
S

F
a

b

a

A
R
R
A
A

K
S
C
P
D
T
M
G

1

t
a
m
b
b
o
f
M
s
t
o

b

s

w
i

V

m

B

0
d

Ecological Modelling 222 (2011) 2676– 2689

Contents lists available at ScienceDirect

Ecological  Modelling

journa l h o me  pa g e: www.elsev ier .com/ locate /eco lmodel

tochastic  modeling  of  the  chemostat

.  Campilloa,∗, M.  Joannidesa,b,1, I.  Larramendy-Valverdeb,1

MERE Project-team, INRIA/INRA, UMR  MISTEA, Montpellier, France
Université Montpellier 2/I3M, Montpellier, France

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 16 January 2011
eceived in revised form 21 April 2011
ccepted 26 April 2011
vailable online 12 June 2011

eywords:

a  b  s  t  r  a  c  t

The  chemostat  is  classically  represented,  at large  population  scale,  as  a  system  of  ordinary  differential
equations.  Our  goal  is  to  establish  a  set  of  stochastic  models  that  are  valid  at different  scales:  from  the
small  population  scale  to  the  scale  immediately  preceding  the  one  corresponding  to  the  deterministic
model.  At a microscopic  scale  we  present  a pure  jump  stochastic  model  that  gives  rise,  at  the  macroscopic
scale,  to  the  ordinary  differential  equation  model.  At  an  intermediate  scale,  an  approximation  diffusion
allows  us  to  propose  a model  in the  form  of  a system  of  stochastic  differential  equations.  We  expound  the
mechanism  to  switch  from  one  model  to another,  together  with  the  associated  simulation  procedures.
tochastic differential equations
hemostat
ure jump process
iffusion approximation
au-leap method
onte Carlo method

We  also  describe  the domain  of  validity  of  the  different  models.
© 2011 Elsevier B.V. All rights reserved.
illespie algorithm

. Introduction

The chemostat, also known as the continuous stirred tank reac-
or, was independently invented by Monod (1950) and Novick
nd Szilard (1950).  A complete derivation of the simple chemostat
odel, with a single species and a single substrate, was  proposed

y Herbert et al. (1956);  a complete analysis of this model could
e found in Smith and Waltman (1995).  The evolution of the state
f a simple chemostat is usually described by a set of ordinary dif-
erential equations (ODE) derived from a mass balance principle.

ore precisely, if s(t) denotes the concentration of nutrient (sub-
trate) and b(t) the concentration of the organism (biomass) at time

 (expressed in g /L), then the couple x(t) = (b(t), s(t)) is the solution
f the following ODE:

˙ (t) = [�(s(t)) − D]b(t), (1a)
˙ (t) = −k�(s(t))b(t) + D[sin − s(t)] (1b)

here D > 0 is the dilution rate, sin > 0 the substrate concentration
n the influent, and k > 0 the stoichiometric coefficient. The initial
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iala, 34060 Montpellier Cedex 01, France.
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ataillon, 34095 Montpellier Cedex 5, France.
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condition lies in the positive orthant, that is b(0) ≥ 0 and s(0) ≥ 0.
Eq. (1) will also be denoted:

ẋ(t) = f (x(t)).

The specific growth rate function �(s) is non-negative; we  sup-
pose that �(0) = 0, �(s) > 0 for s > 0, �(s)≤ �max < ∞ and that it is
continuous at 0. Commonly used models are the Monod model
(uninhibited growth) �(s) = �maxs/(ks + s) and the Haldane model
(inhibited growth) �(s) = �maxs/(ks + s + s2/ki) (Smith and Waltman,
1995).

The modeling process that leads to (1) relies on the fact that the
stochastic effects can be neglected or averaged out, thanks to the
law of large numbers. This is possible only at macroscopic scale,
for large population sizes, and under homogeneity conditions. At
all other scales or when the homogeneity conditions are not met,
random effects cannot be neglected. This is the case at microscopic
scale, in small population size, as well as all scales preceding the
one where (1) is valid. This is also when the homogeneity condi-
tion is not met, e.g. in unstirred conditions. Also the accumulation
of small perturbations in the context of multi-species could not be
neglected. Moreover, whereas the experimental results observed
in well mastered laboratory conditions match closely the ODE the-
oretical behavior, a noticeable difference may  occur in operational

conditions.

So, even if the description (1) is sufficient for a number of appli-
cations of interest, it does not account for the stochastic aspects
of the problem; we  aim to build a model that still relies on a mass

dx.doi.org/10.1016/j.ecolmodel.2011.04.027
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:Fabien.Campillo@inria.fr
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alance principle and that encompasses the useful stochastic infor-
ation.
A few papers have already addressed the stochastic modelling

f the chemostat. Crump and O’Young (1979) proposed a pure jump
rocess model for the biomass dynamics coupled with an ODE for
he substrate. They described the associated stochastic simulation
lgorithm, also known as Gillespie algorithm, to simulate trajec-
ories of the population size and of the substrate concentration.
hey derived the approximation of the two first moments condi-
ioned upon the non-extinction of the cell population, and also the
istribution for the waiting time to the population changeover.

Independently, Stephanopoulos et al. (1979) considered a two
opulations chemostat with random fluctuations of the dilution
ate about a value D̄ that allows coexistence. They replaced D in
1) by D̄+ Ẇt where Ẇt is a white Gaussian noise (i.e. formally
he time-derivative of a Wiener process). Analytical and numeri-
al solutions of the associated Fokker–Planck equation prove that
xtinction of one of the two populations will eventually take place.

More recently Grasman and De Gee (2005) proposed a stochas-
ic model for the dynamics of a chemostat with three trophic levels
here the stochasticity appears only in the top level trophic as

 stochastic logistic model and with fluid limit dynamics for the
wo other levels. A diffusion model of the process is formulated
nd with singular perturbation methods applied to the correspond-
ng Fokker–Planck equation an estimate of the expected extinction
ime of the population at top level trophic is derived. In this model,
he stochastic differential equation is derived as a diffusion approx-
mation of a birth and death process.

Finally (Imhof and Walcher, 2005) introduced a variant of the
eterministic single-substrate chemostat model for which the per-
istence of all species is possible. To derive a stochastic model
hey considered a discrete-time Markov process with jumps cor-
esponding to the deterministic system added with a centered
aussian term, letting the time step converges to zero leads to a sys-

em of stochastic differential equations. They proved that random
ffects may  lead to extinction in scenarios where the deterministic
odel predicts persistence; they also established some stochastic

ersistence results.
These three last works propose to superimpose a stochastic term

n Eq. (1) in order to model the uncertainty on the phenomenon,
rincipally due to imprecise experimental conditions. We  propose

nstead to consider the stochastic aspect at the very beginning of the
odeling process like in Crump and O’Young (1979).  This approach

s not individual-based per se, as it starts from the macroscopic
odel (1). However, the first stochastic model proposed will be

escribed at the individual level. This method will allow for a justi-
cation of the specific structure of the stochastic perturbation that
ffects the mean behavior. More generally, we  will outline a mod-
ling strategy based on many available tools, either stochastic or
eterministic, depending on the regularity of the phenomenon to
e modeled. In this paper we focus on the modeling and simulation
rocess rather than on the mathematical developments; moreover
e make use of known mathematical results. Our goal is to estab-

ish a set of stochastic models that are valid at the scales where the
eterministic model (1) is not.

The paper is organized as follows: in Section 2, we recall the
rigin of model (1) and the assumptions ensuring its validity. We
how that since different timescales naturally appear in the prob-
em, these assumptions need to be checked at each scale. Section

 is devoted to the different models: the pure jump description
hat will be considered as the reference model is introduced in Sec-
ion 3.1; the discrete time approximation, Poisson and normal, are

resented in Section 3.2; the discrete-time normal approximation
ppeared to be a time discretization of a diffusion process given by a
tochastic differential equation presented in Section 3.3.  In Section
.4 we describe the asymptotic results that bridge these different
lling 222 (2011) 2676– 2689 2677

models. Section 4 is devoted to the associated simulation algorithm,
Section 5 to numerical tests.

2. Scale and geometry issues in ODE model

An individual-based model should keep track of the position in
space of each cell, together with their current biological states, it
should also account for discrete events such as the division of a
cell. Such a description of the system at the finest level could be
of interest but unnecessary in view of our goals, namely to set a
macroscopic model that gives account for stochastic phenomena.
At this scale, the system is reduced to a R

2-vector and its dynamics.
Model (1) is obtained according to the classical approach, by

choosing a small time interval �t  on which a mass balance princi-
ple is applied. However, �t  should be large enough as we do not
describe the dynamic at the timescale of jumps of one unit of sub-
strate or bacteria but rather at the timescale of jumps of packet
units. Such an interval could be called macroscopically infinitesimal
(Gillespie, 2000).

2.1. Mass balance

Let (Bt , St) denote the true concentrations at time t, assumed to
be constant throughout the medium. The mass balance on interval
[t, t + �t)  reads

Bt+�t − Bt = �Bbio
t + �Bout

t , (2a)

St+�t − St = �Sbio
t + �Sin

t + �Sout
t (2b)

where �Bbio
t and �Bout

t are the increments of biomass due to
natural growth and to the outflow respectively, within [t, t + �t),
�Sbio

t , �Sin
t and �Sout

t are the increments of substrate due to the
consumption by the biomass, the inflow and the outflow respec-
tively, within [t, t + �t). Since we  want to obtain an ODE, we  now
assume that the stochastic fluctuations are negligible relative to the
increments. Again this requires �t  to be large enough, so that suf-
ficiently many discrete events have occurred. Moreover, �t  should
be taken even larger in case of inhomogeneity of the dynamics.

We denote by (b̄(t), s̄(t)) for t = 0, �t,  2�t, . . . the deterministic
sequence constructed by using the mean increments of (Bt , St):

b̄(t + �t) − b̄(t) = E[�Bbio
t + �Bout

t ],
s̄(t + �t)  − s̄(t) = E[�Sbio

t + �Sin
t + �Sout

t ].

Next, using the mass action law for the biomass we have

E[�Bbio
t ] � �(s̄(t))b̄(t)�t, E[�Sbio

t ] � −k�(s̄(t))b̄(t)�t (3)

where �(s) is the specific growth rate and k > 0 the stoichiometric
coefficient. Note that we again require �t  to be large enough, since
�(s) and k make sense only for a sufficiently large population of
bacteria. Now, since we  have assumed perfect homogeneity of the
medium, we get:

E[�Bout
t ] � −Db̄(t)�t,  E[�Sin

t ]�Dsin�t,  E[�Sout
t ] � −Ds̄(t)�t.

(4)

Note that (3) and (4) are approximations because we have used
a constant value for b̄(t) and s̄(t) within [t, t + �t). For this approxi-
mations to be correct, none of the quantities involved should vary
significantly within [t, t + �t). We  finally obtain the construction of
the sequence (b̄(t), s̄(t)) by

b̄(t + �t) − b̄(t) = [�(s̄(t)) − D]b̄(t)�t, (5a)
s̄(t + �t)  − s̄(t) = (−k�(s̄(t))b̄(t) + D[sin − s̄(t)])�t, (5b)

Model (1) is obtained by letting �t  → 0 in (5). However, since
�t is bounded from below, some care should be taken when this
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imit is achieved. System (5) can be understood as the discretiza-
ion of (1) using an explicit Euler scheme. Whenever there exists

t sufficiently small, the deterministic sequence (b̄(t), s̄(t)) will be
lose to model (1), sampled at instants k�t, k ∈ N.

.2. Geometry and scales

The mass balance established in (2) features five terms that can
e gathered according to the three sources of variations. This gives
ise to a geometric structure that can be emphasized by writing (1)
nder the form:

d
dt

(
b(t)
s(t)

)
= �(s(t))b(t)

(
1
−k

)
︸ ︷︷  ︸

biology

+D

(
0

sin

)
︸  ︷︷  ︸

inflow

−D

(
b(t)
s(t)

)
︸  ︷︷  ︸

outflow

(6)

However, whereas the geometry is well captured, the scale of
he five original terms is not readable in (1) nor (6).  Indeed, the fact
hat the approximations in (3) and (4) may  be of different quality
or each individual term is not exploited at all.

. Models at different scales

In the previous section, we mentioned that the lower bound for
t  is related to the size of the population and to the regularity of the

henomenon. Often, the experimental conditions are such that the
egularity of the real system is sufficient to ensure that the approxi-
ations (3) and (4) are valid, even for small �t.  In that case, system

5) is correctly approximated by (1) sampled with period �t.  If a
maller period is to be considered, then the conditions under which
5) has been obtained are not fulfilled. Particularly, the stochastic
uctuations should be accounted for.

One could think about looking for the most microscopic descrip-
ion, where each single bacteria is explicitly represented with
ts proper characteristics, namely mass, age, and location. Notice
hat the situation notably differs from the setting encountered in
hemistry, where individuals are molecules and each reaction is
nstantaneous, with a strict stoichiometry. As a result, we  cannot
pproximate the most microscopic behavior by a jump Markov
rocess on the integer lattice.

We  now introduce a stochastic process built on the same
remise, that is a mean mass balance principle at a given �t.  This
odel will have (1) as a fluid limit as �t  goes to 0. This latter model

uitably features the geometry of the chemostat but, as a limit
odel, cannot feature all its natural scales. The proposed stochas-

ic models will respect both the geometry and the natural scales
f the chemostat. We  first establish a pure jump process represen-
ation of the chemostat at a microscopic scale, then we derive a
iffusion process representation which will be valid at mesoscopic
nd macroscopic scales.

.1. Pure jump model Xt = (Bt, St)

Even if we do not aim at deriving an individual-based model, we
ry to preserve the discrete feature in the dynamics. We  achieve this
y considering only aggregated jumps obtained by adding up small
nd frequent jumps resulting from individual events. The result-
ng stochastic process will be a pure jump process Xt = (Bt, St), fully
etermined by its jumps and the corresponding jump rates; the
tate variable will be denoted x = (b, s).

In view of (2), we are led to consider five jumps:
biology term: biomass increase of size �1(x) at rate �1(x);

biology term: substrate decrease of size �2(x) at rate �2(x);
Fig. 1. In this model, from a position x = (b, s) the process could jump according to 5
mechanisms (2 due to the biology, 1 inflow, and 2 outflows), the basic jump has
a  length (1/Ki) for i = 1, . . .,  5.

inflow term: substrate inflow of size �3(x) at rate �3(x);

outflow term: biomass outflow of size �4(x) at rate �4(x);

outflow term: substrate outflow of size �5(x) at rate �5(x);

See Figure 1. It remains to set the jump size rates so as to comply
with the mass balance principle and the stochastic mass action law.

For a macroscopically infinitesimal �t,  denote by �Xb,bio
t ,

�Xs,bio
t , �Xs,in

t , �Xb,out
t , �Xs,out

t the cumulated jump of type , ,
, , respectively, on state process Xt within the time interval

[t, t + �t).
We  first focus on the first two  expressions. The stochastic mass

action law (Wilkinson, 2006) requires

E[�Xb,bio
t |Xt = x] �

(
�(s)b�t

0

)
,

E[�Xs,bio
t |Xt = x] �

(
0

−k�(s)b�t

)
.

Now notice that, for small �t,  the number of jumps of type
(resp. ) within [t, t + �t)  is approximately P(�1(x)�t) (resp.

P(�2(x)�t)), so that

E[�Xb,bio
t |Xt = x] � �1(x)�t�1(x),

E[�Xs,bio
t |Xt = x] � �2(x)�t�2(x).

So we  are looking for (�i(x), �i(x)) satisfying:

�1(x)�1(x) =
(

�(s)b

0

)
and �2(x)�2(x) =

(
0

−k�(s)b

)
. (7)

We therefore introduce the scale parameters K1 and K2 and we
choose:

def def

(
1
)

�2(x)def= K2k�(s)b �2
def= −

(
0
1
K2

)
.
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This choice is not unique and will be explain later in Section 3.5.
Here by “scale” we mean that jumps due to will be of magni-

ude 1/Ki and the corresponding rates will be of magnitude Ki. Large
i yields frequent and small jumps. Using the Poisson argument
entioned above, we see that these scale parameters Ki do not act

n the mean values of the increments but on their variances (large
i will correspond to small variances). The Ki’s can thus be regarded
s tuning parameters quantifying the uncertainty or regularity of
he corresponding source of variation.

Reproducing this discussion with the three other types of jumps,
nd considering only admissible jumps (in the positive orthant), we
btain a pure jump Markov process with rate coefficients �i(x) and
ssociated jumps �i(x) defined in Table 1.

.1.1. About scales parameters
In most cases Ki	 Kj for i = 1, 4 and j = 2, 3, 5, indeed the first set

f scale parameters refers to the bacterial dynamics and the second
et of scale parameters refers to the substrate dynamics. It is how-
ver possible to adjust the coefficients K’s to the specific application
onsidered. For example K3 will be large in laboratory experimen-
al conditions, but for a real implementation the substrate inflow
oncentration could have a large variance. Also for the outflow, in
egular conditions K4 and K5 could be large, but in bad mixing con-
itions they could be smaller. Finally K1 could be smaller than K2,
s the biomass concentration increase presents more variance than
he substrate decrease (which is more regular as it is related to the
iffusion of substrate across cell membranes).

As explained later, the jumps �i(x) are essentially constant and
qual to:

¯ 1
def=
(

1
K1
0

)
, �̄2

def= −

⎛
⎝ 0

1
K2

⎞
⎠ , �̄3

def=

⎛
⎝ 0

1
K3

⎞
⎠

¯ 4
def= −

⎛
⎝ 1

K4

0

⎞
⎠ , �̄5

def= −

⎛
⎝ 0

1
K5

⎞
⎠ .

.1.2. Representation of Xt

The constructive description of the process Xt that has been just
resented would be used for simulation purposes, see Section 4.1.
evertheless, it should be completed by a more comprehensible
nd synthetic representation.

The process Xt is in fact a Markov process that can be represented
s the following (jump) SDE:

t = X0 +
5∑

i=1

∫
(0,t]×[0,∞)

�i(Xu− )1{v≤�i(Xu− )}Ni(du × dv) (8)

here Ni are independent random Poisson measures with intensity
easure du × dv (Lebesgue measure). The principle of this repre-

entation is simple: a random Poisson measure is associated with
ach of the five types of events, the indicator function 1{v≤�i(x)}
llows the corresponding clock to be of rate �i(x), then at each new
i”-type event, the current state value of the chemostat x jumps to

 + �i(x). The resulting process (8) is an exact mathematical tran-
cription of the simulation procedure described in Section 3.1.

The law of this process is characterized by its infinitesimal
enerator defined by A�(x) = limt→0

1
t [E(�(Xt)|X0 = x) − �(x)]. A

imple computation leads to:

5∑

�(x) =

i=1

�i(x)[�(x + �i(x)) − �(x)]

= �(x)

∫
R

2
+

[�(y) − �(x)]�(x, dy) (9)
lling 222 (2011) 2676– 2689 2679

for all � : R
2+ 
→ R  continuous with compact support (Ethier and

Kurtz, 1986, Th. 8–3.1), where:

�(x)def=
5∑

i=1

�i(x), �(x, dy)def=
5∑

i=1

�̄i(x)ıx+�i(x)(dy), �̄i(x)def= �i(x)
5∑

i′=1

�i′ (x)

In Campillo et al. (2010),  we  prove that the Markov process Xt

with infinitesimal generator A defined by (9) is non-explosive and
admits moments of all order for all t ≥ 0.

To describe how the process Xt can be simulated, we introduce

the jump times �0 = 0 and �n
def= inf{t > �n−1; Xt /= X�n−1 } and the

embedded jump chain Yn
def=X�n . It is well know that (i) Yn is a Markov

chain on R
2+with transition probability �(x, dy); (ii) for all n ≥ 1, con-

ditionally on Y0, . . .,  Yn−1, the holding times �1− �0, . . .,  �n− �n−1
are independent and exponentially distributed of intensity param-
eters �(Y0), . . .,  �(Yn−1), see Norris (1998).  These properties are at
the basis of the Gillespie simulation algorithm (see Algorithm 4.1).

From (9) we can deduce a more interesting representation for
the process Xi. Indeed, introduce the centered random Poisson mea-

sures Ñi(du × dv)def= Ni(du × dv) − du × dv, then (8) reads:

Xt = X0 +
5∑

i=1

∫ t

0

∫ ∞

0

�i(Xu− )1{v≤�i(Xu− )}dudv

+
5∑

i=1

∫
(0,t]×[0,∞)

�i(Xu− )1{v≤�i(Xu− )}Ñi(du × dv)

by letting

fK (x)def=
5∑

i=1

∫ ∞

0

�i(x)1{v≤�i(x)}dv =
5∑

i=1

�i(x)�i(x)

and

Mi
t
def=

5∑
i=1

∫
(0,t]×[0,∞)

�i(Xu− )1{v≤�i(Xu− )}Ñi(du × dv)

we get

Xt = X0 +
∫ t

0

fK (Xu)du +
5∑

i=1

Mi
t (10)

where Mi
t are five independent square-integrable martingales.

In (10), fK(x) is “essentially” the r.h.s. function f(x) of the O.D.E.
(1). More precisely, let

RK
def=
{

x =
(

b
s

)
∈ R

2
+; b ≤ 1

K4
or s ≤ 1

K2
or s ≤ 1

K5

}
then, for x /∈ RK , fK(x) = f(x); and fK→ f when Ki→ ∞ for all i = 1, . . .,
5 uniformly on any compact set of (0, ∞)2 (see details in Campillo
et al. (2010)). Replacing fK by f in the decomposition (10), lead to
the following system where the dependence on the Ki is enhanced:

dBt = (�(St)Bt − DBt)dt + dm̄1
t√

K
+ dm̄4

t√
K

, (11a)

1 4

dSt = (−k�(St)Bt + D(sin − St))dt + dm̄2
t√

K2

+ dm̄3
t√

K3

+ dm̄5
t√

K5

(11b)
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Table 1
Rates and jumps of the five basic mechanisms of the pure jump process. Note that the jumps �i(x) essentially do not depend on x except for the negative jumps near the
border {x = (b, s) ∈ R

2
+; b = 0 or s = 0}.

biomass increase (biology) substrate decrease (biology) substrate inflow biomass outflow substrate outflow

Rate �i(x) K1�(s)b K2k�(s)b K3Dsin K4Db K5Ds( 1 ) (
0

)  (
0
) ( 1 ∧ K4b ) (

0
)

w
g

w

〈

〈

〈

〈

〈

A
c
s
1
e

3

3

t
t
P
X

X

w
i

E

+ �t
(1 ∧ K5s)2Ds

K5
w5

n (16b)

where wi
n are i.i.d. N(0,  1) random variables.
Jump �i(x) K1

0
− 1 ∧ K2s

K2

here m̄i
t are independent centered square integrable martingales

iven by:

m̄1
t

def= 1√
K1

∫ t

0

∫ ∞

0

1{v≤�1(Xu− )}Ñ1(du × dv),

m̄2
t

def= − 1√
K2

∫ t

0

∫ ∞

0

(1 ∧ K2Su− )1{v≤�2(Xu− )}Ñ2(du × dv),

m̄3
t

def= 1√
K3

∫ t

0

∫ ∞

0

1{v≤�3(Xu− )}Ñ3(du × dv),

m̄4
t

def= − 1√
K4

∫ t

0

∫ ∞

0

(1 ∧ K4Bu− )1{v≤�4(Xu− )}Ñ4(du × dv),

m̄5
t

def= − 1√
K5

∫ t

0

∫ ∞

0

(1 ∧ K5Su− )1{v≤�5(Xu− )}Ñ5(du × dv)

ith the following predictable quadratic variations:

m̄1〉t =
∫ t

0

�(Su)Budu, (12a)

m̄2〉t =
∫ t

0

(1 ∧ K2Su)2k�(Su)Budu, (12b)

m̄3〉t = Dsint, (12c)

m̄4〉t =
∫ t

0

(1 ∧ K4Bu)2DBudu, (12d)

m̄5〉t =
∫ t

0

(1 ∧ K5Su)2DSudu. (12e)

ccording to (11), the deterministic part of the dynamics, the drift
oefficient, appears to be (essentially) the classical ODE (1); and the
tochastic part of the dynamics, the martingale terms, are of order
/
√

Ki. These mathematical developments are detailed in Campillo
t al. (2010).

.2. Discrete time approximations

.2.1. Poisson approximation X̃tn = (B̃tn , S̃tn )
For any small �t  > 0 given, let tn = n�t. We  propose a discrete

ime Poisson approximation (X̃tn )n≥0 of (Xt)t≥0: on the interval [tn,
n+1) we froze the rate functions �i(Xt) to �i(Xtn ) so that we get a
oisson distribution. The jumps �i(Xt) are also frozen to �i(Xtn ). Let

˜0 = X0, the approximation is defined by:

˜tn+1 = X̃tn +
5∑

i=1

�i(X̃tn )Pi
n(�t�i(X̃tn )) (13)
here (Pi
n(�))n ∈N,i=1···5 are independent Poisson variables with

ntensities �. We  have:

[X̃tn+1 |X̃tn = x] = x + fK (x). (14)
1
K3

− K4

0
− 1 ∧ K5s

K5

In other words, the infinitesimal increments of the conditional
mean follow the O.D.E. (1). Also:

cov[X̃tn+1 |X̃tn = x] =
5∑

i=1

cov[�i(x)Pi
n(�t�i(X̃tn ))|X̃tn = x]

=
(

	̃2
1 0

0 	̃2
2

)
(15a)

with

	̃2
1 = �t

{
1
K1

�(s)b + 1
K4

(1 ∧ K4b)2Db
}

, (15b)

	̃2
2 = �t

{
1
K2

(1 ∧ K2s)2k�(s)b + 1
K3

Dsin + 1
K5

(1 ∧ K5s)2Ds
}

.

(15c)

3.2.2. Diffusion approximation 
̃tn = ( ˜̌ tn , �̃tn )
In (13), the variable Pi

n(�t�i(x)) is Poisson distributed with
parameter �t�i(x). When this parameter is large (greater than 10
or 20) then this last distribution is very close to the normal dis-
tribution of mean �t�i(x) and variance �t�i(x). Hence, we get a
(discrete time) normal approximation (
̃tn )n≥0 of (Xt)t≥0 by letting


̃0 = X0 and, conditionally on 
̃tn = x:


̃tn+1 = x +
5∑

i=1

�i(x)Ni
n

where Ni
n are 5 independent Gaussian random variables:

Ni
n∼N(�i(x)�t,  �i(x)�t). So conditionally on 
̃tn = x, 
̃tn+1 is normal

with mean (14) and covariance matrix (15).
Let 
̃tn = ( ˜̌ tn , �̃tn ), given ˜̌ tn = b and �̃tn = s:

˜̌ tn+1 = b + [�(s) − (1 ∧ K4b)D]b�t

+
√

�t
�(s)b

K1
w1

n +
√

�t
(1 ∧ K4b)2Db

K4
w4

n (16a)

�̃tn+1 = s + [−(1 ∧ K2s)k�(s)b + Dsin − (1 ∧ K5s)Ds]�t

+
√

�t
(1 ∧ K2s)2k�(s)b

K2
w2

n +
√

�t
Dsin

K3
w3

n√
In both approximations (13) and (16), no mechanism prevents
the processes X̃tn or 
̃tn from staying within the positive orthant
R

2+. An ad hoc solution is to set the concentration to 0 whenever it
becomes negative, see Section 4.
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.3. Diffusion model 
t = (ˇt, �t)

.3.1. A stochastic differential equation model
System (16) is the Euler–Maruyama time discretization of the

iffusion process 
t = (ˇt, �t) solution of the following SDE:

ˇt = [�(�t) − (1 ∧ K4ˇt)D]ˇtdt

+
√

�(�t)ˇt

K1
dW1

t +
√

(1 ∧ K4ˇt)
2Dˇt

K4
dW4

t

�t = [−(1 ∧ K2�t)k�(�t)ˇt + Dsin − (1 ∧ K5�t)D�t]dt

+
√

(1 ∧ K2�t)
2k�(�t)ˇt

K2
dW2

t +
√

Dsin

K3
dW3

t

+
√

(1 ∧ K5�t)
2D�t

K5
dW5

t

here Wi
t are independent standard Wiener processes. Note that

his result can be obtained directly from the process Xt without the
elp of the discrete-time approximation. Indeed the infinitesimal
enerator of process Xt given by (9) is a difference operator, and
y Taylor development, it can be approximated by a second order
ifferential operator corresponding to a diffusion process (Ethier
nd Kurtz, 1986).

For large Ki’s, we can replace the terms (1 ∧ K4ˇt), (1 ∧ K2�t),
1 ∧ K5�t) by 1; we can also group the Brownian motions and finally
et:

ˇt = [�(�t) − D]ˇtdt +
√

�(�t)ˇt

K1
+ Dˇt

K4
dWb

t (17a)

�t = [−k�(�t)ˇt + D(sin − �t)]dt

+
√

k�(�t)ˇt

K2
+ Dsin

K3
+ D�t

K5
dW s

t (17b)

here Wb and Ws are independent standard Wiener processes.

.3.2. Behavior of the system of SDE’s near the axes
System (16) is the Euler–Maruyama time discretization of the

DE (17) (for large Ki’s). Even if the diffusion approximation is only
alid for large values of the biomass and the substrate, we  can study
he behavior of (17) near the axes.

As for the discrete-time normal approximation, we should clar-
fy the boundary conditions. As we well see, the component ˇt given
y (17a) will remain positive, but the component �t given by (17b)
ould become negative. We  must first require that �(s) = 0 for s < 0.
hen, note that each equation of (17) is related to the following
ell-known CIR model for interest rates:

emark 3.1 (Cox–Ingersoll–Ross model).  Consider the one-
imensional SDE:

Xt = (a + bXt)dt + �
√

XtdWt, X0 = x0 ≥ 0. (18)

ith a ≥ 0, b ∈ R, � > 0. According to (Lamberton and Lapeyre, 1996,
rop. 6.2.4), for all x0 ≥ 0, X is a continuous process taking values in
+, and let � = inf {t ≥ 0, Xt = 0}, then:

(i) If a ≥ �2/2, then � =∞ Px−a.s.;
(ii) if 0 ≤ a < �2/2 and b ≤ 0 then �< ∞ Px−a.s.;
iii) if 0 ≤ a < �2/2 and b > 0 then Px(� < ∞)  ∈ (0,  1).
In the first case, X never reaches 0. In the second case X a.s.
eaches the state 0, in the third case it may  reach 0. If a = 0 then the
tate 0 is absorbing.
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It  is clear that  ̌ = 0 is an absorbing state for (17a), and when
 ̌ = 0, (17b) reduces to

d�t = D(sin − �t)dt +
√

Dsin

K3
+ D�t

K5
dW s

t

and from Remark 3.1,  the solution of this SDE will stay on the half-
line [− (K5/K3)sin, ∞)  and:

(i) if sin((1/K3) + (1/K5)) ≥ (1/2K2
5 ) then �t never reaches

−(K5/K3)sin;
(ii) if sin((1/K3) + (1/K5)) < (1/2K2

5 ) then �t reaches −(K5/K3)sin in
finite time and is reflected.

Indeed, it is enough to apply It formula to �̃t = (Dsin/K3) +
(D�t/K5) and to use Remark 3.1.  Note that, as K5 is large, condition
(i) is more realistic than condition (ii).

To extend the definition of (17) for negative value of �, let
suppose that �(�) = 0 for � ≤ 0. As we seen, ˇt will stay non-
negative and  ̌ = 0 is an absorbing state. Also �t ≥ − (K5/K3)sin and
for large K5 this state will be repulsive. Note that for small val-
ues of �t, as the Ki are large, the diffusion term in (17b) will
be small and the drift part will be dominated by Dsin so that
�t will increase fast and its probability to be negative will be
small.

The fact that the substrate concentration could be “negative”
is due to the normal approximation. This approximation is valid
for large values of concentration and the validity of the diffusion
system (17) is questionable for small concentration. Nonetheless
we  can study its properties.

A possibility to get an SDE with positive solution is to con-
sider an SDE with boundary condition (Ikeda and Watanabe,
1981, §IV-7) by adding a local time in {� = 0} to the Eq.
(17b). In the present work, we only consider that the solu-
tion of the system (17) remains in the domain D  = [0, ∞)  ×
[−(K5/K3)sin, ∞).

3.4. Asymptotic analysis

The convergence of the pure jump model (8) or of the diffusion
approximation (17) to the deterministic model (1) as all the Ki→ ∞
can be rigorously established.

Let XK
t be the pure jump model defined at the beginning

of Section 3.1, or as the solution of the Eq. (8) for a given

K
def= (K1, K2, K3, K4, K5). Let 
K

t be the solution of the SDE (17). Let
x(t) be the EDO model solution of Eq. (1). Then XK

t converges toward
x(t) in the following way: for all T > 0 and all ı > 0,

P

(
sup

0≤t≤T

∥∥XK
t − x(t)

∥∥ ≥ ı

)
→ 0

as Ki→ ∞ for all i = 1 . . . 5. This result is not surprising if we con-
sider the representation (11) of (Xt)t≥0; it was  obtained in a context
of martingale convergence theorems in Kurtz (1970, 1971) or in a
more general context of convergence of sequences of infinitesimal
generators in Ethier and Kurtz (1986).

We  can also prove the same type of convergence for the process

K

t . Indeed, in Eq. (17) the scale coefficients appear as 1/
√

Ki in the
diffusion part of the SDE, and the convergence clearly holds as all
the Ki tends to infinity.

3.5. Other models
As already noticed, the choice of (�i(x), �i(x)) satisfying (7) is
not unique. We  choose not to make the jump sizes depend on the
state value x (except for the boundary conditions), only the jump
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ates depend on x. Another possibility is to choose jump sizes that
epend on the state value x. For example instead of the choice of
able 1, we can choose:

�1(x) = K1�(s), �2(x) = K2k�(s), �3(x) = K3D, �4(x) = K4D,

�5(x) = K5D

�1(x) =

⎛
⎝ b

K1

0

⎞
⎠ , �2(x) = −

⎛
⎝ 0

b

K2

⎞
⎠ , �3(x) =

⎛
⎝ 0

sin

K3

⎞
⎠ ,

�4(x) = −

⎛
⎝ b

K4

0

⎞
⎠ , �5(x) = −

(
0
s

K5

)

if we neglect the boundary condition). Then in place of (17) we
ave the following set of equations:

ˇt = [�(�t)ˇt − Dˇt]dt +
√

�(�t)
K1

ˇtdW1
t +

√
D

K4
ˇtdW4

t (19a)

�t = [−k�(�t)ˇt + Dsin − D�t]dt

+
√

k�(�t)
K2

ˇtdW2
t +

√
D

K3
sindW3

t +
√

D

K5
�tdW5

t (19b)

here Wi are independent standard Wiener processes.

.5.1. A three components model
Instead of the five components – , we can consider a case

ith three independent sources of jump variation. This example
trictly preserves the geometry (6) by considering three inde-
endent sources of jump variation:

′
biology term: biomass

ncrease and substrate decrease at scale K ′1;
′

inflow term:
ubstrate inflow at scale K ′2;

′
outflow term: biomass and

ubstrate outflow at scale K ′3. Again the jump sizes and rates
hould be chosen so as to satisfy the mass balance principle and
he stochastic mass action, with no canonical choice. An ad hoc
hoice is

�′1(x) = K ′1�(s)b, �′2(x) = K ′2D, �′3(x) = K ′3D

�′1(x) = 1
K ′1

(
1

−k

)
, �′2(x) = 1

K2

(
0

sin

)
, �′3(x) = 1

K ′3

(−b

−s

)

if we neglect the boundary condition). This setting forces the

umps to be directed along the corresponding vector field, which
s a strong constraint. In particular, the stoichiometry is strictly
espected: the production of 1 unit of biomass requires exactly k
nits of substrate. Moreover the outflow jump is always radial, so
hat the increments of biomass and substrate are again strongly
inked. Notice that for this particular choice of �′3 and �′3, the
ump rate is constant but the jump size is not. In other words, the
ump carries information both in the direction and the intensity of
he variation. This will affect the qualitative behavior of the pro-
ess and of its diffusion approximation, regarding extinction for
xample.

As for our canonical model, for large Ki’s, we obtain a SDE for the
iffusion approximation of the jump process:
lling 222 (2011) 2676– 2689

d

(
ˇt

�t

)
=

⎡
⎢⎢⎢⎣�(�t)ˇt

(
1

−k

)
︸ ︷︷  ︸

biology

+D

(
0

sin

)
︸  ︷︷  ︸

inflow

−D

(
ˇt

�t

)
︸  ︷︷  ︸

outflow

⎤
⎥⎥⎥⎦dt

+
√

�(�t)ˇt

K ′1

(
1

−k

)
dW1

t︸  ︷︷  ︸
biology

+
√

D

K ′2

(
0

sin

)
dW2

t︸  ︷︷  ︸
inflow

+
√

D

K ′3

(
ˇt

�t

)
dW3

t︸  ︷︷  ︸
outflow

that could be compared to (6).  Notice that since W1 and W3

affect both components of 
t, the quadratic variation process 〈
〉t
will not be a diagonal matrix. The diffusion term appears as the
conjunction of three perturbations acting along the three vector
fields determined by the sources of variation. Moreover, the inten-
sity of the noise could be different for each type of perturbation.
Considering this model could therefore be of interest, if the geo-
metric interpretation of the noise is meaningful, see Joannides and
Larramendy-Valverde (2010).

3.5.2. Comparison with the Imhof–Walcher model (Imhof and
Walcher, 2005)

We finally mention that the diffusion model appearing in Imhof
and Walcher (2005),  is obtained from (19) by letting K1 = K2 = K3 = 0
which leads to:

dˇt = [�(�t) − D]ˇtdt + cbˇtdWb
t (20a)

d�t = [−k�(�t)ˇt + D(sin − �t)]dt + cs�tdW s
t (20b)

The choice of these coefficients is justified in Imhof and Walcher
(2005) by constructing an approximating Markov chain, and then
taking the limit as the sampling rate goes to 0. This model will be
compared to the diffusion approximation (17) model on a simula-
tion test in Section 5.3.

4. Simulation algorithms

We presented several models for the chemostat system: the
pure jump model (Xt)t≥0 could be considered as a detailed model at
the microscopic scale. The Poisson approximation (X̃tn )n ∈N given by
(13) and the normal approximation (
̃tn )n ∈N given (16) are constant
time step approximation of the pure jump process. Finally the dif-
fusion process (
t)t≥0 solution of the SDE (17) is a continuous time
approximation of the pure jump process.

The now present the three associated simulation algorithms that
will be valid at different scales.

4.1. Pure jump model

The pure jump model in continuous time described in Section
3.1 can be exactly simulated thanks to the Gillespie algorithm, also

called stochastic simulation algorithm, described in Algorithm 4.1.

Algorithm 4.1. Gillespie algorithm (or stochastic simulation algo-
rithm).
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t ← 0, x ← x0, save (t, x)
whilet  ≤ Tmaxdo

compute �i(x) % seeTable 1

� =
∑5

i=1
�i(x)

�t∼Exp(�) % exponential distribution

u∼U[0, 1] % uniform distribution

t ← t + �t
ifu ≤ �1(x)/�then

x ← x + �̄1 % biomass reproduction

else ifu ≤ {�1(x) + �2(x)}/�then
x ← [x − �̄2]+ % consumption

else ifu ≤ {�1(x) + �2(x) + �3(x)}/�then
x ← x + �̄3 % substrate inflow

else ifu ≤ {�1(x) + �2(x) + �3(x) + �4(x)}/�then
x ← [x − �̄4]+ % biomass outflow

else
x  ← [x − �̄5]+ % substrate outflow

end if
save (t, x)

end while

ere [x]+ is the projection on the positive quadrant: [x]+ =
[(

ˇ
�

)]
+
=
(

 ̌ ∨ 0
�  ∨ 0

)
.

When the rate coefficients �i(x) are large the time increment
ill be small and the Gillespie algorithm is impractical. As the scale

oefficients Ki are large, the �i(x), i /= 3, are large only when  ̌ and
 are small; �3(x) will remain large as it does not depend on x.

.2. Poisson approximation

lgorithm 4.2. Poisson approximation or tau-leap method.
t ← 0, x ← x0, save (t, x)
whilet  ≤ Tmaxdo

compute �i(x) % see Table 1

�  =
∑5

i=1
�i(x)

compute mi(x), vi(x) % see (21)

�t  ← mini=1...5{ε�/|mi(x)|, ε2�2/vi(x)}
t  ← t + �t
Pi∼Poisson(�i(x)�t) for i = 1 . . . 5
x  ← [x + �̄1P1 − �̄2P2 + �̄3P3 − �̄4P4 − �̄5P5]+
save (t, x)

end while

ere [x]+ is the projection on the positive quadrant: [x]+ =
[(

ˇ

�

)]
+
=
(

 ̌ ∨ 0

�  ∨ 0

)
.

The simulation of the previous model could be cumbersome for
ery high rates of event. In this case it is desirable to use the fixed
ime step Poisson approximation method (13) also called tau-leap
Gillespie, 2001). Recently many papers have addressed the numer-
cal analysis of this approximation scheme (Rathinam et al., 2005;
i, 2007; Anderson et al., 2009). In this method the time step should
e small enough so that it fulfills the following “leap condition”: the
tate change in any leap should be small enough that no rate func-
ion �i(x) will experience a macroscopically significant change in
ts value, that is: |�i(x +

∑
i′�i′ (x)Pi′

n(�t�i′ (x))) − �i(x)| ≤ ε�(x) for
 = 1 . . . 5, where 0 < ε 	 1 is an error control parameter.

For this method to be practicable, an automatic and simple way
f determining the largest time step �t  compatible with the leap
ondition is proposed in Gillespie and Petzold (2003).  Define:

i(x)def=
5∑

i′=1

�i′ (x)(∇�i(x) · �i′ ), vi(x)def=
5∑

i′=1

�i′ (x)(∇�i(x) · �i′ )
2 (21)

or i, i′ = 1 . . . 5, and let{
ε�(x) ε2�2(x)

}

t  = min

i=1...5 |mi(x)| , |vi(x)| (22)

here ε is an error control parameter (0 < ε 	 1), see Algorithm 4.2.
ote that in the original context the jumps �i(x) do not depends
lling 222 (2011) 2676– 2689 2683

on x, but in our situation they do not essentially depend on x, the
dependence on x was  introduced to handle the jump near the axes
in order to avoid negative concentration (see Cao et al. (2005) for
another possibility to overcome this difficulty).

4.3. Diffusion (normal) approximation

Algorithm 4.3. Normal approximation.
t ← 0, (ˇ, �) ← (ˇ0, �0), save (t, ˇ, �)

whilet  ≤ Tmaxdo

wb∼N(0, 1), ws∼N(0,  1)

ˇ′ ←  ̌ + (�(�) − D)ˇ�t +
√

�(�)ˇ
K1
+ Dˇ

K4

√
�twb

� ′ ← � + (−k�(�)  ̌ + D(sin − �))�t +
√

k�(�)ˇ
K2
+ Dsin

K3
+ D�

K5

√
�tws

 ̌ ← [ˇ′]+ % 0 is an absorbing state for ˇ

�  ← |� ′ − �min| + �min % reflection at �min = − K5
K3

sinfor �

t  ← t + �t

save (t, ˇ, �)

end while

The normal approximation (16) can be slightly modified in order to
take into account the qualitative behavior of the SDE (17) near the
axes. We  propose the following scheme:

˜̌ tn+1 =

⎡
⎣ ˜̌ tn + [�( �̃tn ) − (1 ∧ K4 ˜̌ tn )D] ˜̌ tn �t

+
√

�t

√
�( �̃tn ) ˜̌ tn

K1
+ (1 ∧ K4 ˜̌ tn )

2
D ˜̌ tn

K4
wb

n

⎤
⎦
+

, (23a)

�̃tn+1 =

∣∣∣∣∣�̃tn + [−(1 ∧ K2�̃tn )k�( �̃tn ) ˜̌
tn + Dsin − (1 ∧ K5�̃tn )D �̃tn ]�t

+
√

�t

√
(1 ∧ K2�̃tn )2k�( �̃tn ) ˜̌

tn

K2
+ Dsin

K3
+ (1 ∧ K5�̃tn )2D �̃tn

K5
ws

n − �min

∣∣∣∣∣
+ �min. (23b)

Indeed as  ̌ = 0 is an absorbing state for the component ˇt of the
SDE, instead of the standard Euler–Maruyama (16a), we can use
(23a) where [·]+ is the positive part and wb

n are i.i.d. N(0,  1) random
variables.

Also, to take into account that the component � is reflected
in �min = − (K5/K3)sin we use the scheme (23b) where ws

n are i.i.d.
N(0, 1) random variables. This discretization scheme was  proposed
in Diop (2003) in the context of the CIR diffusion process. In order to
get a positive substrate concentration we can consider �̃+tn

= �̃tn ∨ 0
or let �min = 0 in (23b). The simulation procedure is presented in
Algorithm 4.3.

Remark 4.1 (Scales and hybrid simulation). The three algorithms
proposed here are valid at different scales. In the Gillespie algorithm
all the detailed microscopic jumps of the dynamics are simulated.

The idea of the Poisson approximation is to consider a time step
� that should be small enough so that the different event rates

barely evolve in the time interval [t, t + �t], but large enough for the
approximation to be worthwhile. Starting in x at t, the time step �t
is given by (22) but if it is less than a few multiples of 1/�(x) then
the Gillespie algorithm should be preferred.
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Table 2
Simulation cases.

Cases K1 K2 K3 K4 K5

0 Deterministic ∞ ∞ ∞ ∞ ∞
1 “Standard” Case 1.1 104 106 106 104 106

Case 1.2 105 107 107 105 107

Case 1.3 107 109 109 107 109

2 “Unstirred inflow/outflows” Case 2.1 106 106 104 104 104

Case 2.2 107 107 105 105 105

Case 2.3 109 109 107 107 107

3 “Fluid substrate” Case 3.1 106 ∞ ∞ 104 ∞
Case 3.2 107 ∞ ∞ 105 ∞
Case 3.3 109 ∞ ∞ 107 ∞

4  “Biological only” Case 4.1 104 106 ∞ ∞ ∞
Case 4.2 105 107 ∞ ∞ ∞
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Case 4.3 107 109 ∞ ∞ ∞
ere “∞ = 1020”.

Now the Poisson variables Pi of parameter �i(x)�t could be
pproximated by normal variables N(�i(x)�t,  �i(x)�t) as soon as
i(x)�t ≥ 20.

The simulation method can automatically switch from one algo-
ithm to another one according to the scale. We  can also imagine
hat different components of the state vector are simulated with
ifferent algorithms.

. Simulation study

We present simulation results of the discretized diffusion model
23) with Monod specific growth rates:

(s) = �max
s

ks + s

nd parameters k = 10, �max = 3, D = 0.12, sin = 0.5, ks = 6. Simulations
ith the Haldane model are proposed in Campillo et al. (2010).

The ODE (1) is integrated with a Runge–Kutta1 scheme but the
uler scheme, corresponding to (23) with Ki =∞,  gives very close
esults.

In addition to the deterministic case (case 0 with Ki =∞ for all i),
e consider 3 basic cases (see Table 2):

“Standard” scales: K2,3,5 = 100 × K1,4 corresponds to the “stan-
dard” case where the substrate concentration dynamics is closer to
the deterministic case than the biomass concentration dynamics.
“Unstirred inflow/outflows” scales: K1,2 = 100 × K3,4,5 corre-
sponds to the case where inflow and outflows are unstirred.
“Fluid substrate” scales: K2,3,4 =∞, in this case the substrate Eq.
(17b) is deterministic, i.e. the substrate dynamics is in fluid limit.
“Biological only” scales: K3,4,5 =∞,  in this case we  consider that
the randomness is only due to biological aspects of the system.

.1. Law of the concentrations at a given time t

We  perform Monte Carlo simulations to approximate the
arginal densities of the biomass concentration Bt and of the sub-

trate concentration St at a given time t = 3 (h). We  consider the
standard” scales K1,4 = 105 and K2,3,5 = 107. Initial conditions are
0 = 0.026 and S0 = 0.26 which is quite far from the equilibrium
tate.

We compute (S(j)
t , B(j)

t ) for t = 3 (h) for j = 1 . . . 20, 000 indepen-
ent Monte Carlo trials of the pure jump process (Gillespie method),

ith the Poisson approximation (tau-leap method) and with the
ormal approximation. For the tau-leap method we  choose a con-
tant time step. For “Poisson 1” and “Normal 1” we use a step of

1 The routine ode45 of Matlab, an explicit Runge–Kutta (4,5) formula.
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0.05, for “Poisson 2” and “Normal 2” we  use a step of 0.5. We  check,
using a two-sample Kolmogorov–Smirnov test, if the sample from
each of these four last cases matches the sample from the pure jump
process (null hypothesis), the results of the test are:

Test �t p-Value Statistic

Bt Poisson 0.5 6 × 10−7 0.02735
St Poisson 0.5 5 × 10−250 0.1693
Bt Poisson 0.05 0.2851 0.00985
St Poisson 0.05 0.074897 0.0128
Bt normal 0.5 5 × 10−7 0.0275
St normal 0.5 2 × 10−245 0.1677
Bt normal 0.05 0.56716 0.00785
St normal 0.05 0.045172 0.01375

The statistic is the Kolmogorov–Smirnov distance
sup x | F1(x) − F2(x) | where Fi are the empirical cumulative distri-
bution function of the corresponding sample. We  also perform a
single sample Kolmogorov–Smirnov test to check if the sample
from the pure jump process matches a Gaussian distribution (null
hypothesis), the result of the test is:

Test p-Value Statistic

Bt Gillespie 0.26235 0.0071138
St Gillespie 0.74484 0.0047973

For each of the previous cases we also compute the approximate
PDF’s (probability density functions) of St and Bt from the sample
with a kernel method; and the Normal PDF’s corresponding to the
mean and variance of the pure jump process sample. We  plot the
different PDF’s in Figure 2.

The conclusions are: The two approximations (Poisson and nor-
mal) are very close to the exact simulation of the pure jump process;
the approximation with a larger step 0.5 is slightly different. The
computation times2 are: 5 h 45 min  32.6 s for the exact simulation
of the pure jump process; 33.2 s (with the time step 0.05) and 4.6 s
(with the time step 0.5) for the Poisson approximation; 0.7 s (with
the time step 0.05) and 0.1 s (with the time step 0.5) for the normal
approximation. Hence, in the present situation, where the param-
eters Ki are rather high, and for non-small concentration of the
biomass and the substrate, the exact simulation of the pure jump
process (Gillespie method) should be avoided. The resulting empiri-
cal densities are very close to normal densities and the solution of
the ODE coincide with the mean of these normal densities.

5.2. About the scales parameters

As we have seen, for large populations, the diffusion approxi-
mation 
̃tn = ( ˜̌ tn , �̃tn ) given by (23) is very close to the reference
pure jump model Xt = (Bt, St). So we now propose simulations of
the diffusion approximation in the case of a Monod specific growth
rate according to the scales scenarios of Table 2.

Figure 3 represents a simulation of a single trajectory in the 3
levels of scale: cases m,  1 to m,  3 (for m = 1 . . . 4). Figure 4 represents
the result of 10,000 Monte Carlo trials in the 3 levels of scale: cases
i.1 and i.2 (for i = 1 . . . 4). We  represent the mean trajectory and the
empirical law of 
̃T at final time T.

We can conclude that, at this level of population and scale: The
stochasticity is negligible only in the case 4 (“biological only”) and
at the highest scale level (cases i.3). The ODE solution x(t) matches
the (empirical) mean of the stochastic process at these scales (as
the stochastic process is solution of a nonlinear equation, there is
no reason for the mean of the stochastic process to coincide with

the solution of the deterministic equations). Equivalent results have
been obtained for the Haldane case.

2 CPU time on a 2.13 GHz Intel Core 2 Duo with a RAM of 2 GB.
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Fig. 2. Empirical densities for the substrate and the biomass concentrations at time t = 3 obtained with the exact simulation of the pure jump process (St , Bt) with the Gillespie
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ethod (blue line), with the Poisson approximation (S̃t , B̃t ) with constant time step
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t ) with constant time step (green solid line for a step 0.05, green dash line for
s  referred to the web  version of the article.)

.3. Comparison with the Imhof–Walcher model (Imhof and
alcher, 2005)

We compare the processes 
t = (ˇt, �t) given by the diffusion
pproximation model (17) with the one given by the ad hoc model
20). The parameter are: K = 1, �max = 1, D = 0.5, Sin = 8, ks = 0.5, final
ime T = 20, �t  = 0.02, 20,000 Monte Carlo trials; Ki = 105 for (17) and
b = cs = 0.02 for (20). The parameters are chosen so that the biomass
oncentration evolves from 0.5 to about 7.5, and the substrate con-
entration from 5 to about 0.5. Also the final time distribution is
esser than 1 in the substrate and greater than 1 in the biomass.
ndeed one of the main difference between (17) and (20) is than
or state values less than 1 (resp. more greater than 1) the noise
ariance for the first model is greater (resp. lesser) than the noise
ariance for the second model. This example illustrates clearly that
he two models differ substantially (see Fig. 5).

. Discussion

We started from a reference pure jump model Xt, described by
ates/jumps structure of Table 1 or as a solution of the stochastic
ifferential equation (8).  The martingale decomposition (11) clearly
escribes that the dynamics of Xt is the combination of the classical
eterministic dynamics of the chemostat (1) plus martingale terms
ith coefficients 1/

√
Ki and with explicitly known quadratic vari-

tions, see (12). These quadratic variation terms allow us to assess
he difference between the stochastic model and the deterministic
ne.

We  presented the explicit Monte Carlo simulation procedure,
alled Gillespie method, for the process Xt. In standard cases, that
s for large population sizes (i.e. Ki large), this procedure is not fea-
ible as it requires us to simulate too many events. In this case, we
resented the Poisson approximation (23b) and the normal approx-

mation (23), both in discrete-time. These approximations are valid
nly for large populations, i.e. about the axes, it is necessary to
eturn to the pure jump process representation. In the application
iscussed here, the Poisson approximation is of little interest: it is
ore time-consuming than the diffusion approximation and valid

nly on a very limited scale range between the pure jump model
nd the normal approximation model.
In contrast with previous stochastic chemostat models
Stephanopoulos et al., 1979; Imhof and Walcher, 2005) where the
tochasticity was introduced according to an ad hoc approach, in
he present work we propose a family of models where the struc-
olid line for a step 0.05, red dash line for a step 0.5), with the normal approximation
 0.5). (For interpretation of the references to color in this figure legend, the reader

ture of the noise emerges from the very dynamics and where the
scale parameters can be tuned according to the problem under
interest. In particular it allows us to propose hybrid models where
the cell population dynamics features stochasticity as the substrate
is in fluid dynamics (ODE), corresponding to the case 3 of Table 2.
This kind of model has already been proposed in Grasman and De
Gee (2005) in a three trophic levels case where the stochasticity
appears only in the top level trophic as a stochastic logistic model
and with fluid limit dynamics for the two  other levels; it also has
been proposed in Crump and O’Young (1979) with a pure jump
process for the biomass dynamics and a fluid limit for the substrate.

The approach proposed here can be applied to any model of
population dynamics especially in cases of difference of scale
between the different dynamics (e.g. cell/substrate). The dynamics
of interacting populations cannot be modeled by a single model
but rather by a family of models whose domain of validity depends
on the scale at which the dynamics are considered. For example the
normal approximation model represented as stochastic differential
equations (17) or the ODE model (1) are valid in high population
sizes, hence using such models to infer extinction characteristics
like extinction time and extinction probabilities is not valid. This
was  already noticed by Pollett (2001) and Wilcox and Possingham
(2002).

In most standard population scales of the chemostat the ODE
model is justified. Also, the ODE framework proposes analysis,
control and optimization tools that are more accessible than the
one of the SDE context. Though, as seen, the stochasticity can-
not be neglected in many situations. This stochasticity could be of
small intensity in the present single species/single substrate situa-
tion but could deeply perturb multiple species/multiple substrates
situations. The SDE model could be simulated at a small extra com-
putational cost and offers a more realistic prediction tool. Indeed, as
it can account for the variability of the experiments, the simulation
of the SDE offers the possibility to explore in depth the potentialities
of the dynamical systems.

Stochastic models are also more adapted for the confrontation
to the data as they allow us to build a statistical model and
the associated likelihood function (Ross et al., 2006, 2009). For
example, the growth curves are usually obtained by measuring
equilibrium concentrations and by fitting these measurements to
a given growth law via a least square procedure; the demographic

variability obtained from the proposed stochastic models (e.g.
the quasi-stationary distribution in Figure 4) should result in
a more relevant fit. One of the next important steps, that we
will investigate in coming work, will be to propose an adapted



2686 F. Campillo et al. / Ecological Modelling 222 (2011) 2676– 2689

Fig. 3. Biomass and substrate concentration evolution/diffusion approximation, cases 1–4, Table 2/simulation of (23) – Time evolution of the biomass concentration (left),
time  evolution of the substrate concentration (right) according to 4 cases: case 0, case i.1, case i.2, case i.3 (see Table 2). Cases 0 (deterministic) and i.3 are almost identical.
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Fig. 4. Phase portraits/sampling 10,000 Monte Carlo trials of the law of ( ˜̌
tn , �̃tn ) for tn = 100 according to the cases of Table 2 – the deterministic solution and the mean of

the  sampled trajectories coincide – the final time law is represented by the sample and by the contour plot of the corresponding kernel approximation of the p.d.f.
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Fig. 5. Comparison of the processes 
t = (ˇt , �t) given by the diffusion approximation model (17) and by the ad hoc model (20). Evolution of the biomass concentration (top)
a of con
a rianc
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w
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nd  substrate concentration (center) during time; final joint density approximation 

pproximation, the ad hoc model overestimates (resp. underestimates) the noise va

tatistical procedure to estimate the scale parameters Ki, and in
 second step to estimate the parameters (D, sin. . .). In the future
e will also investigate the long-term behavior of these models as
ell as their optimal command.
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