ∼ Q
(6)

with probability λ(St , x(t+'t)−)/λ̄;
• no event occurs with probability 1 − λ(St , x(t+'t)−)/λ̄.
In conclusion, the event (6) occurs with probability:

λ
(
St , x(t+'t)−

)

λ̄

λ̄

(λ̄ + D)
= λ

(
St , x(t+'t)−

)

(λ̄ + D)
.

(ii) With probability: D
(λ̄+D)

= 1 − λ̄
(λ̄+D)

the individual is withdrawn, that is:

νt+'t = ν(t+'t)− − δx(t+'t)− (7)

Finally, the events and the associated probabilities are:

• division (6) with probability λ(St , x(t+'t)−)/(λ̄ + D),
• washout (7) with probability D/(λ̄ + D)

and no event (rejection) with the remaining probability. The details are given in
Algorithm 1.

Technically, the numbering of individuals is as follows: at the initial time individuals
are numbered from 1 to N , in case division the daughter cell α x keeps the index of
the parent cell and the daughter cell (1 − α) x takes the index N + 1; in case of the
washout, the individual N acquires the index of the withdrawn cell.

3 Notations

Before proposing an explicit mathematical description of the process (νt )t≥0 we intro-
duce some notations.

3.1 Punctual Measures

Notation (1) designating the bacterial population seems somewhat abstract but it will
bridge the gap between the “discrete”—counting punctual measures—and the “con-
tinuous” – continuous measures of the population densities— in the context of the
asymptotic large population analysis. Indeed for any measure ν(dx) defined on R+
and any function ϕ : R+ #→ R, we define:

⟨ν,ϕ⟩ def=
∫

R+
ϕ(x) ν(dx).
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This notation is valid for continuous measures as well as for punctual measures νt (dx)

defined by (1), in the latter case ⟨νt ,ϕ⟩ = ∑Nt
i=1 ϕ(xi

t ).
Practically, this notation allows us to link to macroscopic quantities, e.g. at time t

the population size is:

Nt = ⟨νt , 1⟩

and the total biomass is:

Xt
def= ⟨νt , I ⟩ =

Nt∑

i=1

xi
t ,

where 1(x) ≡ 1 and I (x) ≡ x . Finally:

x ∈ νt =
Nt∑

i=1

δxi
t
(dx)

will denote any individual among {x1
t , . . . , x Nt

t }.
The set of finite and positive measures on X is denoted MF (X ), and M(X ) is the

subset of punctual finite measures on X :

M(X )
def=

{
N∑

i=1

δxi N ∈ N, xi ∈ X
}

,

where by convention
∑0

i=1 δxi is the null measure. The space MF (X ) is equipped
with the topology of the weak convergence (metrized by the Prokhorov metric).

3.2 Growth Flow

Let:

At : R+ × M(X ) −→ R+ × M(X )

(s, ν) −→ At (s, ν)

be the differential flow associated with the couple system of ODEs (3)–(2) apart
from any event (division or washout), i.e.:

At (s, ν) =
(

A0
t (s, ν) ,

N∑

i=1

δAi
t (s,ν)

)
with ν =

N∑

i=1

δxi ,

where A0
t (s, ν) and (Ai

t (s, ν) i = 1, . . . , N ) are the coupled solutions of (3)–(2)
taken at time t from the initial condition (s, ν), that is:
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d
dt

A0
t (s, ν) = ρs

(
A0

t (s, ν),

N∑

i=1

δAi
t (s,ν)

)

= D (sin − A0
t (s, ν)) − k

V

N∑

i=1

ρg(A0
t (s, ν), Ai

t (s, ν)) A0
0(s, ν) = s ,

d
dt

Ai
t (s, ν) = ρg(A0

t (s, ν), Ai
t (s, ν)) Ai

0(s, ν) = xi

for i = 1, . . . , N . Hence the flow At (s, ν) depends implicitly on the size N = ⟨ν, 1⟩
of the population ν.

The stochastic process (νt )t≥0 features a jump dynamics (division and washout) and
follows the dynamics of the flow At between the jumps. We can therefore generalize
a well-known formula for the pure jump process:

)(St , νt ) = )(At (S0, ν0)) +
∑

u≤t

[
)(At−u(Su, νu)) − )(At−u(Su, νu−))

]
t ≥ 0

(8)

for any function ) defined on R × M(X ).
The sum

∑
u≤t contains only a finite number of terms as the process (νt )t≥0 admits

only a finite number of jumps over any finite time interval. Indeed, the number of
jumps in the process (νt )t≥0 is bounded by a linear birth and death process with per
capita birth rate λ̄ and per capita death rate D [1].

4 Representation of the Process and of the Infinitesimal Generator

First we derive an explicit representation of a function of the process together with its
semimartingale decomposition for a particular class of functions. Second we deduce
the representation of the infinitesimal generator on that class.

4.1 Representation of the Process

Let (S0, ν0) denote the initial condition of the process, it is a random variable with
values in R+ × M(X ).

The Eq. (8) includes information on the flow, i.e. the dynamics between the jumps,
but no information on the jumps themselves. To obtain an explicit equation for
(St , νt )t≥0 we introduce Poisson random measures which manage the incoming of
new individuals by cell division on the one hand, and the withdrawal of individuals by
washout on the other. To this end we consider two punctual Poisson random measures
N1(du, d j, dα, dθ) and N2(du, d j) respectively defined on R+ ×N∗ × [0, 1]× [0, 1]
and R+ × N∗ with respective intensity measures:
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n1(du, d j, dα, dθ)
def= λ̄ du

( ∑

k≥1

δk(d j)
)

Q(dα) dθ ,

n2(du, d j) def= D du
( ∑

k≥1

δk(d j)
)
.

Suppose that N1, N2, S0 and ν0 are mutually independent. Let (Ft )t≥0 be the canon-
ical filtration generated by (S0, ν0), N1 and N2. Consider the compensated Poisson
random measures associated with N1 and N2:

Ñ1(du, d j, dy, dθ)
def= N1(du, d j, dy, dθ) − n1(du, d j, dy, dθ) ,

Ñ2(du, d j) def= N2(du, d j) − n2(du, d j).

According to (8), for any function ) defined on R × M(X ):

)(St , νt ) =)(At (S0, ν0)) +
∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
[
)(At−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
))

− )(At−u(Su, νu−))
]

N1(du, d j, dα, dθ)

+
∫∫

[0,t]×N∗

1{ j≤Nu− }
[
)(At−u(Su, νu− − δx j

u−
))

− )(At−u(Su, νu−))
]

N2(du, d j). (9)

In particular, we obtain the following explicit representation of the process (St , νt ):

(St , νt ) = At (S0, ν0) +
∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
[
At−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
)

− At−u(Su, νu−)
]

N1(du, d j, dα, dθ)

+
∫∫

[0,t]×N∗

1{ j≤Nu− }
[
At−u(Su, νu− − δx j

u−
) − At−u(Su, νu−)

]
N2(du, d j).

(10)

From now on, we consider test functions ) of the form:

)(s, ν) = F(s, ⟨ν, f ⟩)

with F ∈ C1,1(R+ × R) and f ∈ C1(X ).
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Proposition 4.1 For any t > 0:

F(St , ⟨νt , f ⟩) = F(S0, ⟨ν0, f ⟩)

+
∫ t

0

[
ρs(Su, νu) ∂s F (Su, ⟨νu, f ⟩) + ⟨νu, ρg(Su, .) f ′⟩ ∂x F (Su, ⟨νu, f ⟩)

]
du

+
∫ t

0

∫

X
λ(Su, x)

∫ 1

0

[
F

(
Su , ⟨νu − δx + δα x + δ(1−α) x , f ⟩

)

− F
(
Su, ⟨νu, f ⟩

)]
Q(dα) νu(dx) du

+ D
∫ t

0

∫

X

[
F

(
Su, ⟨νu − δx , f ⟩

)
− F

(
Su, ⟨νu, f ⟩

)]
νu(dx) du + Zt , (11)

where Zt = M1,F, f
t + M2,F, f

t , with:

M1,F, f
t

def=
∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
[

F
(

Su, ⟨νu− − δx j
u−

+ δ
α x j

u−
+ δ

(1−α) x j
u−

, f ⟩
)

− F (Su, ⟨νu− , f ⟩)
]

× Ñ1(du, d j, dα, dθ) ,

M2,F, f
t

def=
∫∫

[0,t]×N∗

1{ j≤Nu− }

[
F

(
Su, ⟨νu− −δx j

u−
, f ⟩

)
−F (Su, ⟨νu− , f ⟩)

]
Ñ2(du, d j).

Proof From (9):

⟨νt , f ⟩ =
N0∑

i=1

f (Ai
t (S0, ν0)) +

∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
[Nu−+1∑

i=1

f (Ai
t−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
))

−
Nu−∑

i=1

f (Ai
t−u(Su, νu−))

]
N1(du, d j, dα, dθ) +

∫∫

[0,t]×N∗

1{ j≤Nu− }

×
[Nu−−1∑

i=1

f (Ai
t−u(Su, νu− − δx j

u−
))−

Nu−∑

i=1

f (Ai
t−u(Su, νu−))

]
N2(du, d j).
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According to the chain rule formula, for any ν = ∑N
i=1 δxi :

f (Ai
t−u(s, ν)) = f (xi ) +

∫ t

u
ρg(A0

τ−u(s, ν), Ai
τ−u(s, ν)) f ′(Ai

τ−u(s, ν)) dτ

= f (xi ) +
∫ t

u
ϕ(A0

τ−u(s, ν), Ai
τ−u(s, ν)) dτ

for i ≤ N , with ϕ(s, x)
def= ρg(s, x) f ′(x). Hence:

⟨νt , f ⟩ = ⟨ν0, f ⟩ +
∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
[

f (α x j
u−) + f ((1 − α) x j

u−) − f (x j
u−)

]
N1(du, d j, dα, dθ)

−
∫∫

[0,t]×N∗

1{ j≤Nu− } f (x j
u−) N2(du, d j) + T0 + T1 + T2,

where:

T0
def=

N0∑

i=1

∫ t

0
ϕ(A0

τ (S0, ν0), Ai
τ (S0, ν0)) dτ

T1
def=

∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×
∫ t

u

[Nu−+1∑

i=1

ϕ(A0
τ−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
),

Ai
τ−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
))

−
Nu−∑

i=1

ϕ(A0
τ−u(Su, νu−), Ai

τ−u(Su, νu−))
]

dτ

× N1(du, d j, dα, dθ)

T2
def=

∫∫

[0,t]×N∗

1{ j≤Nu− }
∫ t

u

⎡

⎣
Nu−−1∑

i=1

ϕ(A0
τ−u(Su, νu− − δx j

u−
), Ai

τ−u(Su, νu− − δx j
u−

))

−
Nu−∑

i=1

ϕ(A0
τ−u(Su, νu−), Ai

τ−u(Su, νu−))

⎤

⎦ dτ N2(du, d j).
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Fubini’s theorem applied to T1 and T2 leads to:

T1 =
∫ t

0

∫∫∫∫

[0,τ ]×N∗×[0,1]2

1{ j≤Nu− } × 1{0≤θ≤λ(Su ,x j
u− )/λ̄}

×

⎡

⎣
Nu−+1∑

i=1

ϕ(A0
τ−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
),

Ai
τ−u(Su, νu− − δx j

u−
+ δ

α x j
u−

+ δ
(1−α) x j

u−
))

−
Nu−∑

i=1

ϕ(A0
τ−u(Su, νu−), Ai

τ−u(Su, νu−))

⎤

⎦

× N1(du, d j, dα, dθ) dτ

T2
def=

∫ t

0

∫∫

[0,τ ]×N∗

1{ j≤Nu− }

⎡

⎣
Nu−−1∑

i=1

ϕ(A0
τ−u(Su, νu− − δx j

u−
), Ai

τ−u(Su, νu− − δx j
u−

))

−
Nu−∑

i=1

ϕ(A0
τ−u(Su, νu−), Ai

τ−u(Su, νu−))

⎤

⎦ N2(du, d j) dτ

so, according to (9):

T0 + T1 + T2 =
∫ t

0
⟨ντ ,ϕ(Sτ , .)⟩ dτ.

Finally,

⟨νt , f ⟩ =⟨ν0, f ⟩+
∫ t

0
⟨νu, ρg(Su, .) f ′⟩ du+

∫∫∫∫

[0,t]×N∗×[0,1]2

1{ j≤Nu− } 1{0≤θ≤λ(Su ,x j
u− )/λ̄},

×
[

f (α x j
u−) + f ((1 − α) x j

u−) − f (x j
u−)

]
N1(du, d j, dα, dθ)

−
∫∫

[0,t]×N∗

1{ j≤Nu− } f (x j
u−) N2(du, d j).

Since f and f ′ are continuous and bounded (bounded as defined on a compact set),
we can conclude this proof by using the It formula for stochastic integrals with respect
to Poisson random measures [27] to develop the differential of F(St , ⟨νt , f ⟩) using
Eq. (3) and the previous equation. ⊓0

As the integrands in the Poissonian integrals of (11) are predictable, one can make
use of the result of Ikeda and Watanabe [17, p. 62]:
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Proposition 4.2 We have the following properties of martingales:

(i) If for any t ≥ 0:

E
( ∫ t

0

∫

X
λ(Su, x)

∫ 1

0

∣∣F(Su, ⟨νu − δx + δα x + δ(1−α) x , f ⟩)

− F(Su, ⟨νu, f ⟩)
∣∣ Q(dα) νu(dx) du

)
< +∞

then (M1,F, f
t )t≥0 is a martingale. If moreover, for any t ≥ 0:

E
( ∫ t

0

∫

X
λ(Su, x)

∫ 1

0

∣∣F(Su, ⟨νu − δx + δα x + δ(1−α) x , f ⟩)

− F(Su, ⟨νu, f ⟩)
∣∣2 Q(dα) νu(dx) du

)
< +∞

then (M1,F, f
t )t≥0 is a square integrable martingale and predictable quadratic

variation:

⟨M1,F, f ⟩t
def=

∫ t

0

∫

X
λ(Su, x)

∫ 1

0

[
F(Su, ⟨νu − δx + δα x + δ(1−α) x , f ⟩)

− F(Su, ⟨νu, f ⟩)
]2 Q(dα) νu(dx) du;

(ii) If for any t ≥ 0

E
( ∫ t

0

∫

X

∣∣F(Su, ⟨νu − δx , f ⟩) − F(Su, ⟨νu, f ⟩)
∣∣ νu(dx) du

)
< +∞

then (M2,F, f
t )t≥0 is a martingale. If moreover, for any t ≥ 0:

E
( ∫ t

0

∫

X
|F(Su, ⟨νu − δx , f ⟩) − F(Su, ⟨νu, f ⟩)|2 νu(dx) du

)
< +∞

then (M2,F, f
t )t≥0 is a square integrable martingale and predictable quadratic

variation:

⟨M2,F, f ⟩t
def= D

∫ t

0

∫

X
[F(Su, ⟨νu − δx , f ⟩) − F(Su, ⟨νu, f ⟩)]2 νu(dx) du.

Hence under these hypotheses, Eq. (11) is the semimartingale decomposition of the
process F(St , ⟨νt , f ⟩).

Corollary 4.3 (Control of the population size) Let T > 0, if there exists p ≥ 1 such
that E(⟨ν0, 1⟩p) < ∞, then:
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E
(

sup
t∈[0,T ]

⟨νt , 1⟩p

)

≤ C p,T ,

where C p,T < ∞ depends only on p and T .

Proof For any n ∈ N, define the following stopping time:

τn
def= inf{t ≥ 0, Nt ≥ n}.

Proposition 4.1 applied to F(s, x) = x p and f (x) = 1 leads to:

sup
u∈[0,t∧τn ]

⟨νu, 1⟩p ≤ ⟨ν0, 1⟩p +
∫ t

0

∫

X
λ(Su, x)

[
(⟨νu− , 1⟩ + 1)p − ⟨νu− , 1⟩p]

×νu(dx) du + M1,F, f
t

From inequality (1 + y)p − y p ≤ C p (1 + y p−1) we get:

sup
u∈[0,t∧τn ]

⟨νu, 1⟩p ≤ ⟨ν0, 1⟩p + C p

∫ t

0

∫

X
λ(Su, x)

[
(1 + ⟨νu− , 1⟩p−1]

×νu(dx) du + M1,F, f
t

Proposition 4.2, together with the inequality (1 + y p−1) y ≤ 2 (1 + y p) give:

E
(

sup
u∈[0,t∧τn ]

⟨νu, 1⟩p
)

≤ E(⟨ν0, 1⟩p) + 2 λ̄ C p E
∫ t

0

(
1 + ⟨νu∧τn , 1⟩p) du.

Fubini’s theorem and Gronwall’s inequality allow us to conclude that for any T <

∞:

E
(

sup
t∈[0,T ∧τn ]

⟨νt , 1⟩p
)

≤
(
E

(
⟨ν0, 1⟩p) + 2 λ̄ C p T

)
exp(2 λ̄ C p T ) ≤ C p,T ,

where C p,T < ∞ as E(⟨ν0, 1⟩p) < ∞.
In addition, the sequence of stopping times τn tends to infinity, otherwise

there would exist T0 < ∞ such that P(supn τn < T0) = εT0 > 0 hence
E(supt∈[0,T0∧τn ]⟨νt , 1⟩p) ≥ εT0 n p which contradicts the above inequality. Finally,
Fatou’s lemma gives:

E
(

sup
t∈[0,T ]

⟨νt , 1⟩p
)

= E
(

lim inf
n→∞ sup

t∈[0,T ∧τn ]
⟨νt , 1⟩p

)

≤ lim inf
n→∞ E

(
sup

t∈[0,T ∧τn ]
⟨νt , 1⟩p

)
≤ C p,T .

⊓0
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Remark 4.4 In particular, if E⟨ν0, 1⟩ < ∞ and if the function F is bounded, then by
Corollary 4.3 and Proposition 4.2, (M1,F, f

t )t≥0 and (M2,F, f
t )t≥0 are martingales.

Corollary 4.5 If E⟨ν0, 1⟩ + E(S0) < ∞ then:

E
(∫ t

0
|ρs(Su, νu)| du

)
≤ D t E(S0 ∨ sin) + k

V
ḡ E

(∫ t

0
⟨νu, 1⟩ du

)
< ∞.

Proof As Su ≥ 0 and ρg is a non negative function,

ρs(Su, νu) ≤ D sin.

Furthermore, for any (s, x) ∈ R+ × X , ρg(s, x) ≤ ḡ, and Su ≤ S0 ∨ sin so:

ρs(Su, νu) ≥ −D (S0 ∨ sin) − k
V

ḡ ⟨νu, 1⟩.

We therefore deduce that:
∫ t

0
|ρs(Su, νu)| du ≤ D t (S0 ∨ sin) + k

V
ḡ

∫ t

0
⟨νu, 1⟩ du.

According to Corollary 4.3, the last term is integrable which concludes the proof. ⊓0

4.2 The Infinitesimal Generator

Proposition 4.6 The process (St , νt )t≥0 is Markovian with values in R+ × M(X ).
On the space H of functions )(s, ν) = F(s, ⟨ν, f ⟩) with F ∈ C1,1

b (R+ × R) and
f ∈ C1(X ), the infinitesimal generator of the process is:

L)(s, ν)
def=

(
D(sin − s) − k µ(s, ν)

)
∂s F(s, ⟨ν, f ⟩) + ⟨ν, ρg(s, .) f ′⟩ ∂x F(s, ⟨ν, f ⟩)

+
∫

X
λ(s, x)

∫ 1

0

[
F(s, ⟨ν − δx + δα x + δ(1−α) x , f ⟩)

−F(s, ⟨ν, f ⟩)
]
Q(dα) ν(dx)

+D
∫

X

[
F(s, ⟨ν − δx , f ⟩) − F(s, ⟨ν, f ⟩)

]
ν(dx). (12)

for any s ∈ R+ and ν ∈ MF (X ). Thereafter L)(s, ν) is denoted LF(s, ⟨ν, f ⟩).

We restrict ourselves to the special class H of functions where the expression of the
generator is explicit, this is sufficient as this class is separating and more specifically
convergence determining (see definition in [12, p. 112]). Indeed, it is straightforward to
extend the Theorem 3.2.6 of [9], given for measures only, to the case of the product of s
by a measure. Hence the expression of the generator on H determines the distribution
of the process.
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Proof Consider a deterministic initial condition: S0 = s ∈ R+ and ν0 = ν ∈ MF (X ).
First we suppose that ν ∈ M(X ). According to Proposition 4.1, to the fact that func-
tions F , ∂s F , ∂x F , f ′ and ρg are bounded, to Corollaries 4.3 and 4.5 and Proposition
4.2:

E (F (St , ⟨νt , f ⟩)) = F(s, ⟨ν, f ⟩) + E(-(t)),

where:

-(t) def=
∫ t

0
ρs(Su, νu) ∂s F(Su, ⟨νu, f ⟩) du

+
∫ t

0
⟨νu, ρg(Su, .) f ′⟩ ∂x F(Su, ⟨νu, f ⟩) du

+
∫ t

0

∫

X

∫ 1

0
λ(Su, x)

[
F

(
Su, ⟨νu − δx + δα x + δ(1−α) x , f ⟩

)

−F(Su, ⟨νu, f ⟩)] Q(dα) νu(dx) du

+ D
∫ t

0

∫

X

[
F(Su, ⟨νu − δx , f ⟩) − F(Su, ⟨νu, f ⟩)

]
νu(dx) du.

Also:

∂

∂t
-(t)

∣∣∣
t=0

=
(
D(sin−s)−k µ(s, ν)

)
∂s F(s, ⟨ν, f ⟩)+⟨ν, ρg(s, .) f ′⟩ ∂x F(s, ⟨ν, f ⟩)

+
∫

X

∫ 1

0
λ(s, x)

[
F

(
s, ⟨ν−δx +δα x +δ(1−α) x , f ⟩

)
−F(s, ⟨ν, f ⟩)

]
Q(dα) ν(dx)

+ D
∫

X

[
F(s, ⟨ν − δx , f ⟩) − F(s, ⟨ν, f ⟩)

]
ν(dx),

hence:
∣∣∣∣
∂

∂t
-(t)

∣∣∣
t=0

∣∣∣∣ ≤ D (sin + s)

+
(

k
V

ḡ ∥∂s F∥∞+ ḡ
∥∥ f ′∥∥

∞ ∥∂x F∥∞+2 (λ̄ + D) ∥F∥∞

)
⟨ν, 1⟩.

The right side of the last equation is finite. One may apply the theorem of differentiation
under the integral sign, hence the application t #→ E(F(St , ⟨νt , f ⟩)) is differentiable
at t = 0 with derivative LF(s, ⟨ν, f ⟩) defined by (12).

Suppose now that ν ∈ MF (X ), then there exists a sequence {νn} ⊂ M(X ) that
converges toward ν in MF (X ) and by continuity of ν → LF(s, ⟨ν, f ⟩) we obtain
the result. ⊓0
Remark 4.7 We define the total washout time as the stopping time:

τw
def= inf{t ≥ 0 Nt = ⟨νt , 1⟩ = 0}
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with the convention inf ∅ = +∞. Before τw the infinitesimal generator is given by
(12), after this time νt is the null measure, i.e. the chemostat does not contain any
bacteria, and the infinitesimal generator is simply reduced to the generator associated
with the ordinary differential equation Ṡt = D (sin − St ) coupled with the null measure
given by ⟨νt , f ⟩ = 0 for all f .

5 Convergence in Distribution of the Individual-Based Model

5.1 Renormalization

In this section we will prove that the coupled process of the substrate concentration
and the bacterial population converges in distribution to a deterministic process in the
space:

C([0, T ], R+) × D([0, T ],MF (X ))

equipped with the product metric: (i) the uniform norm on C([0, T ], R+); (ii) the
Skorohod metric on D([0, T ],MF (X )) where MF (X ) is equipped with the topology
of the weak convergence of measures (see Appendix).

Renormalization must have the effect that the density of the bacterial population
must grow to infinity. To this end, we first consider a growing volume, i.e. in the
previous model the volume is replaced by:

Vn = n V

and (Sn
t , νn

t )t≥0 will denote the process (10) where V is replaced by Vn and

xn,1
t , . . . , xn,N n

t
t the N n

t individuals of νn
t ; second we introduce the rescaled process:

ν̄n
t

def= 1
n
νn

t , t ≥ 0 (13)

and we suppose that:

ν̄n
0 = 1

n
νn

0 −−−→
n→∞ ξ0 in distribution in MF (X ).

ξ0 is the limit measure after renormalization of the population density at the initial
time, we suppose that ξ0 is deterministic and that ⟨ξ0, 1⟩ > 0. We also suppose that
Sn

0 = S0 for all n where S0 is deterministic.
Therefore, this asymptotic consists in simultaneously letting the volume of chemo-

stat and the size of the initial population tend to infinity.
As the substrate concentration is maintained at the same value, it implies that the

population tends to infinity. We will show that the rescaled process (Sn
t , ν̄n

t )t≥0 defined
by (13) converges in distribution to the solution (St , ξt )t≥0 of a deterministic system
of equations.
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The process (Sn
t , νn

t )t≥0 is defined by:

Ṡn
t = D (sin − Sn

t ) − k
Vn

∫

X
ρg(Sn

t , x) νn
t (dx)

= D(sin − Sn
t ) − k

V

∫

X
ρg(Sn

t , x) ν̄n
t (dx) = ρs(Sn

t , ν̄n
t )

and

ν̄n
t = 1

n

n∑

j=1

δA j
t (Sn

0 ,νn
0 )

+ 1
n

∫∫∫∫

[0,t]×N∗×[0,1]2

1{i≤N n
u− } 1{0≤θ≤λ(Sn

u ,xn,i
u− )/λ̄}

⎡

⎣−
N n

u−∑

j=1

δA j
t−u(Sn

u ,νn
u− )

+
N n

u−+1∑

j=1

δA j
t−u(Sn

u , νn
u−−δ

xn,i
u−

+δ
αxn,i

u−
+δ

(1−α)xn,i
u−

)

⎤

⎦ N1(du, di, dα, dθ)

+ 1
n

∫∫

[0,t]×N∗

1{i≤N n
u− }

⎡

⎣−
N n

u−∑

j=1

δA j
t−u(Sn

u ,νn
u− )

+
N n

u−−1∑

j=1

δA j
t−u(Sn

u ,νn
u−−δ

xn,i
u−

)

⎤

⎦ N2(du, di)

Remark 5.1 Due to the structure of the previous system and specifically the above
equation, it will be sufficient to prove the convergence in distribution of the component
ν̄n

t to deduce also the convergence of the component Sn
t .

We can now state the main result of this work:

Theorem 5.2 (Convergence of the IBM towards the IDE) Suppose that the as-
sumptions of Sect.2 are fulfilled and that E(⟨ν̄n

0 , 1⟩2) < ∞ for all n, then the
process (Sn

t , ν̄n
t )t≥0 converges in distribution in the product space C([0, T ], R+) ×

D([0, T ],MF (X )) towards the solution (St , ξt )t≥0 of the deterministic system of
equations:

St = S0 +
∫ t

0

[
D (sin − Su) − k

V

∫

X
ρg(Su, x) ξu(dx)

]
du , (14)

⟨ξt , f ⟩ = ⟨ξ0, f ⟩ +
∫ t

0

[∫

X
ρg(Su, x) f ′(x) ξu(dx)

+
∫

X

∫ 1

0
λ(Su, x)

[
f (α x) + f ((1 − α) x) − f (x)

]
Q(dα) ξu(dx)

− D
∫

X
f (x) ξu(dx)

]
du , (15)

for any f ∈ C1(X ).
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Sections 5.3 and 5.4 will be dedicated to the proof of this theorem, the link with
the classic deterministic model is presented in the next subsection.

5.2 Link with the Classic Deterministic Model

Equation (15) is actually a weak version of an IDE that can be easily identified. Indeed
suppose that the solution ξt of Eq. (15) admits a density pt (x) dx = ξt (dx), and that
Q(dα) = q(α) dα, then the system of Eqs. (14), (15) is a weak version of the following
system:

d
dt

St = D (sin − St ) − k
V

∫

X
ρg(St , x) pt (x) dx, (16)

∂

∂t
pt (x) + ∂

∂x

(
ρg(St , x) pt (x)

)
+

(
λ(St , x) + D

)
pt (x)

= 2
∫

X

λ(St , z)
z

q
(

x
z

)
pt (z) dz. (17)

In fact, this is the population balance equation introduced by Fredrickson and co-
authors [15,24] for growth-fragmentation models.

It is easy to link the model (16), (17) to the classic chemostat model. Indeed suppose
that the growth function x #→ ρg(s, x) is proportional to x , i.e.:

ρg(s, x) = µ̃(s) x .

The results presented now are formal insofar as a linear growth function does not
verify the assumptions made in this article. We introduce the bacterial concentration:

Yt
def= 1

V

∫

X
x pt (x) dx .

As sup0≤t≤T ⟨pt , 1⟩ < ∞, from (17):

d
dt

Yt − 1
V

∫

X
x

∂

∂x

(
ρg(St , x) pt (x)

)
dx + 1

V

∫

X
x λ(St , x) pt (x) dx + D Yt

= 2
V

∫

X
x

∫

X

λ(St , z)
z

q(x/z) pt (z) dz dx ,

but
∫

X
x

∫

X

λ(St , z)
z

q(x/z) pt (z) dz dx

=
∫

X

∫ 1

0
z λ(St , z)α q (α) pt (z) dα dz

=
∫

X

∫ 1

0
z λ(St , z)α q (1 − α) pt (z) dα dz (by symmetry of q)
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=
∫

X

∫ 1

0
z λ(St , z) (1 − α) q (α) pt (z) dα dz

= −
∫

X

∫ 1

0
z λ(St , z)α q (α) pt (z) dα dz +

∫

X
z λ(St , z) pt (z) dz

thus:

2
∫

X
x

∫

X

λ(St , z)
z

q(x/z) pt (z) dz dx =
∫

X
z λ(St , z) pt (z) dz.

The function x #→ pt (x) is the population density at time t . On the one hand p0(x)

has compact support. On the other hand the growth of each bacterium is defined by
a differential equation whose right-hand side is bounded by a linear function in x ,
uniformly in s. Hence for all t ≤ T , we can uniformly bound the mass of all the
bacteria and pt (x) has a compact support, i.e. there exists mmax such that the support
of pt (x) is included in [0, mmax] with pt (mmax) = 0, so we choose X = [0, mmax].
Moreover ρg(St , 0) = 0 hence:

∫

X
x

∂

∂x

(
ρg(St , x) pt (x)

)
dx = −

∫

X
ρg(St , x) pt (x) dx .

Finally:

d
dt

Yt = 1
V

∫

X
ρg(St , x) pt (x) dx − D Yt = µ̃(St ) Yt − D Yt .

We deduce that the concentrations (Yt , St )t≥0 of biomass and substrate are the solution
of the following closed system of ordinary differential equations:

Ẏt =
(
µ̃(St ) − D

)
Yt ,

Ṡt = D (sin − St ) − k µ̃(St ) Yt

which is none other than the classic chemostat equation [28].

5.3 Preliminary Results

Lemma 5.3 For all t > 0,

F(Sn
t , ⟨ν̄n

t , f ⟩) = F(Sn
0 , ⟨ν̄n

0 , f ⟩)

+
∫ t

0

(
D (sin − Sn

u ) − k
V

∫
X ρg(Sn

u , x) ν̄n
u (dx)

)
∂s F(Sn

u , ⟨ν̄n
u , f ⟩) du

+
∫ t

0
⟨ν̄n

u , ρg(Sn
u , .) f ′⟩ ∂x F(Sn

u , ⟨ν̄n
u , f ⟩) du

+ n
∫ t

0

∫

X
λ(Sn

u , x)

∫ 1

0

[
F

(
Sn

u , ⟨ν̄n
u , f ⟩ + 1

n f (α x) + 1
n f ((1 − α) x) − 1

n f (x)
)
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− F
(
Sn

u , ⟨ν̄n
u , f ⟩

)]
Q(dα) ν̄n

u (dx) du

+ D n
∫ t

0

∫

X

[
F

(
Sn

u , ⟨ν̄n
u , f ⟩ − 1

n f (x)
)
− F

(
Sn

u , ⟨ν̄n
u , f ⟩

)]
ν̄n

u (dx) du + Z F, f,n
t ,

where Z F, f,n
t = M1,F, f,n

t + M2,F, f,n
t with:

M1,F, f,n
t

def=
∫∫∫∫

[0,t]×N∗×[0,1]2

1{i≤N n
u− } 1{0≤θ≤λ(Sn

u ,xn,i
u− )/λ̄}

[
F

(
Sn

u , ⟨ν̄n
u− , f ⟩ + 1

n f (α xn,i
u− ) + 1

n f ((1 − α) xn,i
u− ) − 1

n f (xn,i
u− )

)

− F
(
Sn

u , ⟨ν̄n
u− , f ⟩

)]
Ñ1(du, di, dα, dθ)

M2,F, f,n
t

def=
∫∫

[0,t]×N∗

1{i≤N n
u− }

[
F

(
Sn

u , ⟨ν̄n
u− , f ⟩ − 1

n f (xn,i
u− )

)

− F
(
Sn

u , ⟨ν̄n
u− , f ⟩

)]
Ñ2(du, di)

Proof It is sufficient to note that F(Sn
t , ⟨ν̄n

t , f ⟩) = F(Sn
t , ⟨νn

t , 1
n f ⟩) and to apply

Proposition 4.1. ⊓0

Lemma 5.4 If supn∈N∗ E(⟨ν̄n
0 , 1⟩p) < ∞ for some p ≥ 1, then:

sup
n∈N∗

E
(

sup
u∈[0,t]

⟨ν̄n
u , 1⟩p

)
< Ct,p,

where Ct,p depends only on t and p.

This lemma will be used for p = 1.

Proof Define the stopping time:

τ n
N

def= inf{t ≥ 0, ⟨ν̄n
t , 1⟩ ≥ N }.

According to Lemma 5.3 applied with F(s, x) = x p and f (x) = 1:

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p ≤ ⟨ν̄n
0 , 1⟩p

+ n
∫ t∧τ n

N

0

∫

X
λ(Sn

u , x)
[(

⟨ν̄n
u , 1⟩ + 1

n

)p − ⟨ν̄n
u , 1⟩p

]
ν̄u(dx) du + M1,F, f,n

t

From the inequality (1 + y)p − y p ≤ C p (1 + y p−1), one can easily check that
( 1

n + y)p − y p ≤ C p
n (1 + y p−1). Taking expectation in the previous inequality and
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applying Proposition 4.2 (in the rescale conditions) lead to:

E
(

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p
)

≤ E
(
⟨ν̄n

0 , 1⟩p) + E
∫ t∧τ n

N

0
C p

(
1 + ⟨ν̄n

u , 1⟩p−1)
∫

X
λ(Sn

u , x) ν̄n
u (dx) du

≤ E
(
⟨ν̄n

0 , 1⟩p) + λ̄ C p

∫ t

0
E

(
⟨ν̄n

u∧τ n
N
, 1⟩ + ⟨ν̄n

u∧τ n
N
, 1⟩p

)
du.

As:

⟨ν̄n
u∧τ n

N
, 1⟩ + ⟨ν̄n

u∧τ n
N
, 1⟩p ≤ 2

(
1 + ⟨ν̄n

u∧τ n
N
, 1⟩p

)
,

we get:

E
(

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p
)

≤ E
(
⟨ν̄n

0 , 1⟩p) + 2 λ̄ C p t + 2 λ̄ C p

×
∫ t

0
E

(

sup
u∈[0,u∧τ n

N ]
⟨ν̄n

u , 1⟩p

)

du

and from Gronwall’s inequality we obtain:

E
(

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p
)

≤
(
E(⟨ν̄n

0 , 1⟩p) + 2 λ̄ C p t
)

exp(2 λ̄ C p t).

The sequence of stopping times τ n
N tends to infinity as N tends to infinity for the same

reasons as those set in the proof of Corollary 4.3. From Fatou’s lemma we deduce:

E
(

sup
u∈[0,t]

⟨ν̄n
u , 1⟩p

)
= E

(
lim inf
N→∞

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p
)

≤ lim inf
N→∞

E
(

sup
u∈[0,t∧τ n

N ]
⟨ν̄n

u , 1⟩p
)

≤
(
E

(
⟨ν̄n

0 , 1⟩p) + 2 λ̄ C p t
)

exp(2 λ̄ C p t)

and as supn E
(
⟨ν̄n

0 , 1⟩p) < ∞, we deduce the proof of the lemma. ⊓0
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Corollary 5.5 Let f ∈ C1(X ), suppose that E(⟨ν̄n
0 , 1⟩2) < ∞, then for all t > 0:

⟨ν̄n
t , f ⟩ = ⟨ν̄n

0 , f ⟩ +
∫ t

0
⟨ν̄n

u , ρg(Sn
u , .) f ′⟩ du

+
∫ t

0

∫

X
λ(Sn

u , x)

∫ 1

0

[
f (α x) + f ((1 − α) x) − f (x)

]
Q(dα) ν̄n

u (dx) du

− D
∫ t

0

∫

X
f (x) ν̄n

u (dx) du + Z F0, f,n
t , (18)

where Z F0, f,n
t = Z F, f,n

t with F0(s, x) = x, that is:

Z F0, f,n
t

def= 1
n

∫∫∫∫

[0,t]×N∗×[0,1]2

1{i≤N n
u− } 1{0≤θ≤λ(Sn

u ,xi,n
u− )/λ̄}

×
[

f (α xi,n
u− ) + f ((1 − α) xi,n

u− ) − f (xi,n
u− )

]
Ñ1(du, di, dα, dθ)

− 1
n

∫∫

[0,t]×N∗

1{i≤N n
u− } f (xi,n

u− ) Ñ2(du, di) (19)

is a martingale with the following predictable quadratic variation:

⟨Z F0, f,n⟩t = 1
n

∫ t

0

∫

X
λ(Sn

u , x)

∫ 1

0
[ f (α x) + f ((1 − α) x) − f (x)]2

× Q(dα) ν̄n
u (dx) du + 1

n
D

∫ t

0

∫

X
f (x)2 ν̄n

u (dx) du. (20)

Proof Equation (18) is obtained by applying Lemma 5.3 with F = F0. Moreover as
the random measures Ñ1 and Ñ2 are independent, we have:

⟨Z F0, f,n⟩t =⟨M1,F0, f,n⟩t + ⟨M2,F0, f,n⟩t .

From Proposition 4.2 and Corollary 4.3 we deduce the proof of the corollary. ⊓0
Remark 5.6 The infinitesimal generator of the renormalized process (Sn

t , ν̄n
t )t≥0 is:

Ln)(s, ν)
def=

(
D(sin − s) − k µ(s, ν)

)
∂s F(s, ⟨ν, f ⟩)+⟨ν, ρg(s, .) f ′⟩ ∂x F(s, ⟨ν, f ⟩)

+n
∫

X
λ(s, x)

∫ 1

0

[
F

(
s, ⟨ν − 1

n δx + 1
n δα x + 1

n δ(1−α) x , f ⟩
)
− F(s, ⟨ν, f ⟩)

]

×Q(dα) ν(dx) + n D
∫

X

[
F

(
s, ⟨ν − 1

n δx , f ⟩
)
− F(s, ⟨ν, f ⟩)

]
ν(dx)

for any )(s, ν) = F(s, ⟨ν, f ⟩) with F ∈ C1,1
b (R+ × R) and f ∈ C1(X ). Note

that this generator has the same “substrat” part than that of the initial generator (12)
which again justifies the Remark 5.1.
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5.4 Proof of Theorem 5.2

The proof is in three steps1: first the uniqueness of the solution of the limit Eqs. (14),
(15), second the tightness (of the sequence of distribution) of ν̄n and lastly the con-
vergence in distribution of the sequence.

Step 1: Uniqueness of the Solution of (14), (15)

Let (St , ξt )t≥0 be a solution of (14), (15). We first show that (ξt )t is of finite mass for
all t ≥ 0:

⟨ξt , 1⟩ = ⟨ξ0, 1⟩ +
∫ t

0

∫

X

∫ 1

0
λ(Su, x) Q(dα) ξu(dx) du − D

∫ t

0

∫

X
ξu(dx) du

≤ ⟨ξ0, 1⟩ + (λ̄ − D)

∫ t

0
⟨ξu, 1⟩ du

and according to Gronwall’s inequality: ⟨ξt , 1⟩ ≤ ⟨ξ0, 1⟩ e(λ̄−D) t < ∞.
We introduce the following norm on MF (X ):

|||ν̄||| def= sup
{
|⟨ν̄, f ⟩| f ∈ C1(X ), ∥ f ∥∞ ≤ 1,

∥∥ f ′∥∥
∞ ≤ 1

}

and consider two solutions (S1
t , ξ1

t )t≥0 and (S2
t , ξ2

t )t≥0 of (14), (15).
It was previously shown that ξ1

t and ξ2
t are of finite mass on R+, so we can define:

Ct
def= sup

0≤u≤t
⟨ξ1

u + ξ2
u , 1⟩.

According to (15), for any f ∈ C1(X ) such that ∥ f ∥∞ ≤ 1 and
∥∥ f ′∥∥

∞ ≤ 1 we have:

|⟨ξ1
t − ξ2

t , f ⟩| ≤
∫ t

0

∣∣∣∣

∫

X
f ′(x)

[
ρg(S1

u , x) [ξ1
u (dx) − ξ2

u (dx)]

− [ρg(S2
u , x) − ρg(S1

u , x)] ξ2
u (dx)

]∣∣∣∣ du

+
∫ t

0

∣∣∣∣

∫

X

∫ 1

0
[ f (α x) + f ((1 − α) x) − f (x)] Q(dα)

×
[
λ(S1

u , x) [ξ1
u (dx) − ξ2

u (dx)] − [λ(S2
u , x) − λ(S1

u , x)] ξ2
u (dx)

]∣∣∣∣ du

1 Note that our situation is simpler than that studied by Roelly-Coppoletta [26] and Mard and Roelly[19]
since in our case X is compact: in fact in our case the weak topology—the smallest topology which makes
the applications ν → ⟨ν, f ⟩ continuous for any f continuous and bounded—and the vague topology—the
smallest topology which makes the applications ν → ⟨ν, f ⟩ continuous for all f continuous with compact
support—are identical.
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+ D
∫ t

0

∣∣∣∣

∫

X
f (x) (ξ1

u (dx)−ξ2
u (dx))

∣∣∣∣ du

≤ (ḡ+3 λ̄ + D)

∫ t

0
|||ξ1

u − ξ2
u ||| du+Ct (kg + 3 kλ)

∫ t

0
|S1

u − S2
u | du.

Taking the supremum over the functions f , we obtain:

|||ξ1
t − ξ2

t ||| ≤ (ḡ + 3 λ̄ + D)

∫ t

0
|||ξ1

u − ξ2
u ||| du + Ct (kg + 3 kλ)

∫ t

0
|S1

u − S2
u | du.

Moreover, from (14) we get:

|S1
t − S2

t | ≤ D
∫ t

0
|S1

u − S2
u | du + k

V

∫ t

0

∣∣∣∣

∫

X

(
ρg(S1

u , x) [ξ1
u (dx) − ξ2

u (dx)]

− [ρg(S2
u , x) − ρg(S1

u , x)] ξ2
u (dx)

)∣∣∣∣ du

≤
(

D + k
V

Ct kg

) ∫ t

0
|S1

u − S2
u | du + k

V
ḡ

∫ t

0
|||ξ1

u − ξ2
u ||| du.

We define:

Mt
def= max

{
ḡ + 3 λ̄ + D + k

V
ḡ , Ct (kg + 3 kλ) + D + k

V
Ct kg

}

hence:

|||ξ1
t − ξ2

t ||| + |S1
t − S2

t | ≤ Mt

∫ t

0

(
|||ξ1

u − ξ2
u ||| + |S1

u − S2
u |

)
du

Finally from Gronwall’s inequality we get |||ξ1
t − ξ2

t ||| + |S1
t − S2

t | = 0 for all t ≥ 0,
hence ξ1

t = ξ2
t and S1

t = S2
t .

Step 2: Tightness of (ν̄n)n∈N∗

The tightness of ν̄n is equivalent to the fact that from any subsequence one can extract a
subsequence that converges in distribution in the space D([0, T ],MF (X )). According
to [26, Theorem 2.1] this amounts to proving the tightness of ⟨ν̄n, f ⟩ in D([0, T ], R)

for all f in a set dense in C(X ), here we will consider f ∈ C1(X ). To prove the latter
result, it is sufficient to check the following Aldous-Rebolledo criteria [18, Corollary
2.3.3]:

(i) The sequence (⟨ν̄n
t , f ⟩)n∈N∗ is tight for any t ≥ 0.

(ii) Consider the following semimartingale decomposition:

⟨ν̄n
t , f ⟩ = ⟨ν̄n

0 , f ⟩ + An
t + Zn

t ,
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where Zn
t is a short notation for the martingale Z F0, f,n

t defined in (19) and An
t is

of finite variation. For all t > 0, ϵ > 0, η > 0 there exists n0 such that for any
sequence τn of stopping times with τn ≤ t we have:

sup
n≥n0

sup
θ∈[0,δ]

P
(∣∣An

τn+θ − An
τn

∣∣ ≥ η
)

≤ ϵ ,

sup
n≥n0

sup
θ∈[0,δ]

P
(∣∣⟨Zn⟩τn+θ − ⟨Zn⟩τn

∣∣ ≥ η
)

≤ ϵ.

Proof of (i)

For any K > 0,

P
(
|⟨ν̄n

t , f ⟩| ≥ K
)

≤ 1
K

∥ f ∥∞ sup
n∈N∗

E
(
⟨ν̄n

t , 1⟩
)

and using Lemma 5.4, we deduce (i).

Proof of (ii)

An
t =

∫ t

0
⟨ν̄n

u , ρg(Sn
u , .) f ′⟩ du

+
∫ t

0

∫

X

∫ 1

0
λ(Sn

u , x)
[

f (α x) + f ((1 − α) x) − f (x)
]

Q(dα) ν̄n
u (dx) du

− D
∫ t

0

∫

X
f (x) ν̄n

u (dx) du

hence, according to Lemma 5.4:

E|An
τn+θ − An

τn
| ≤ (

∥∥ f ′∥∥
∞ ḡ + 3 ∥ f ∥∞ λ̄ + D ∥ f ∥∞) Ct+θ,1 θ .

Using (20), we also have:

E|⟨Zn⟩τn+θ − ⟨Zn⟩τn | ≤ 1
n

(
9 λ̄ + D

) ∥ f ∥2
∞ Ct+θ,1 θ .

Hence E|An
τn+θ − An

τn
| + E|⟨Zn⟩τn+θ − ⟨Zn⟩τn | ≤ C θ and we obtain (ii) from the

Markov inequality.
In conclusion, from the Aldous-Rebolledo criteria, the sequence (ν̄n)n∈N∗ is tight.

Step 3: Convergence of the Sequence (ν̄n)n∈N∗

To conclude the proof of the theorem it is suffice to show that the sequence (ν̄n)n∈N∗

has a unique accumulation point and that this point is equal to ξ described in Step 1. In
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order to characterize ξ , the solution of (15), we introduce, for any given f ∈ C1(X ),
the following function defined for all ζ ∈ D([0, T ], MF (X )):

-t (ζ )
def= ⟨ζt , f ⟩ − ⟨ζ0, f ⟩ −

∫ t

0

[∫

X
ρg(Sζ

u , x) f ′(x) ζu(dx)

+
∫

X

∫ 1

0
λ(Sζ

u , x)
[

f (α x) + f ((1 − α) x) − f (x)
]

Q(dα) ζu(dx)

− D
∫

X
f (x) ζu(dx)

]
du, (21)

where Sζ
t is defined by:

Sζ
t

def= S0 +
∫ t

0

(
D (sin − Sζ

u ) − k
V

∫

X
ρg(Sζ

u , x) ζu(dx)
)

du. (22)

Hence, if -t (ζ ) = 0 for all t ≥ 0 and all f ∈ C1(X ) then (Sζ , ζ ) = (S, ξ) where
(S, ξ) is the unique solution of (14), (15).

We consider a subsequence ν̄n′
of ν̄n which converges in distribution in the space

D([0, T ], MF (X )) and ν̃ its limit.

Sub-step 3.1: A.s. Continuity of the limit ν̃.

Lemma 5.7 ν̃(ω) ∈ C([0, T ], MF (X )) for all ω ∈ 3 a.s.

Proof For any f ∈ C(X ) such that ∥ f ∥∞ ≤ 1:

∣∣⟨ν̄n′
t , f ⟩ − ⟨ν̄n′

t− , f ⟩
∣∣ ≤ 1

n′
∣∣⟨νn′

t , 1⟩ − ⟨νn′
t− , 1⟩

∣∣.

But |⟨νn′
t , 1⟩ − ⟨νn′

t− , 1⟩| represents the difference between the number of individuals
in νn′

t and in νn′
t− , which is at most 1. Hence:

sup
t∈[0,T ]

∥ν̄n′
t − ν̄n′

t−∥TV ≤ 1
n′

which proves that the limit process ν̃ is a.s. continuous [12, Theorem 10.2 p. 148] as
the Prokhorov metric is dominated by the total variation metric. ⊓0

Sub-step 3.2: Continuity of ζ → -t (ζ ) in any ζ continuous.

Lemma 5.8 For any given t ∈ [0, T ] and f ∈ C1(X ), the function -t defined
by (21) is continuous from D([0, T ],MF (X )) with values in R in any point ζ ∈
C([0, T ],MF (X )).
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Proof Consider a sequence (ζ n)n∈N which converges towards ζ in D([0, T ],MF (X ))

with respect to the Skorohod topology. As the limit ζ is continuous we have that ζ n

converges to ζ with the uniform topology:

sup
0≤t≤T

dPR(ζ
n
t , ζt ) →

n→∞ 0,

where dPR is the Prokhorov metric (see Appendix).
The functions λ(s, x) and ρg(s, x) are Lipschitz continuous functions w.r.t. s uni-

formly in x and also bounded, see (5) and (4), so from (22) we can easily check
that:

|Sζ n

t − Sζ
t | ≤ C

∫ t

0

(
|Sζ n

u − Sζ
u | +

∣∣∣
∫

X
ρg(Sζ n

u , x) [ζ n
u (dx) − ζu(dx)]

−
∫

X
[ρg(Sζ

u , x) − ρg(Sζ n

u , x)] ζu(dx)
∣∣∣
)

du

≤ C
∫ t

0

(
|Sζ n

u − Sζ
u | + |⟨ζ n

u − ζu, 1⟩|
)

du

and the Gronwall’s inequality leads to:

|Sζ n

t − Sζ
t | ≤ C

∫ t

0
|⟨ζ n

u − ζu, 1⟩| du.

Here and in the rest of the proof the constant C will depend only on T , f and on the
parameters of the models. Hence, from (21):

|-t (ζ
n) − -t (ζ )| ≤ C

[
|⟨ζ n

t − ζt , 1⟩| + |⟨ζ n
0 − ζ0, 1⟩|

+
∫ t

0
|Sζ n

u − Sζ
u | du +

∫ t

0
|⟨ζ n

u − ζu, 1⟩| du
]

≤ C sup
0≤t≤T

|⟨ζ n
t − ζt , 1⟩|.

Let δt = dPR(ζ
n
t , ζt ), by definition of the Prokhorov metric:

ζ n
t (X ) − ζt (X δt ) ≤ δt , ζt (X ) − ζ n

t (X δt ) ≤ δt ,

but X δt = X hence |ζ n
t (X ) − ζt (X )| ≤ δt . Note finally that |ζ n

t (X ) − ζt (X )| =
|⟨ζ n

t − ζt , 1⟩|, so we get:

|-t (ζ
n) − -t (ζ )| ≤ C sup

0≤t≤T
dPR(ζ

n
t , ζt )

which tends to zero. ⊓0
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Sub-step 3.3: Convergence in Distribution of -t (ν̄
n′

) to -t (ν̃).

The sequence ν̄n′
converges in distribution to ν̃ and ν̃(ω) ∈ C([0, T ],MF (X ));

moreover the application -t is continuous in any point of C([0, T ],MF (X )), thus
according to the continuous mapping theorem [2, Theorem 2.7 p. 21] we get:

-t (ν̄
n′

)
loi−−−→

n→∞ -t (ν̃). (23)

Sub-step 3.4: ν̃ = ξ a.s.

From (18), for any n ∈ N∗ we have:

-t (ν̄
n) = Zn

t .

Also, (20) gives:

E(|Zn
t |2) = E⟨Zn⟩t ≤ 1

n
(9 λ̄ + D) ∥ f ∥2

∞ Ct,1 t.

Hence -t (ν̄
n) converges to 0 in L2 but also in L1. Furthermore, we easily show that:

|-t (ζ )| ≤C f,t sup
0≤u≤t

⟨ζu, 1⟩

moreover, from Lemma 5.4, (-t (ν̄
n′

))n′ is uniformly integrable. The dominated con-
vergence theorem and (23) imply:

0 = lim
n′→∞

E|-t (ν̄
n′

)| = E|-t (ν̃)|.

Table 1 Simulation parameters Parameters Values

D 0.2 h−1

S0 5 mg l−1

sin 10 mg l−1

mmax 0.001 mg

mdiv 0.0004 mg

λ̄ 1 h−1

pλ 1,000

pβ 7

rmax 1 h−1

kr 10 mg l−1

k 1
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small population size medium population size large population size

V = 0.05 l, N0 = 100 V = 0.5 l, N0 = 1000 V = 5 l, N0 = 10000

Fig. 1 From top to bottom time evolutions of the population size, the biomass concentration, the con-
centration substrate and the concentrations phase portrait for the three levels of population sizes (small,
medium and large). The blue curves represent the trajectories of 60 independent runs of IBM. The green
curve represents the mean value of these runs. The red curve represents the solution of the IDE (Color figure
online)

So -t (ν̃) = 0 a.s. and ν̃ is a.s. equal to ξ where (S, ξ) is the unique solution of
(14)-(15).

This last step concludes the proof of Theorem 5.2.

6 Simulations

In this section we compare the behavior of the IBM and the IDE model (16), (17). The
resolution of the IDE was made following classic finite difference schemes [3].
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Fig. 2 Time evolution of the normalized mass distribution for the IDE (17): we represent the simulation
until time T = 10 (h) only to illustrate the transient phenomenon due to the choice of the initial distribution
(24). After a few iterations in time this distribution is bimodal, the upped mode growths in mass and
disappears before T = 10 (h)

In the simulations proposed in this section, the division rate of an individual is given
by the following function:

λ(s, x) = λ̄

log
(
(mmax − mdiv) pλ + 1

) log
(
(x − mdiv) pλ + 1

)
1{x≥mdiv}

which does not depend on the substrate concentration.
The division kernel Q(dα) = q(α) dα is given by a symmetric beta distribution:

q(α) = 1
B(pβ)

(
α (1 − α)

)pβ−1
,

where B(pβ) =
∫ 1

0

(
α (1 − α)

)pβ−1 dα is a normalizing constant.
Individual growth follows a Gompertz model, with a growth rate depending on the

substrate concentration:

g(s, x) = rmax

s
kr + s

log
(mmax

x

)
x .

The masses of individuals at the initial time are sampled according to the following
probability density function:

d(x) = cst ×
(

x − 0.0005
0.00025

(
1 − x − 0.0005

0.00025

))5

1{0.0005<x<0.00075}. (24)
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small population size medium population size large population size

V = 0.05 l, N0 = 100 V = 0.5 l, N0 = 1000 V = 5 l, N0 = 10000

Fig. 3 Mass distribution for the time t = 1 (above), t = 4 (middle) and t = 80 (bottom) in small
(left), medium (middle) and large (right) population size. For each graph, the blue histograms represent
the empirical mass distributions of individuals for the 60 independent runs of IBM. In order to plot the
histogram we have adapted the number of bins according to the population size. The red curve represents
the mass distribution given by the IDE. Again the convergence of the IBM solution to the IDE in large
population limit is observed (Color figure online)

The simulations were performed using the parameters in Table 1. The parameters
V and N0 will be specified for each simulation.

To illustrate the convergence in large population asymptotic of the IBM to the IDE,
we performed simulations at different levels of population size. To this end we vary
the volume of the chemostat and the number of individuals at the initial time. We
considered three cases:

(i) small size: V = 0.05 l and N0 = 100,
(ii) medium size: V = 0.5 l and N0 = 1,000,

(iii) large size: V = 5 l and N0 = 10,000.

In each of these three cases, and with the same initial biomass concentration distri-
bution, we simulate: 60 independent runs of the IBM and the numerical approximation
of (16), (17) using the finite difference schemes detailed in [3].
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The convergence of IBM to EID is clearly illustrated in Fig. 1 where the evolutions
of the population size, of the biomass concentration, and of the substrate concentration
are represented.

In Fig. 2 the time evolution of the normalized mass distribution is depicted, i.e. the
normalized solution of the IDE (17). We have represented the simulation until time
T = 10 (h) to illustrate the transient phenomenon due to the choice of the initial
distribution (24): after a few time iterations this distribution is bimodal; the upper
mode (large mass) grows in mass and disappears before time T = 10 (h). The lower
mode (small mass) corresponds to the mass of the bacteria resulting from the division;
the upper mode corresponds to the mass of the bacteria from the initial bacteria before
their division. Thus, the upper mode is set to disappear quickly by division or by
washout. The IBM realizes this phenomenon, see Fig. 3.

Figure 3 presents this normalized mass distribution at three different instants, t =
1, 4, 80 (h), and the simulation of the IDE is compared to 60 independent runs of the
IBM, again for the three levels of population sizes described above. Depending on
whether the population is large, medium or small, we needed to adapt the number of
bins of the histograms so that the resulting graphics are clear. The convergence of the
IBM solution to the IDE in large population limit can be observed.

In conclusion, the IBM converges in large population limit to the IDE and variability
“around” the asymptotic model is relatively large in small or medium population size;
note that there is no reason why the IDE represents the mean value of the IBM.
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Appendix: Skorohod Topology

The space of finite measures MF (X ) on X is equipped with the topology of the weak
convergence, that is the smallest topology for which the applications ζ → ⟨ζ, f ⟩ =∫
X f (x) ζ(dx) are continuous for any f ∈ C(X ). This topology is metrized by the

Prokhorov metric:

dPR(ζ, ζ ′) def= inf
{
ϵ > 0 ζ(F) ≤ ζ ′(Fϵ) + ϵ

ζ ′(F) ≤ ζ(Fϵ) + ϵ , for all closed F ⊂ X
}
,

where Fϵ def= {x ∈ X ; inf y∈F |x − y| < ϵ} (see [7, Appendix A2.5]). The Prokhorov
distance is bounded by the distance of the total variation dTV(ζ, ζ ′) = ∥ζ − ζ ′∥TV

associated with the norm defined by:

∥ζ∥TV
def= sup

A∈B(X )

|ζ(A) + ζ(Ac)| = ζ+(X ) + ζ−(X ) = sup
f continuous
∥ f ∥∞≤1

|⟨ζ, f ⟩|
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for any finite and signed measure ζ where ζ = ζ+ − ζ− is the Hahn–Jordan decom-
position of ζ .

The space D([0, T ],MF (X )) is equipped with the Skorohod metric dS. Instead of
giving the definition of this metric [12, Eq. (5.2) p. 117] we recall a characterization
of the convergence for this metric given in [12, Proposition 5.3, p. 119].

A sequence (ζ n)n∈N converges to ζ in D([0, T ],MF (X )), i.e. dS(ζ
n, ζ ) → 0,

if and only if there exists a sequence λn(t) of time change functions (i.e. strictly
increasing bijective functions on [0, T ], with λn(0) = 0 and λn(T ) = T ) satisfying:

sup
0≤t≤T

dPR(ζ
n
t , ζλn(t)) −−−→

n→∞ 0 (25)

and

sup
0≤t≤T

|λn(t) − t | → 0. (26)

If (ζ n)n∈N converges to ζ in D([0, T ],MF (X )) and if ζ ∈ C([0, T ],MF (X ))

then in:

sup
0≤t≤T

dPR(ζ
n
t , ζt ) ≤ sup

0≤t≤T
dPR(ζ

n
t , ζλn(t)) + sup

0≤t≤T
dPR(ζλn(t), ζt )

the first term of the right-hand side tends to 0 because of (25); the second one tends
to 0 because of (26) and the uniform continuity of ζ in [0, T ]. This proves that ζ n

converges to ζ in D([0, T ],MF (X )) also for the uniform metric.
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