
E

F
M

a

A
R
R
A

K
P
O
D
G
B

1

⎧⎪⎨
⎪⎩
w
t
w
r

v
s
i
t
a
L
s
f
a
s
i
l
t

0
h

Ecological Modelling 246 (2012) 1– 10

Contents lists available at SciVerse ScienceDirect

Ecological  Modelling

jo ur n al homep ag e: www.elsev ier .com/ locate /eco lmodel

ffect  of  population  size  in  a  predator–prey  model

.  Campillo ∗, C.  Lobry
odemic Team-Project INRA/INRIA, SupAgro, 2 Place Viala, 34060 Montpellier Cedex 2, France

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 1 December 2011
eceived in revised form 1 July 2012
ccepted 3 July 2012

a  b  s  t  r  a  c  t

We  consider  a hybrid  version  of  the  basic  predator–prey  differential  equation  model:  a  pure  jump  stochas-
tic  model  for  the prey variable  x coupled  with  a  differential  equation  model  for  the  predator  variable  y.
This hybrid  model  is derived  from  the  classical  birth  and  death  process.  The  model  contains  a parameter
ω  which  represents  the  number  of  individuals  for one  unit  of prey:  x =  1 corresponds  to  ω individual
eywords:
redator–prey model
rdinary differential equations
iffusion equations
illespie algorithm
irth and death processes

prey.  It is shown  by  the  mean  of  simulations  and explained  by a mathematical  analysis  based  on  a  result
from  the  singular  perturbation  theory  –  the  so-called  theory  of  Canards  –  that  qualitative  properties  of
the  model  like persistence  or  extinction  are  dramatically  sensitive  to ω. For  instance,  in  our  example,  if
ω =  107 we  have  extinction  and  if ω = 108 we  have  persistence.  This  means  that  we  must  be  very cautious
when  we  use  continuous  variables  in  place  of  discrete  ones  in  dynamic  population  modeling  even  when
we  use  stochastic  differential  equations  in  place  of  deterministic  ones.
. Introduction

Consider the standard predator–prey model:

dx

dt
= f (x) − �(x)y,

dy

dt
= (c �(x) − ı)y

(1)

here x stands for the concentration of prey and y for the concen-
ration of predators. It is well-known that this kind of modeling
ith differential equations is valid only if one unit of both x and y

epresents a large number of both predator and prey individuals.
It has long been known that only stochastic models with discrete

alues are brought to account for such dynamics when population
izes are small. Indeed, in his 1939 article where William Feller
ntroduced birth and death processes as an example of continuous
ime Markov processes with discrete state space, he immediately
pplied them to the modeling of population dynamics including the
otka–Volterra dynamics (Feller, 1939). Several studies have pur-
ued the analysis of Lotka–Volterra type stochastic processes, in the
orm of birth and death processes (Bartlett, 1957; Leslie, 1958) but
lso of diffusion processes (Gard and Kannan, 1976). In particular,
ince Bartlett (1957) it is known that the treatment of extinction

s radically different in deterministic and stochastic models; in the
atter case the demographic noise leads to predator species extinc-
ion in finite time.

∗ Corresponding author.
E-mail address: Fabien.Campillo@inria.fr (F. Campillo).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.07.015
© 2012 Elsevier B.V. All rights reserved.

More recently, Daniel Gillespie independently published a
famous paper about the exact Monte Carlo simulation of such birth
and death processes within the framework of chemical kinetics
(Gillespie, 1977). Our present work was  partly inspired by the lat-
ter work. Even more recently, the question of the inadequacy of
deterministic continuous modeling is firmly addressed in Mollison
(1991) that criticizes the biological interpretations of Murray et al.
(1986). Let us quote from Mollison (1991):

As to the second wave, close inspection shows that the explanation
lies not much in the determinism of the model as in its modeling
of the population as continuous rather than discrete and its associ-
ated inability to let population variables reach the value zero. Thus
the density of infected at the place of origin of the epidemic never
becomes zero; it only declines to a minimum of around one atto-fox
(10−18 of a fox, cf. R. Hughes “The Fox in the Attic”, Chatto & Win-
dus, London, 1961) per square kilometer. The model then allows
this atto-fox to start the second wave as soon as the susceptible
population has regrown sufficiently.

What is meant by large is generally not specified but it is widely
admitted that at around 103 the law of large numbers begins to be
effective and that figures such as 106 allow the use of continuous
variables and differential equations.

The objective of this article is to show that the threshold of 103

is not always acceptable and that, in some circumstances, even
106 cannot be considered as secure when we deduce biological
consequences, such as persistence, from the behavior of a model

with continuous variables. For this purpose we  analyze a stochastic
model such that the dynamic of the process is locally approxi-
mated, when the number of prey is large, by a differential system,
which is precisely a predator–prey model of type (1).  We  agree
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http://www.sciencedirect.com/science/journal/03043800
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hat in many respects, our model is biologically questionable but
ur objective is not to contribute to the biological understanding
f the predator–prey relationship. Our objective is rather to point
ut a mathematical phenomenon, which is likely to be present in
any models and that might be responsible for erroneous inter-

retations.
Except in Turner (2007),  which is mathematically oriented, we

re not aware of papers describing this phenomenon in dynamical
opulation literature.

The first section is devoted to the presentation of the model, the
econd to the presentation of some unforeseen simulations, the
hird to the analysis of the differential system and the fourth to an
xplanation of the unexpected aspects of the simulations. The last
ections is devoted to methodological comments.

A key point in our explanation relies on the fact that the con-
inuous system approximating the model is a so-called “slow-fast”
ystem which exhibits a “canard solution”. “Canard solution” is now
ell-known among specialists of singular perturbation theory of
ifferential equations, see for instance the recent review Desroches
t al. (2012).  For the the convenience of the interested reader we
ave written a short appendix on this question.

From the mathematical point of view the material and results
resented here are classical. The article is intended principally
or non mathematically oriented readers who are not necessarily
ware of these questions. We  have tried to avoid all mathematical
echnicalities and for this purpose we have made extensive use of
omputer simulations.

. The model

We built a stochastic model which is approximated, in a sense
hat will be made precise later, by the system of differential equa-
ions:

dx

dt
= 1

ε
[f (x) − �(x)y],

dy

dt
= (�(x) − m)y

(2)

hich is, after a change of unit time, the classical deterministic
ifferential predator–prey model (1) with c = ε, ε m = ı.

The variable ω x(t) is an integer which is the number of prey at
ime t. This variable performs the following birth and death process
here “death” means “capture” by a predator):

At any time, the epoch � of the next event (birth or death) is a
random variable Z which follows an exponential distribution law
of parameter:

� = ω

ε
(f (x) + �(x) y). (3a)

At the epoch � we have one birth with probability f (x)
f (x)+�(x) y or

one death with the complementary probability, that is:

P(ω x(�+) = ω x(�−) + 1) = f (x(�−))
f (x(�−)) + �(x(�−)) y(�−)

,

P(ω x(�+) = ω x(�−) − 1) = �(x(�−))y(�−)
f (x(�−)) + �(x(�−)) y(�−)

.

(3b)

he variable y is a continuous variable which evolves according to:

(t + dt) = y(t) − dt m y(t) + ε

× {number of captures during [t, t + dt]}. (3c)
Thus the predator dynamics is an exponential decay associated to
 growth proportional to the number of prey disappearing during
he elapsed time. The parameter ε accounts for different time scales
or the predator and prey dynamics.
 Modelling 246 (2012) 1– 10

It  might seem curious to have a discrete model for the evolution
of the prey and a continuous one for the predator since, in many
cases, the density of prey is much larger than the density of preda-
tors. But it is not always the case, for instance viruses, which have
a far more higher density are predators of bacteria.

Assume that dt = 10−4, ω = 109, ε = 10−1 and f(x) + �(x)y is of the
order of the unit. Then, during an elapsed time of dt the number of
events, death or birth, is of the order of � dt = ω

ε (f (x) + �(x)y)dt ≈
105

ε ≈ 106. This is somewhat lengthy to simulate, at least with a
desk computer, but due to this large number of events, the process
defined by (3) is accurately approximated on the interval [t, t + dt]
by the following diffusion process whose derivation is presented in
Appendix A:⎧⎨
⎩ x(t + dt) = x(t) + dt

ε
[f (x(t)) − �(x(t))y(t)] − �x Wt,

y(t + dt) = y(t) + dt[(�(x(t)) − m)y(t)] + �y Wt

(4)

where W1dt, W2dt, W3dt, . . . is a sequence of independent Gaussian
variables with mean 0 and standard deviation 1, and:

�x =
√

4 dt

ω ε

√
f (x(t))�(x(t))y(t)

f (x(t)) + �(x(t))y(t)
,

�y =
√

dt ε

ω

√
f (x(t)) �(x(t))y(t)

f (x(t)) + �(x(t))y(t)
.

This diffusion approximation is not valid for small x, in this case one
must switch to the pure jump process. As we  do not aim to focus on
small x, we restrict ourselves to the consideration of the stochastic
diffusion like process with continuous variables:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if x(t) ≤ 1
ω

then x(t + dt) = 0 else

x(t + dt) = x(t) + dt

ε
[f (x(t)) − �(x(t))y(t)] + �xWt

y(t + dt) = y(t) + dt[(�(x(t)) − m)y(t)] + �yWt

(5)

The first line in (5) states that when the number of prey is smaller
than 1 it has to be 0. This needs to be specified as the variable x in
the diffusion model is now continuous but still we want to keep
the meaning of x as a number of individuals.  Thus, 1

ω must be an
absorbing barrier for (5).  For x ≥ 1

ω one sees that the recurrence
equation for the mean of x(t) and y(t) is approximated by:⎧⎨
⎩E[x(t + dt)] = E[x(t)] + dt

ε
[f (x(t)) − �(x(t))y(t)]

E[y(t + dt)] = E[y(t)] + dt[(�(x(t) − m)y(t)]
(6)

which is precisely the Euler scheme for the differential system (2).
To summarize this section, we have constructed a diffusion

model (5) which depends on a parameter ω. This model has the
following properties:

• Since the model is derived from a birth and death process, x units
of prey correspond to ω x individuals.

• The standard deviation is proportional to
√

1
ω : the larger ω is the

more “deterministic” the process.
• The diffusion process is degenerate, i.e. the dimension of the ran-

dom noise is not 2 but 1. This is due to the fact that only x is
considered as a discrete variable, not y.

• When ω x is large, greater than 103, the dynamic of the mean
is accurately approximated, at least for small durations, by the

classical deterministic differential predator–prey model (2).

We shall first simulate this system and then explain the observed
simulations.



F. Campillo, C. Lobry / Ecological Modelling 246 (2012) 1– 10 3

Fig. 1. Two runs of the process (5): population of prey in red, predator in black;
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Fig. 3. Twenty independent runs of the process (5) with ω = 106, population of prey
A) for ω = 1012; (B) for ω = 1010. No difference is visible: the two  processes perform
table oscillations. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

. Simulations

In this section we fix f (x) = 1
2 x(2 − x), �(x) = x

0.4+x , ε = 0.02 and
 = 0.6645. For a duration of 200, two runs of the process (5) are
lotted in Fig. 1: one for ω = 1012 (A) and one for ω = 1010 (B). One
ees regular oscillations for the population of prey (in red) and
redator (in black). We  do not see any difference between the two
uns. These regular oscillations are those predicted by the deter-
inistic predator–prey model. The value of x during the oscillations

s around 1, which corresponds to a large number of individuals, it
s then not surprising that the continuous deterministic system is

 good approximation.
8
But in Fig. 2 we observe a dramatic change when ω = 10 , which is

till a large figure. We  observe a mixed mode oscillation with random
uccessions of large and small oscillations that could not be pro-
uced by a deterministic two dimensional system. With ω = 106 we

ig. 2. Two runs of the process (5): population of prey in red, predator in black; (A)
or ω = 108; (B) for ω = 106. For these values of ω the dynamics are very different from
hose of Fig. 1: oscillations are not stable and lead to extinction. (For interpretation
f  the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
in  red, predator in black. In all runs the two populations goes to extinction. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of this article.)

observe an extinction of the two populations, which is confirmed
in Fig. 3 where none of the 20 runs for ω = 106 is persistent at time
T = 200.

Let T denote the time of extinction for the predator, defined
as the time when y(t) reaches the value 1

ω . Let us say that there
is extinction when the time of extinction is smaller than 1000.
In Table 1 we  have the empirical probabilities of extinction with
respect to ω, computed on 1000 runs, and the mean and standard
deviation of T, computed on the trajectories ending with extinction
for t < 1000.

We can see that the transition is very sharp from extinction
with probability one (ω = 4.0 × 106) to non extinction with prob-
ability one (ω = 2.0 × 107). It seems surprising that at ω = 2.0 × 107

prey individuals and above, the system is persistent but, with still
a big figure like ω = 4.0 × 106 and below, the system is definitively
not.

This is a problem since in most population dynamics models, we
have poor information on the actual size of a population. We  shall
come back to this issue later. Notice also that the standard devia-
tion of T is very large for small values of ω which makes predictions
very imprecise. The explanation of this somewhat unexpected phe-
nomenon is given by the analysis of the associated deterministic
model (2).

4.  The dynamics of the continuous deterministic model

We now describe the dynamics of the deterministic model (2)

that approximate the evolution of the mean of the diffusion model
(6).  All the material in this section is classical in mathematical
literature and known as the theory of “canards”, see Appendix B

Table 1
Empirical probabilities of extinction according to ω.

ω E[T] �(T) P(T ≤ 1000)

105 30.46 6.75 1
106 39.02 11.30 1
2.0 × 106 47.74 19.62 1
4.0 × 106 79.05 51.79 1
6.0 × 106 143.54 121.42 0.999
8.0 × 106 259.76 222.64 0.983
9.0 × 106 311.70 247.58 0.964
1.0 × 107 554.21 319.94 0.867
1.1 × 107 555.17 351.75 0.741
1.2 × 107 681.31 324.12 0.649
1.3 × 107 745.83 321.95 0.481
1.4 × 107 815.46 296.26 0.384
1.5 × 107 867.54 273.60 0.255
1.6 × 107 906.10 238.55 0.182
1.7 × 107 928.68 221.50 0.120
1.8 × 107 964.05 143.82 0.072
1.9 × 107 975.48 110.09 0.059
2.0 × 107 >1000 0
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ig. 4. Schematic representation of solutions of (2) for small value of m.  Due to
he presence of a small ε, trajectories must be almost horizontal except in the
eighborhood of the parabola (see comment in the text).

or more details about this theory and an explanation of the word
canard”.

The first step in the understanding of a planar system like ours
s to draw the two nullclines, also called “zero growth isoclines”,
.e. the sets defined by:

the nullcline of the prey: {(x, y) : 1
ε [f (x) − �(x) y] = 0};

the nullcline of the predator: {(x, y) : (�(x) − m)y = 0}.

n our simulations the parameter ε is small (0.02) and thus, except
hen the quantity

f (x) − �(x) y]

s small (of the order of ε), the right member in the first equation in
2) is large compared to the right member in the second equation.
his means that the vector velocity of (2) is almost horizontal.  Hence

 first approximation of the solution of our system is shown by the
and-drawn schemes in Figs. 4 and 5: Outside of the parabola and
he y-axis, which is the nullcline of the prey, the trajectories are
aken as horizontal.

In Fig. 4 one sees that the predator nullcline (in blue) contains a
ertical line that intersects the prey nullcline (the black y-axis and
he black parabola). The intersection point (the red dot) is on the
eft of the maximum of the prey nullcline. Along the parabola prey
ullcline, the motion is upward on the right of the blue vertical,

nd downward on the left. From this one sees that the trajectories
oin the y-axis in an attractive part (above the top of the parabola),
hen they go down along the y-axis and finally – after crossing the
arabola – there is uncertainty about the place the trajectory exits

ig. 5. Schematic representation of solutions of (2) for large value of m (see comment
n  the text).
 Modelling 246 (2012) 1– 10

the y-axis. From this diagram we suspect the existence of a periodic
limit cycle that can in fact be proven.

In Fig. 5 the situation is somewhat easier to understand. As the
blue vertical nullcline of the predator is on the right of the maxima
of the parabola prey nullcline, the motion along the parabola con-
verges to a limit point, which is apparently a stable attracting point
for all initial conditions.

Notice that an attracting equilibrium and an attracting limit
cycle are qualitatively different phase portraits and that the tran-
sition between the two  cases occurs when m crosses the value
0.666. . . (i.e. when the blue line crosses the parabola at its max-
imum).

Let us now comment on Fig. 6. The pictures are not hand-drawn
schemes but actual simulations with ε = 0.02; we observe the strong
similarity between the schemes:

• For m = 0.6, the system features one large limit cycle (the direc-
tion of the motion is anti-clockwise). If we  consider trajectories
with initial conditions x = 2 and increasing y coordinates: for small
enough y-coordinates, the trajectories go horizontally from left
to right, then they meet and follow the limit cycle; for large
enough y-coordinates, the trajectories go horizontally from right
to left, they pass above the maximum of the parabola and meet
the y-axis, then they reappear below the limit cycle and rapidly
cross horizontally from left to right where they meet the parabola
to finally meet the limit cycle. Actually “true” trajectories never
meet but, due to the limit of our drawing, they seem to. All tra-
jectories follow for a while the y-axis and then x(t) becomes
potentially small.

• For m = 0.75, the system features an attracting equilibrium. Some
trajectories go directly to the equilibrium, others follow the y-
axis.

• For m = 0.6645, the system features a small periodic limit cycle
circling around the unstable equilibrium that is very close to the
periodic orbit. The periodic orbit is far from the y-axis and x(t)
is never small, but one sees that near the unstable equilibrium,
a very small perturbation leads to a trajectory that follows the
y-axis so that x(t) can become small.

• For m = 0.66442561, the system features a limit cycle of interme-
diate size between “large” (meets the y-axis and follows it for a
significative amount of time, like for m = 0.6) and “small” (remains
far from the y-axis, like for m = 0.6645); it meets the y-axis for a
short period of time. The point is that these specific intermediate
cycles called “canard cycles” are obtained for very sharp values
for m (8 digits in our case). See Appendix B for information about
the mathematical theory of “canards”.

Throughout this description we have said that x(t) is potentially
small when the trajectory follows the y-axis. But how small? A sim-
ple way  to depict what is going on along this axis is to plot, not (x(t),
y(t)), but (�(t), y(t)) with:

�(t) = ε ln(x(t)).

This is shown in Figs. 7 and 8. We  represent the (x, y) and the
(�, y) trajectories in the same system of axes; (x, y) trajectories are
in red, (�, y) are in green and both limit cycles in the two  systems
of representation are in blue. The two vertical red lines correspond
to x = 10−9 and 10−6 (see Appendix C for an analytical evaluation).
There are 19 trajectories starting from (2, 0.5 ± k 0.05) k = 0, 1, . . .,
9.
Let us compare the two simulations.

• Fig. 7: We look at the “large” limit cycle in the (�, y) variables and
we see that the minimum of � corresponds to x = 10−9; for the
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Fig. 6. Computer simulations of the phase portrait of system (2) in red, for different values of m. One sees that the computed solutions are very close to the schematic ones.
(For  interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ig. 7. The trajectories of the system (2) in the (x, y) variables (in red) and in the (�
 is very close to the y axe its logarithm is large and negative. (For interpretation of
his  article.)

trajectory labeled 1 the minimum is about 10−17. These incredibly

small values can be easily explained, see Appendix B.
Fig. 8: The “small” limit cycle is almost not visible in the (�, y)
variables. In both the (�, y) and the (x, y) variables the trajectories
labeled 1 to 4 look very similar. But trajectory 5 remains above

ig. 8. The trajectories of the system (2) in the (x, y) variables (in red) and in the (�, y) vari
 is very close to the y axe its logarithm is large and negative. (For interpretation of the r
his  article.)
riables (in green), i.e. log scale for x, on the same system of axes for m = 0.6. When
eferences to color in this figure legend, the reader is referred to the web version of

10−9, which is not the case in Fig. 7, and trajectory 6 does not

exist in Fig. 7.

The main difference between the case m = 0.6 and the case
m = 0.6645 is that, in the former case each trajectory is such that

ables (in green), i.e. log scale for x, on the same system of axes for m = 0.6445. When
eferences to color in this figure legend, the reader is referred to the web version of
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Fig. 9. Schematic representation of the “safety funnel”. The trajectory in red is the
one  for which the minimum of x is 10k and the limit cycle is in blue. The green arrow
shows that trajectories have to go through a very narrow funnel. (For interpretation
o
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Fig. 10. Ten runs of the process (5) (in black) and the safety trajectory (in red) for
ω  = 109. All trajectories remain below the “safety trajectory”. (For interpretation of
the references to color in this figure legend, the reader is referred to the web  version
of  this article.)

Fig. 11. Ten runs of the diffusion process (5) (in black) and the safety trajectory (in
red)  for ω = 106. All trajectories cross the “safety trajectory”. (For interpretation of

or diffusion models in continuous variables are still unavoidable. In
a diffusion model the size of the population considered is directly

Table 2
Width of the funnel and corresponding �x and �y .

ω 109 108 107 106
f  the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

he minimum of x is smaller than 10−9, unlike in the latter case
here are two sets of trajectories: those that start above trajectory

, for which the minimum will be smaller than 10−6 before reach-
ng the limit cycle, and the others, for which x(t) remains greater
han 10−6. Note that this trajectory 6 is in some places very close
o the limit cycle.

The observed differences between m = 0.6 and m = 0.6645 are
ot specific to these values. In particular the same behavior with
wo types of trajectories separated by a sharp transition is true
or all values of m between m = 0.66442561 and m = 0.6666. . ..  This
ehavior is summarized by the “safety funnel”, indicated by the
reen arrow in Fig. 9. We  give an explanation for this now. Assume
hat for some reason we do not pursue a trajectory such that the

inimum of x(t) is smaller than  ̨ = 10−k (it may  be because we
hink that the size of the population is too low in order to survive
r because we want to switch to a different-stochastic-model). The
orm  ̨ = 10−k is by no means essential for ˛, it is just to emphasize
hat  ̨ is small. There exists a unique y0 such that the solution issued
rom (∞ , y0) (in practice 2 is a good infinite value), which we  call
he “˛-safety trajectory”, is such that x(t) first decreases and attains

 first local minimum equal to 10−k. This is the red trajectory in
ig. 9. When x(t) ≈ �−1(m) (the blue vertical), the ˛-safety trajectory
ill be very close to the limit cycle (the blue trajectory). Let 	(ε, k)
enote the distance between the two curves; this quantity can be
erived from the values of ε and k. The “safety funnel” is the area
elimited by the red and the blue curves on the right of the vertical

 = �−1(m).  If a trajectory, even slightly perturbed, enters the funnel,
t has a very high probability that its x-component remains greater
han 10−k. If not, there is a danger of reaching values smaller than
0−k.

. The diffusion process in the variables (x, y) and (�, y)

In the two simulations shown in Figs. 10 and 11 we  have per-
ormed 10 runs of 20 time units duration of the process (5) starting
rom (− 2, 0.5). The results are presented in both (x, y) and (�, y)
ariables (black trajectories). In the same variables we  have simu-
ated from system (2) the “safety trajectory” corresponding to 1000
ndividuals. The “safety trajectory” was obtained by dichotomy and
he observed width 	(ε, k) of the funnel is given in Table 2 with
orresponding rough evaluations of �x and �y around the funnel.
Fig. 10:  All the runs are far below the “safety trajectory”.
Fig. 11:  All the runs are far above the “safety trajectory” and
ultimately reach the vertical line corresponding to 1 individual.
the  references to color in this figure legend, the reader is referred to the web  version
of  this article.)

We  observe that when ω decreases the strength of the randomness
increases, and at the same time the width of the funnel decreases.
These opposite trends are responsible for the sharp transition from
extinction to persistence as ω grows from 4.0 × 106 to 2.0 × 107.

6. Methodological comments

6.1. The question of population size

We  are used to the fact that continuous differential models work
rather well in fluid dynamics and chemical kinetics despite the
ultimate discrete nature of fluids. We  know that this effectiveness
is related to the very large number of atoms in the process. Von
Foerster, Lotka, Volterra and others popularized the formalism of
chemical kinetics in the domain of population dynamics; they were
certainly aware of the limits of such an approach but, in the absence
of computers and with a far less developed probability theory, it
was nevertheless the right direction.

Now, thanks to computers and probability theory, we  have good
models for small populations. Unfortunately these discrete models
are still expensive in terms of computer time, hence deterministic
	(ε, k) 1.2 × 10−3 9.0 × 10−5 5.5 × 10−5 5.3 × 10−5

�x

√
dt 4.2 × 10−5 1.4 × 10−5 4.2 × 10−5 1.4 × 10−4

�y

√
dt 4.9 × 10−9 1.4 × 10−7 4.9 × 10−7 1.4 × 10−6
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ig. 12. Comparison of the deterministic model (x in blue, y in black) and the diffus
07 (below left, right). (For interpretation of the references to color in this figure leg

elated to the “strength” (i.e. standard deviation of the random
erm).

The predator–prey interaction presented here illustrates the fact
hat the qualitative behavior of such models may  greatly depend on
opulation size even when it is very large.

.2. About the ubiquity of the phenomenon

The deterministic predator–prey model (2) approximates the
ynamics for E[x] and E[y] of the birth and death model defined
y (3) and of its diffusion approximation (5).  This model (2) is the
lassical deterministic predator–prey model proposed in textbooks
s a first improvement of the Lotka–Volterra model. The separation
f time scales for prey and predator dynamics introduced by the
resence of the parameter ε in the first equation has the following
lassical explanation. Using a change of unit time, (2) reads:

dx

d�
= [f (x) − �(x)y],

dy

d�
= ε(�(x) − ı)y, ε m = ı.

f we use the same mass unit for x and y then ε is a yield factor. A
ield factor of 0.02 is acceptable in ecology (i.e. for 1 kg of cow, 50 kg
f dry grass is needed). For bigger ε like 0.1, the sharp transition that
e depicted is still present but less spectacular.

As previously noted, we admit that our birth and death model is
uestionable with respect to its biological signification. There are
ertainly many different models for individual behavior with the
ame deterministic equation approximating the mean of the pro-
ess. Since our point relies on the diffusion approximation for such
odels, our conclusions are valid as long as such approximation is

orrect. In the case of birth and death processes, this is valid pro-
ided that the number of individuals is greater than 103–104 which
s the case. For more elaborate models, at the individual scale, for
nstance physiologically structured prey, this point remains to be
onsidered.

.3. About the existence of “canard ” solutions in the model

In a system with two  time scales like:

dx 1 dy
dt
=

ε
[f (x, y)],

dt
= g(x, y)

onsider the curve 
 defined by the equation f(x, y) = 0; this curve
plits into two regions:
proximation model (x in red, y in black) for ω = 1012, 109 (above left, right) ω = 108,
the reader is referred to the web  version of this article.)

• the attracting one made of points such that, in their neighbor-
hood, the vector field converges to 
;

• the repelling one made of points where, in their neighborhood,
the vector field diverges from 
;

and these two regions are separated by equilibria. A “canard ” solu-
tion is a solution of the differential system that follows, for some
duration, the attracting part of 
 at a distance of the order of ε and
after which, follows the repelling part at a distance of order ε. Some
“canards” are robust,  i.e. they persist under small changes in the
model, others are not.

The presence of a “safety funnel” like the one described in Sec-
tion 3 is related to the presence of two “canard solutions” in (2):

• the solution t → (x(t) = 0, y(t) = y(0)e−mt) corresponding to the
absence of prey;

• the solution following the cubic from the right to the left that
has no analytic expression but whose existence can be proved by
continuity arguments.

The first “canard” is robust but the second is not. This is the reason
why the sharp transition between 4.0 × 106 and 2.0 × 107 individ-
uals occurs for a rather short interval of values of the parameter m.
As a consequence, to some extent, our example is exceptional, not
“generic”. This will be the case in most two  dimensional systems,
but this does not invalid our point since robust “canard” – differ-
ent from trivial “canard” corresponding to the absence of some
population – are generically present for three dimension and more.

An easy way to understand this is to imagine that our parameter
m is of the form:

m(t) = a + b cos(rt)

which mimics, for instance, some seasonal dependence of the mor-
tality rate. This non autonomous system can be considered as a
three dimensional system, and we see that the “canard” value for
m is crossed periodically. We  have done a simulation in the case of:

m(t) = 0.6645 − 0.047 (1 − cos(0.1 t))

and the results are shown in Fig. 12.  For ω = 1012 we observe no
difference between the deterministic model (x in blue, y in black)
and the diffusion approximation (x in red, y in black); for ω = 109 we

observe a very slight deviation between the red and blue curves;
for ω = 108 we  observe a large difference with now a mixed mode
oscillation in the diffusion process; for ω = 107 the mixed mode
oscillation leads to extinction.
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We consider Nb as deterministic. If dt is small, the variables x(t)
and y(t) are approximately constant. Denote by Xi the random vari-
able which is equal to 1 if at the ith event a predation occurs; one
has:

P(Xi = +1) = �(x(t))y(t)
f (x(t)) + �(x(t))y(t)

,

P(Xi = 0) = f (x(t))
f (x(t)) + �(x(t))y(t)

.

F. Campillo, C. Lobry / Ecol

.4. About the inadequacy of deterministic models in continuous
ariables

In population dynamics there is agreement that deterministic
odels are simply crude approximations of reality. Only individ-

ally based models, stochastic by essence, can correctly represent
he evolution of real ecosystems. The example presented here is
ust one more argument against the danger of using deterministic
ifferential equations without care.

But it is by no means an argument against the study of continuous
eterministic differential models of populations dynamics!

Actually there are many good reasons for continuing to explore
ystems of ordinary differential equations:

Some models are mathematically appealing. For instance the
proof of the exclusion principle for the most general model
of competition in the chemostat (Smith and Waltman, 1995),
despite its poor ecological contents, remains an interesting math-
ematical challenge for mathematicians.
More interesting is the use of easily tractable mathematical mod-
els to formalize ecological issues and to clarify the discussion. An
interesting example of this use of differential equations is given
by the discussion on “ratio dependent” models initiated by Arditi
and Ginzburg (1989).
In our example, the understanding of the diffusion model, relies
on very particular and recently discovered properties of deter-
ministic differential systems, known as “canard solutions”, see
Appendix B.

n addition, far from being against the use of deterministic differ-
ntial systems, our work supports the importance of a thorough
nderstanding of the properties of ordinary differential systems

n population dynamics. In particular it shows that the classical
eterministic definition of persistence:

im sup x(t) =  ̨ > 0

ust be enriched by some consideration of the “size” of ˛.

.5. About computer simulations in dynamic population modeling

One may  ask to what extent this phenomenon of sharp transition
s just a computer artifact. This is not the case since our mathemat-
cal explanation of the phenomenon which is independent of any
omputer simulation, shows us that simulations of the same model
n a different computer with a different computer language will
ive qualitatively the same.

There is no doubt that our mathematical understanding of
he phenomena outlined in the present article will considerably
ncrease in the future. But this will require highly sophisticated

athematics and time. Unfortunately, in the mean time, biologists
ill use models and computer simulations that are not completely

afe. It urges us to provide them with computer routines that are
afe from artifacts associated with the representation of a finite
umber of individuals by real numbers. Considering present math-
matical knowledge, this certainly can be done in a comparatively
hort time but it will require many people working on the develop-
ent of safe computer software. This has been done in the past for
he needs of industry (for instance digital wind tunnels), medicine
medical imaging); this also could be done for population dynamics,
ut it is dependent on decisions at the level of scientific policymak-

ng.
 Modelling 246 (2012) 1– 10

7. Conclusion

Scientists are now much familiar with the phenomenon of
“sensitivity to initial conditions” which, in some deterministic
dynamical systems, is the cause of unpredictable long range
behaviors. The same phenomenon occurs in some deterministic
differential equations modeling the dynamic behavior of popu-
lations where very small differences in the initial condition (or
along the trajectory) will make the future values of some vari-
ables very small or not. This is the reason why, in the modeling
of population dynamics, it is well-advised to add a small noise to
the deterministic process; indeed it does not cost too much com-
puter time and may  detect this kind of phenomenon. But we  have
shown that the result may  depend strongly on the intensity of the
noise. In addition, when no accurate estimation of the noise inten-
sity is available, it would be prudent to vary the noise intensity
and to make sure that the behavior of the system is not strongly
affected.
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Appendix A. Approximation by a diffusion process

Consider the process defined by (3).  Since Z follows an
exponential distribution law of parameter � its expectation is
1
� and the number Nb of events during the duration dt is
approximately:

Nb ≈ dt

(1/�)
=  dt � = dt

ω

ε
(f (x) + �(x)y).
The number of predations during [t, t + dt]  is approximately
∑Nb

i=1Xi

and the number of births is by the way of Nb −
∑Nb

i=1Xi and the

increment of the number of individuals is Nb − 2
∑Nb

i=1Xi.

http://www.team.inria.fr/modemic/
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One has:

E[Xi] = �(x(t))y(t)
f (x(t)) + �(x(t))y(t)

,

E[

Nb∑
i=1

Xi] = dt
ω

ε
(f (x(t)) + �(x(t))y(t))

�(x(t))y(t)
f (x(t)) + �(x(t))y(t)

= dt
ω

ε
�(x(t))y(t),

�2(Xi) = f (x(t))�(x(t))y(t)

(f (x(t)) + �(x(t))y(t))2
,

�2(

Nb∑
i=1

Xi) = dt
ω

ε
(f (x(t)) + �(x(t))y(t))

f (x(t))�(x(t))y(t)

(f (x(t)) + �(x(t))y(t))2
,

�2(

Nb∑
i=1

Xi) = dt
ω

ε

f (x(t))�(x(t))y(t)
(f (x(t)) + �(x(t))y(t))

.

rom the central limit theorem we can approximate the sum by a
aussian random variable and we write:

Nb

i=1

Xi ≈ dt
ω

ε
�(x(t))y(t) +

√
dt

ω

ε

f (x(t))�(x(t))y(t)
(f (x(t)) + �(x(t))y(t))

Wt

here Wt is a Gaussian variable of mean 0 mean and standard
eviation 1.

Since the variable x is the number of individuals divided by ω;
he increment of x is given by:

x(t + dt) − x(t) = 1
ω

(Nb − 2

Nb∑
i=1

Xi) ≈ 1
ω

{
Nb − 2

{
dt

ω

ε
�(x(t))y(t)

+
√

dt
ω

ε

f  (x(t))�(x(t))y(t)
(f (x(t)) + �(x(t))y(t))

Wt

}}

nd replacing by the value of Nb one gets:

x(t + dt) − x(t) ≈ dt
1
ε

[f (x(t)) − �(x(t)) y(t)]

−
√

dt
4

ωε

f  (x(t))�(x(t))y(t)
(f (x(t)) + �(x(t))y(t))

Wt.

Let us now compute the increment of y. According to (3c) we
ave:

(t + dt) = y(t) − dt m y(t) + ε{number of prey death during

× [t, t + dt]}
hich, according to the previous notations is:

(t + dt) − y(t) = −dt my(t) + ε

ω

Nb∑
i=1

Xi

nd introducing Wt one gets:

y(t + dt) − y(t) ≈ dt [�(x(t)) − m]y(t)

+
√

dt
ε

ω

f (x(t))�(x(t))y(t)
(f (x(t)) + �(x(t))y(t))

Wt.

ppendix B. “Canard solutions”

As already stated, “canards” are specific solutions in singular

erturbations of differential equations. They were discovered in
981 by a group of students of G. Reeb (Benoıt et al., 1981). The word
canard” comes from the fact that the first discovered “canard solu-
ion” was responsible for the existence of a limit cycle in the Van
 Modelling 246 (2012) 1– 10 9

der Pol equation and the shape of this limit cycle looked like a cari-
cature of a duck: “canard” is the French word for duck. They studied
“canard solutions” within the framework of Nonstandard Analysis,
which is a very suitable framework for modeling since it is a simple
formal language where the use of infinitesimals, in the sense which
physicists use this term, is mathematically rigorous; see Lobry and
Sari (2007) for nonstandard analysis applied to real word questions.
Since the tradition among mathematicians is not to use nonstan-
dard analysis, “canard solutions” are now also studied by numerous
mathematicians within the classical framework of matched asymp-
totic expansion or of the geometric singular perturbation theory.  The
reader who wants to know more about “canard solutions” and
related subjects is encouraged to read Wechselberger (2007) which
is a scholarpedia article and is available on the web. It is a succinct
and very nice introduction.

The reference Desroches et al. (2012) is a thorough survey, for
mathematically trained people, about our present understanding
of “canards” with a focus on numerical questions. The question of
considering the presence of noise in singularly perturbed systems
has long been addressed. We  refer to the recent article Berglund
et al. (2012) devoted to the question of the consequence of noisy
environments on “canard solutions” and its bibliography. In partic-
ular the results contained in this article allow us to give asymptotic
evaluations of the width of the “safety funnel” and of many other
quantities of interest. However, their mathematical sophistication
is out of the scope of the present work.

Appendix C. Exponentially small values

Let us write explicitly system (2) as:

⎧⎪⎨
⎪⎩

dx

dt
= 1

ε

[
0.5x(2 − x) − x

0.4 + x
y
]

,

dy

dt
=

(
x

0.4 + x
− m

)
y.

(C.1)

In the variables (�, y) the system writes:⎧⎪⎪⎨
⎪⎪⎩

d�

dt
= 0.5(2 − exp(�/ε)) − 1

0.4 + exp(�/ε)
y,

dy

dt
=

(
exp(�/ε)

0.4 + exp(�/ε)
− m

)
y.

When � < 0, which is the case since we are interested by x < 1, and
when |�| 	 ε we  have exp(�/ε) 
 1 and thus we  can neglect this
term and approximate the system by:⎧⎪⎨
⎪⎩

dx

dt
= [1 − 2.5y],

dy

dt
= −my.

(C.2)

Explicit solutions of this last system are easily computed from
which one can compute an estimation for the minimum of �*. For
instance, if we  take as initial condition (�0, y0) = (−0.1, 0.9), which
corresponds to trajectory No. 1 in Fig. 7, then this minimum is
approximatively 1, as seen in Fig. 7. Moreover, the minimum x*

is of the order of:

x∗ = e�∗/0.02 ≈ e−40 ≈ 10−17.
The minimum depends greatly on the value of y0: The largest is
y0 the smallest is the minimum. This explain why  in Fig. 8 the
minimum corresponding to trajectory 6 is much bigger.
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ppendix D. Numerical simulations

We  have not made use of a numerical solver. A specific software
as written in order to be sure that there were no artifacts caused

y the erroneous use of some sophisticated numerical scheme.
rajectories of the differential equations (2) are obtained using
he Euler scheme defined by (6).  We  prefer this scheme to more
ophisticated ones since it is the exact recurrence scheme which
pproximates for E[x(t)] and E[y(t)] of the diffusion process (5).

We  fixed dt = 10−4 since we observed that for this value the
olutions of (6) are indistinguishable from those with dt = 10−5.

The birth and death process defined by (3) takes too long to be
imulated when � is very large, in the case of our computer ω > 106.
his is why we used a diffusion approximation which is a perfect
pproximation for large values. Since we were mainly interested in
he funnel phenomenon associated to “canard ” it was not necessary
o switch to the true birth and death process for small values of �.
ut if one is interested in such figures as the mean of the extinction
ime, it would be better to switch to some suitable jump process.
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