
MAMERN11: 4th International Conference on Approximation Methods
and Numerical Modelling in Environment and Natural Resources
Saidia (Morocco), May 23-26, 2011

Stochastic models for the chemostat

Fabien Campillo1, Marc Joannides1,2 and Irène Larramendy-Valverde2

1 Project–Team MERE, INRIA/INRA, UMR MISTEA, Montpellier
Fabien.Campillo@inria.fr

2 Université Montpellier 2 / I3M
marc.joannides@univ-montp2.fr and larra@math.univ-montp2.fr

Keywords: stochastic differential equations, chemostat, pure jump process, diffusion approx-
imation, tau-leap method, Monte Carlo method, Gillespie algorithm.

Abstract. The chemostat is classically represented, at high population scale, as a system
of ordinary differential equations. Our goal is to establish a set of stochastic models that are
valid at different scales: from the small population scale to the scale immediately preceding
the one corresponding to the deterministic model. At a microscopic scale we present a pure
jump stochastic model that gives rise, at the macroscopic scale, to the ordinary differential
equation model. At an intermediate scale, an approximation diffusion allows us to propose a
model in the form of a system of stochastic differential equations.

1 Introduction

The dynamics of a single species/single substrate chemostat is usually described by a set
of ordinary differential equations (ODE) derived from a mass balance principle, see [4, 1]. If
s(t) denotes the concentration of nutrient (substrate) and b(t) the concentration of the organism
(biomass) at time t (expressed in g/L), then the couple x(t) = (b(t), s(t)) is the solution of:

ḃ(t) = [µ(s(t))−D] b(t) , (1a)

ṡ(t) = −k µ(s(t)) b(t) +D [sin − s(t)] (1b)

where D > 0 is the dilution rate, sin > 0 the substrate concentration in the influent, and
k > 0 the stoichiometric coefficient. The initial condition lies in the positive orthant, that is
b(0) ≥ 0 and s(0) ≥ 0. Equation (1) will also be denoted: ẋ(t) = f(x(t)). The specific
growth rate function µ(s) is non-negative; we suppose that µ(0) = 0, µ(s) > 0 for s > 0,
µ(s) ≤ µmax <∞ and that it is continuous at 0. Commonly used models are the Monod model
(uninhibited growth) and the Haldane model (inhibited growth).

The modeling process that leads to (1) relies on the fact that the stochastic effects can be
neglected. This is possible only at macroscopic scale, for high population sizes, and under
homogeneity conditions. At all other scales or when the homogeneity conditions is not met,
random effects cannot be neglected.
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2 Pure jump model Xt = (Bt, St)

We consider aggregated jumps obtained by adding up small and frequent jumps resulting
from individual events. The resulting stochastic process will be a pure jump process Xt =
(Bt, St), fully determined by its jumps and the corresponding jump rates; the state variable
will be denoted x = (b, s). We consider five jumps: À biology term: biomass increase of
size ν1(x) at rate λ1(x); Á biology term: substrate decrease of size ν2(x) at rate λ2(x); Â

inflow term: substrate inflow of size ν3(x) at rate λ3(x); Ã outflow term: biomass outflow of
size ν4(x) at rate λ4(x); Ä outflow term: substrate outflow of size ν5(x) at rate λ5(x). We
propose:

À Á Â Ã Ä
biomass increase substrate decrease substrate biomass substrate

biology inflow outflow

rate λi(x) K1 µ(s) b K2 k µ(s) b K3Dsin K4D b K5D s

jump νi(x)

(
1
K1

0

)
−
(

0
1∧K2 s

K2

) (
0
1
K3

)
−
(

1∧K4 b
K4

0

)
−
(

0
1∧K5 s

K5

)

This choice comply with the mass balance principle and the stochastic mass action law [6].
Note that the jumps νi(x) essentially do not depend on x except for the negative jumps near
the border {(b, s) ∈ R2

+; b = 0 or s = 0}.

3 Stochastic differential representation of Xt

The process Xt can also be described as the solution of a stochastic differential equation.
Indeed, Xt is in fact a Markov process that can be represented as the following (jump) SDE:

Xt = X0 +

5∑
i=1

∫
(0,t]×[0,∞)

νi(Xu−) 1{v≤λi(Xu− )}N
i(du× dv) (2)

whereN i are independent random Poisson measures with intensity measure du×dv (Lebesgue
measure). We can easily derived the following semi-martingale decomposition:

Xt = X0 +

∫ t

0
fK(Xu) du+

5∑
i=1

M i
t (3)

where fK(x)
def
=
∑5

i=1 νi(x)λi(x) and M i
t are five independent square-integrable martingales

with zero mean given by: M i
t

def
=
∫ t

0

∫∞
0 νi(Xu−) 1{v≤λi(Xu− )} Ñ

i(du × dv), i = 1 · · · 5
and Ñ i(du × dv)

def
= N i(du × dv) − du × dv are centered random Poisson measures. The

infinitesimal generator of the process Xt is:

Aφ(x) =

5∑
i=1

λi(x) [φ(x+ νi(x))− φ(x)] = λ(x)

∫
R2
+

[φ(y)− φ(x)] ρ(x, dy) (4)

for all φ : R2
+ 7→ R continuous with compact support, where:

λ(x)
def
=
∑5

i=1 λi(x) , ρ(x, dy)
def
=
∑5

i=1 λ̄i(x) δx+νi(x)(dy) , λ̄i(x)
def
= λi(x)∑5

i′=1 λi′ (x)
.

The non-explosion and existence of moments for the process Xt is detailed in [1].
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To describe how the processXt can be simulated, let τ0 = 0 and τn = inf{t > τn−1 ; Xt 6=
Xτn−1} and Yn = Xτn . It is well know that (i) Yn is a Markov chain on R2

+ with transition
probability ρ(x, dy); (ii) for all n ≥ 1, conditionally on Y0, . . . , Yn−1, the holding times
τ1 − τ0, . . . , τn − τn−1 are independent and exponentially distributed of intensity parameters
λ(Y0), . . . , λ(Yn−1). So the algorithm consists in successively simulating the holding times
tn−1− tn−1 ∼ Exp(λ(Xtn−1)) and to sample the new state according to Xtn ∼ ρ(Xtn−1 , dy).

4 Discrete time approximations

For any small ∆t > 0 given, let tn = n∆t. We propose a discrete time Poisson approxi-
mation (X̃tn)n≥0 of (Xt)t≥0: on the interval [tn, tn+1) we froze the rate functions λi(Xt) to
λi(Xtn) so that we get a Poisson distribution. The jumps νi(Xt) are also frozen to νi(Xtn).
Let X̃0 = X0, the approximation is defined by:

X̃tn+1 = X̃tn +
∑5

i=1 νi(X̃tn)P in(∆t λi(X̃tn)) (5)

where (P in(ρ))n∈N,i=1···5 are independent Poisson variables with intensities ρ. We have:

E[X̃tn+1 |X̃tn = x] = x+ fK(x) . (6)

In other words, the infinitesimal increments of the conditional mean follow the O.D.E. (1).
Also:

cov[X̃tn+1 |X̃tn = x] =
∑5

i=1 cov[νi(x)P in(∆t λi(X̃tn))|X̃tn = x] =
(

Σ̃2
1 0

0 Σ̃2
2

)
(7)

with Σ̃2
1 = ∆t

{
1
K1

µ(s) b + 1
K4

(1 ∧K4 b)
2D b

}
and Σ̃2

2 = ∆t
{

1
K2

(1 ∧K2 s)
2 k µ(s) b +

1
K3

Dsin + 1
K5

(1 ∧K5 s)
2Ds

}
.

In (5), the variable P in(∆t λi(x)) is Poisson distributed with parameter ∆t λi(x). When
this parameter is large (greater than 10 or 20) then this last distribution is very close to the
normal distribution of mean ∆t λi(x) and variance ∆t λi(x). Hence, we get a (discrete time)
normal approximation (ξ̃tn)n≥0 of (Xt)t≥0 by letting ξ̃0 = X0 and, conditionally on ξ̃tn−1 =

x: ξ̃tn+1 = x +
∑5

i=1 νi(x)N i
n where N i

n are 5 independent Gaussian random variables :
N i
n ∼ N (λi(x) ∆t , λi(x) ∆t). So conditionally on ξ̃tn = x, ξ̃tn+1 is normal with mean (6)

and covariance matrix (7). Let ξ̃tn = (β̃tn , σ̃tn), given β̃tn = b and σ̃tn = s:

β̃tn+1 = b+
[
µ(s)− (1 ∧K4 b)D

]
b∆t+

√
∆t µ(s) b

K1
w1
n +

√
∆t (1∧K4 b)2D b

K4
w4
n (8a)

σ̃tn+1 = s+
[
− (1 ∧K2 s) k µ(s) b+Dsin − (1 ∧K5 s)Ds

]
∆t

+
√

∆t (1∧K2 s)2 k µ(s) b
K2

w2
n +

√
∆t D sin

K3
w3
n +

√
∆t (1∧K5 s)2D s

K5
w5
n (8b)

where win are i.i.d. N (0, 1). In both approximations (5) and (8), a mechanism that forces the
processes X̃tn or ξ̃tn to stay within the positive orthant R2

+ should be used.

5 Diffusion model ξt = (βt, σt)

System (8) is the Euler-Maruyama time discretization of the diffusion process ξt = (βt, σt)
solution of the following SDE:

dβt =
[
µ(σt)−D

]
βt dt+

√
µ(σt)βt
K1

dW 1
t +

√
Dβt
K4

dW 4
t

dσt =
[
− (1 ∧K2 σt) k µ(σt)βt +D (sin − σt)

]
dt

+
√

k µ(σt)βt
K2

dW 2
t +

√
D sin

K3
dW 3

t +
√

Dσt
K5

dW 5
t
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where for large Ki’s the terms (1 ∧K4 βt), (1 ∧K2 σt), (1 ∧K5 σt) are replaced by 1; and
where W i

t are independent standard Wiener processes. Existence and uniqueness issues for
this equation, as well as its behavior near the axes, are detailed in [1].

6 Discussion

In contrast with previous stochastic chemostat models [5, 2, 3] where the stochasticity
was introduced according to an ad hoc approach, in the present work we propose a family
of models where the structure of the noise emerges from the very dynamics and where the
scale parameters can be tuned according to the problem under interest. In particular it allows
us to propose hybrid models where the cell population dynamics features stochasticity as the
substrate is in fluid dynamics (ODE).

The approach proposed here can be applied to any model of population dynamics espe-
cially in cases of difference of scale between the different dynamics (e.g. cell/substrate). The
dynamics of interacting populations cannot be modeled by a single model but rather by a
family of models whose domain of validity depends on the scale at which the dynamics are
considered. For example the normal approximation model or the ODE model are valid in high
population levels, hence using such models to infer extinction characteristics like extinction
time and extinction probabilities is not valid.

The SDE model is adapted for the confrontation to the data as it allows us to build a sta-
tistical model and the associated likelihood function. One of the next important steps, that we
will investigate in coming work, will be to propose an adapted statistical procedure to estimate
the scale parameters Ki, and in a second step to estimate the parameters (D, sin...). In the
future we will also investigate the long-term behavior of these models as well as their optimal
command.
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