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Abstract. We propose an IBM for clonal plant dynamics, focusing on the
effects of the network structure of the plants on the reproductive strategy of
ramets. After some numerical tests we propose a large population approxima-
tion as an advection-diffusion PDE for population densities.

1 The model

Individual-based models are in constant development in computational ecol-
ogy. These models aim to represent the dynamics of populations, they explic-
itly describe each individual as well as each mechanism acting on these indi-
viduals. Here we consider a model for a clonal plant: At time t it is represented
as a set of nodes (ramets) that may be connected by links (rhizomes or stolons),
see Figure 1. The state of the nodes is described by:

νt =
∑Nt

i=1 δxit , xit ∈ D
def
= [x

(1)
min, x

(1)
max]× [x

(2)
min, x

(2)
max]
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Figure 1: The plant is represented as a set of nodes connected by links. The nodes can
be seen as ramets and the links as rhizomes.

where xit is position of the ith node and Nt total number of nodes. For any
node at position x we define the set of indices of the nodes connected to x:
J(t, x) = {i = 1 · · ·Nt ; x and xit are connected}. The plant evolves in a
resource landscape. At each time t, this resource is represented by r(t, x) ∈
[0, rmax] the available resources at position x ∈ D. The nodes accessing high
levels of resources r(t, x) are more likely to give birth to new nodes.

Birth and death rates. Each node of νt in position x may disappear at a
rate µ(t, x) and give birth to a new node at a rate λ(t, x). These rates are per
capita rates. Death and birth rates at population level are respectively: λ̄t =∑Nt

i=1 λ(t, xit) and µ̄t =
∑Nt

i=1 µ(t, xit). The global event rate is κt = µ̄t + λ̄t.
When a node is added to the population, it is always linked with the mother

node, and the set of connections J(t, xit) corresponding to the mother node and
the new node are modified accordingly. In addition, when a node x is removed
from population, all connections to x are suppressed from all the sets J(t, xit).

Dispersion kernel. A node at position x at time t gives birth to a new node
at position y = x+ v according to the following p.d.f.:

Dt,x(v) = f(‖dt,x‖, (dt,x, v)) g(‖v‖) (1)

where (dt,x, v) is the angle between a preferred direction of reference dt,x and
the direction of the new shoot v, f(a, θ) is a p.d.f. on [−π, π) for all a ≥ 0;
and g(‖v‖) is the p.d.f. on the length ‖v‖ of the connection.

For the preferred direction of reference dt,x, we need to account for the fact
that the ramet can “perceive” the resource map from the connections with other
ramets, for example because of resource translocations. A possible choice is
dt,x = 1

|J(t,x)|
∑

i∈J(t,x)
r(t,xit)−r(t,x)

|xit−x|2
[xit − x], i.e. an approximation of the

resource gradient based on the values of r(t, x) at x and at the connected nodes.
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Interactions between nodes and resources. The natural way to model re-
source concentration is as a density function r(t, x) over the domain D. Cou-
pling (discrete) individual dynamics with resource density dynamics is a non-
standard problem which requires a choice. We propose the following model:

∂t r = div
(
a∇r

)
+ b · ∇r− rα

∑Nt
i=1 Γxit (2)

with r(0, x) = r0(x) and Γy(x) = exp
(
− 1

2σ2
r
|x− y|2

)
.

2 Numerical approximation of the IBM

Starting from the state νTk−1
=
∑

i=1···NTk−1
δxiTk−1

at last event time

Tk−1, we first sample the time of the next event (birth or death): Tk = Tk−1+S
with S ∼ Exp(λ̄Tk−1

+ µ̄Tk−1
). The next event:

• is a birth with probability
λ̄Tk−1

λ̄Tk−1
+µ̄Tk−1

. Then sample ı̂ according to

{λ(Tk−1, x
i
Tk−1

)/λ̄Tk−1
; i = 1 · · ·NTk−1

} and v according to the p.d.f.
DTk−1,x̂

ı
Tk−1

(v), finally let: νTk = νTk−1
+ δ(x̂ı

Tk−1
+v);

• is a death with probability
µ̄Tk−1

λ̄Tk−1
+µ̄Tk−1

. Then sample ı̂ according to

{µ(Tk−1, x
i
Tk−1

)/µ̄Tk−1
; i = 1 · · ·NTk−1

}, let: νTk = νTk−1
− δx̂ı

Tk−1

;

then update the sets of connections J(Tk, x) accordingly. In parallel, we
should numerically integrate the PDE (2).

The proposed model can account for conventional phalanx or guerrilla dy-
namics. More specifically, in (1): if the p.d.f. f(a, θ) of the shoot angle has a
small (resp. large) variance and if the p.d.f. g(‖v‖) favors large (resp. small)
lengths, then the model will present the characteristics of a guerrilla (resp.
phalanx) plant (see Figure 2).

3 Large population approximation of the IBM

The more relevant scaling within the context of phalanx-type clonal plants
is the space-scaling and acceleration of births and deaths which leads to a
reaction-diffusion PDE for population densities (see [2] for other possible scal-
ings). In this case, the PDE approximation of the IBM takes the following
form: denoting by u(t, x) the population density at time t and position x in D,

∂tu = β∆(γ u) + (λ− µ)u− div(γ F (x,∇r)u) ,

∂tr = ∇(a r) + b · ∇r− δ ru ,
u(t, x) = r(t, x) = 0, ∀x ∈ ∂D.
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Figure 6: If the shoot angle p.d.f. f(a, θ) has a large variance (resp.
small variance) and if the p.d.f. g(�v�) favors small lengths (resp.
large lengths), then the model will present the characteristics of a
phalanx growth strategy (resp. guerrilla growth strategy).

for the first point (because the plant grows along straight
lines), but inefficient for the second point. Pure Phalanx
strategies are less efficient for the first point, but more effi-
cient for the second point (as they grow in all directions).
We explore a range of intermediate strategies simply by
varying the variance of the shoot angle distribution f . A
small variance means that the plant grows nearly along
straight lines and has a very small probability to change
its growth direction. A large variance corresponds to the
case where the graph structure has no influence on the
population dynamics, i.e. the case where f is the uniform
distribution on [0, 2π).

As expected, the simulations of Figure 8 show that
there is an optimal tradeoff: when the shoot angle p.d.f.
is not directive enough or too directive, the plant fails
to reach areas with high level of resources; in intermedi-
ate cases, the plant reaches these areas and reaches them
rapidly.
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Figure 7: Typical graph patterns for the guerrilla and the phalanx
cases. In Figure 9 we present an example where the number of
connexions per node is limited.

5. Large population approximation of the IBM

Individual-based models are a convenient tool for mod-
eling small-scale ecological systems. However, their simu-
lation is often costly and can hardly provide relevant field-
scale informations in reasonable computational time. This
is typically the case for phalanx-type clonal plants, where
the connection length is often short and the plant architec-
ture is dense. In order to understand the global interaction
between plants and resources, the search for simpler ap-
proximation models is crucial.

One then typically seeks for partial differential equa-
tions (PDE) governing the time dynamics of the popula-
tion density over space, obtained in a limit of large pop-
ulation. This has been done under various scalings of the
individual parameters for plants systems without network
structure (Fournier and Méléard, 2004; Champagnat et al.,
2006, 2008). Three main families of scalings were described
in the second paper: in the first scaling, space is unscaled,
leading to a non-local integro-differential equation for the
population density; in the second one, space is scaled, and
births and deaths are accelerated accordingly in order to
obtain a limit, which takes the form of a local reaction-
diffusion PDE; in the last scaling, births and deaths are
even more accelerated, leading to a stochastic reaction-
diffusion PDE.

Because of the underlying network structure and the
explicit coupling with resource dynamics, these results do
not apply directly to our IBM. Similar results can be ob-
tained in network-structured populations (Campillo and
Champagnat, 2010), but without explicit dynamics for the
resources. The result we present here is a first attempt to
fill this gap. A full mathematical proof is likely to be very
technical because our model couples a stochastic, discrete
structure for the population and a deterministic, contin-
uous structure for resource concentrations. We leave this
proof as an open problem and only present and justify
our macroscopic model as a reasonable large population
approximation of the IBM.
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Figure 6: If the shoot angle p.d.f. f(a, θ) has a large variance (resp.
small variance) and if the p.d.f. g(�v�) favors small lengths (resp.
large lengths), then the model will present the characteristics of a
phalanx growth strategy (resp. guerrilla growth strategy).

for the first point (because the plant grows along straight
lines), but inefficient for the second point. Pure Phalanx
strategies are less efficient for the first point, but more effi-
cient for the second point (as they grow in all directions).
We explore a range of intermediate strategies simply by
varying the variance of the shoot angle distribution f . A
small variance means that the plant grows nearly along
straight lines and has a very small probability to change
its growth direction. A large variance corresponds to the
case where the graph structure has no influence on the
population dynamics, i.e. the case where f is the uniform
distribution on [0, 2π).

As expected, the simulations of Figure 8 show that
there is an optimal tradeoff: when the shoot angle p.d.f.
is not directive enough or too directive, the plant fails
to reach areas with high level of resources; in intermedi-
ate cases, the plant reaches these areas and reaches them
rapidly.
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Figure 7: Typical graph patterns for the guerrilla and the phalanx
cases. In Figure 9 we present an example where the number of
connexions per node is limited.

5. Large population approximation of the IBM

Individual-based models are a convenient tool for mod-
eling small-scale ecological systems. However, their simu-
lation is often costly and can hardly provide relevant field-
scale informations in reasonable computational time. This
is typically the case for phalanx-type clonal plants, where
the connection length is often short and the plant architec-
ture is dense. In order to understand the global interaction
between plants and resources, the search for simpler ap-
proximation models is crucial.

One then typically seeks for partial differential equa-
tions (PDE) governing the time dynamics of the popula-
tion density over space, obtained in a limit of large pop-
ulation. This has been done under various scalings of the
individual parameters for plants systems without network
structure (Fournier and Méléard, 2004; Champagnat et al.,
2006, 2008). Three main families of scalings were described
in the second paper: in the first scaling, space is unscaled,
leading to a non-local integro-differential equation for the
population density; in the second one, space is scaled, and
births and deaths are accelerated accordingly in order to
obtain a limit, which takes the form of a local reaction-
diffusion PDE; in the last scaling, births and deaths are
even more accelerated, leading to a stochastic reaction-
diffusion PDE.

Because of the underlying network structure and the
explicit coupling with resource dynamics, these results do
not apply directly to our IBM. Similar results can be ob-
tained in network-structured populations (Campillo and
Champagnat, 2010), but without explicit dynamics for the
resources. The result we present here is a first attempt to
fill this gap. A full mathematical proof is likely to be very
technical because our model couples a stochastic, discrete
structure for the population and a deterministic, contin-
uous structure for resource concentrations. We leave this
proof as an open problem and only present and justify
our macroscopic model as a reasonable large population
approximation of the IBM.
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Figure 2: If the shoot angle p.d.f. f(a, θ) has a large variance (resp. small variance)
and if the p.d.f. g(‖v‖) favors small lengths (resp. large lengths), then the model
will present the characteristics of a phalanx growth strategy (resp. guerrilla growth
strategy).
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ual stochastic processes to macroscopic models in adaptive evolution.
Stochastic Models 24, Suppl. 1, 2–44.


	The model
	Numerical approximation of the IBM
	Large population approximation of the IBM

