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The state-space modeling of partially observed dynamical

systems generally requires estimates of unknown parameters.

The dynamic state vector together with the static parameter

vector can be considered as an augmented state vector. Classical

filtering methods, such as the extended Kalman filter (EKF) and

the bootstrap particle filter (PF) , fail to estimate the augmented

state vector. For these classical filters to handle the augmented

state vector, a dynamic noise term should be artificially added

to the parameter components or to the deterministic component

of the dynamical system. However, this approach degrades the

estimation performance of the filters. We propose a variant of the

PF based on convolution kernel approximation techniques. This

approach is tested on a simulated case study.
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I. INTRODUCTION

Consider a Markovian dynamical system in
discrete time, which takes values in a general
state-space. This system is partially observed: Xk is
the unobserved state process and Yk the observation
process. We assume that this system depends on an
unknown parameter μ.
Our goal is to estimate, in real time,

simultaneously, the parameter μ and the state process
Xk based on the observations Y1: k = (Y1, : : : ,Yk).
In a batch context, there exists many possibilities
(nonlinear filtering approximation coupled with
maximum likelihood estimation techniques or the
expectation-maximization (EM) algorithm). In a
real-time context there are two main approaches:

1) The non-Bayesian approach consists of
either minimizing a given cost function, such as the
conditional least squares criterion or maximizing
the likelihood function. These methods are usually
performed in batch processes but can also be extended
to recursive procedures [4].
2) In the Bayesian approach, the augmented state

variable (Xk,μ) is processed by a filtering procedure.
A prior probability distribution is prescribed for the
parameter. These methods are performed recursively
in k.

In both approaches, we must use an approximation
of the optimal nonlinear filter. The EKF and its
various alternatives do not always give good results
and suffer from an absence of mathematical analysis.
The particle filters (PFs) propose a good alternative: in
many practical cases they give better results, moreover
their theoretical properties are becoming increasingly
better understood [7, 10, 6]. It is thus particularly
appealing to use particle filtering in order to estimate
parameters in partially observed systems. For a review
of the question, one can consult [11] or [17].
The cost function of approach 1 must be

approximated for various values of the parameter μ.
This is done via the particle approximation of the
conditional probability density function (pdf) of Yk
given Y1:k¡1 = (Y1, : : : ,Yk¡1). The Monte Carlo nature
of this particle approximation will make optimization
problematic. Indeed, the approximated cost function
is not regular and does not suit classical optimization
procedures like the gradient methods. However, recent
work shows significant improvements of these aspects
[11].
In the present work, we focus on approach 2:

compared with approach 1, its implementation is
simpler and its execution faster. In approach 2, μ is
considered as a random variable with a prescribed
a priori pdf. An extended state variable (Xk,μ) joining
all the unknown quantities is considered; the posterior
pdf of (Xk,μ) given Y1: k¡1 = (Y1, : : : ,Yk¡1) is then
approximated using PFs.
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Classical particle filtering methods, like the
bootstrap particle filter, fail to estimate the augmented
state vector. These classical filters can handle the
augmented state vector if a dynamic noise term is
artificially added to the parameter components, but
this approach degrades the estimation performance
of the filters. In this work, we propose a variant
of the PF based on the convolution particle
filter introduced in [20]. The application and the
convergence analysis of this filter require weaker
assumptions than the usual PFs do. This is due
to the use of convolution kernels to weight the
particle.
The paper is organized as follows: First we

present the problem. Then we recall the principle
of the convolution filter for the dynamical systems
without unknown parameters. Next, the Bayesian
estimation approach is presented, which also relies
on the convolution particle filter (CPF). Finally, this
approach is tested on a simulated case study.

II. PROBLEM STATEMENT

Consider a state process Xk and an observation
process Yk taking values in Rd and Rq, respectively.
This system depends on an unknown parameter μ
which takes values in Rp. Suppose that the state
process Xk is Markovian with transition kernel,

mk(x
0 j x,#) def= fXk jXk¡1,μ(x0 j x,#) (1)

and initial pdf,

p0(x)
def
= fX0 (x): (2)

Throughout this paper, fXjY(x j y) denotes the
conditional pdf of X given Y = y; fX(x) denotes the
pdf of X.
The observation process Yk is related to the state

process Xk through the emission kernel

ªk(y j x,#)
def
= fYk jXk ,μ(y j x,#) (3)

and with the hypothesis that

fY1: k jX0:k (y1:k j x0:k) =
kY
`=1

fỲ jX`(y` j x`) (4)

for all k > 0. Note that for the sake of simplicity, the
initial probability distribution (2) of the state process
does not depend on the parameter μ. Hypothesis
(4) means that, conditional to the state process,
the observations are mutually independent and the
observation Yk depends on the state process only
through Xk.
The model presented here is a hidden Markov

model with general state-space, where the transition
probability kernel and the emission kernel depend on
an unknown parameter. This also includes systems

with deterministic dynamics:

_»t = f(»t), Yk = h(Xk,Vk) (5)

where 0 = t0 < t1 < t2 < ¢ ¢ ¢ , Vk is a white noise
(independent from μ), and Xk = »tk . Here only the
initial condition »0 is unknown. The goal is to estimate
Xk at the current instant tk, like in the case study of
Section VI, or the initial condition X0.

III. THE CONVOLUTION FILTER

The optimal nonlinear filter is the conditional pdf:

¼k(x,#)
def
= fXk ,μjY1: k (x,#):

Our aim is to propose a particle approximation of
¼k(x,#).
For the sake of simplicity, in this section, we

suppose that the parameter μ is known. We propose
a particle approximation of the optimal filter:

¼k(x)
def
= fXk jY1: k (x): (6)

The conditional pdf ¼k(x) is a solution of the so-called
sequential Bayes formula. This formula explicitly
gives ¼k(x) in terms of ¼k¡1(x), in two steps. First a
prediction step, known as the Chapman-Kolmogorov
equation, introduces the predicted filter:

¼k¡(x
0) =

Z
Rd
mk(x

0 j x)¼k¡1(x)dx (7)

where ¼k¡(x
0)
def
= fXk jY1: k¡1 (x

0). Second a correction step,
namely the Bayes formula, defines the updated filter:

¼k(x) =
ªk(Yk j x)¼k¡(x)R

Rd ªk(Yk j x0)¼k¡(x0)dx0
: (8)

Except in the linear-Gaussian case and some
other very specific cases, (7) and (8) cannot be
solved explicitly. Hence, in general one must use
approximation techniques.
We propose a convolution particle approximation

filter. We suppose that we know how to sample from
the conditional laws mk(x

0 j x), ªk(y j x), for any given
x 2 Rd, and also from the initial pdf p0(x). In contrast
with the classical bootstrap PF, we do not suppose that
the pdf ªk should be stated explicitly.

A. Kernel Estimation

Convolution particle approximation filters are
based on kernel estimation techniques; we briefly
introduce them now.
A kernel K :Rd 7!R is a bounded positive

symmetric application such that
R
K(x)dx= 1. Let

KhN (x)
def
=
1
hdN
K

μ
x

hN

¶
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where hN > 0 is the bandwidth parameter. The
Gaussian kernel is K(x) = (1=

p
2¼)de¡jxj

2=2. A
Parzen-Rosenblatt kernel is a kernel such that
jxjdK(x)! 0 as jxj !1.
Let X1, : : : ,XN be independent and identically

distributed (IID) random variables with common pdf
Á. The kernel estimator ÁN of Á associated with the
kernel K is

ÁN(x)
def
=

1
NhdN

NX
i=1

K

μ
x¡Xi
hN

¶
:

B. Convolution Filter

Let fxi0gi=1:N be a sample of size N of p0. We
describe now the iteration k¡ 1! k of the algorithm.
Starting from fxik¡1gi=1:N , we can simulate the
following samples:

xik¡ »mk( ¢ j xik¡1), yik¡ »ªk( ¢ j xik) for i = 1, : : : ,N:

We deduce the following empirical estimate of the
joint conditional pdf of (Xk,Yk) given Y1:k¡1:

fXk ,Yk jY1: k¡1 (x,y)

' 1
N

NX
i=1

fKXhN (x¡ xik¡)KYhN (y¡ yik¡)g (9)

where KXhN and K
Y
hN
are suitably chosen kernels

of appropriate dimensions. Here we use
Parzen-Rosenblatt kernels. Note that in KXhN
(respectively KYhN ) hN could implicitly depend on N,
d, and x1:Nk¡ (respectively N, q, and y1:Nk¡ ). From (9) we
deduce the following convolution approximation ¼Nk (x)
of the optimal filter ¼k(x):

¼Nk (x)
def
=

PN
i=1K

X
hN
(x¡ xik¡)KYhN (Yk ¡ yik)PN
i=1K

Y
hN
(Yk ¡ yik)

: (10)

Then, we define xik » ¼Nk (¢) for i= 1, : : : ,N.

C. Comments

A sufficient condition for the L1-convergence
of ¼Nk to ¼k is h

2q
N =O(N

¡®), with ® 2 (0,1) and
Nhq+dN = logN!1 where the bandwidth parameters
are the same for the state and the observation spaces.
See [20] for details.
The practical use of the convolution filter requires

the choice of the kernel functions KX , KY and of the
bandwidth parameters hXN , h

Y
N . The nature of the kernel

does not appreciably affect the quality of the results.
The choice hXN = Cx£N¡1=(4+d), hYN = Cy £

N¡1=(4+q) is optimal for the mean square error
criterion. The choice of the Cs is a critical issue for
density estimation, and sophisticated techniques have
been proposed [9]. In the on-line context of nonlinear

filtering, these techniques are not usable. Moreover,
particle filtering is aimed at “tracking” the state
and not really at estimating the conditional density
precisely.
The generic form Cx = cx£ [Cov(x1k , : : : ,xNk )]1=2,

Cy = cy £ [Cov(y1k , : : : ,yNk )]1=2 with cx,cy ' 1 gives
good results. For the simulations in the last section, on
taking a Gaussian kernel, we see that the cs are easily
adjusted.

IV. BAYESIAN SEQUENTIAL PROCESSING

The constant unknown parameter μ can be
included in the augmented state variable (Xk,μk) with

μk = μk¡1, μ0 » ½(¢): (11)

The parameter could be denoted μk or μ. The prior
pdf fμ is ½ and the posterior pdf fμjY1: k at time k is the
marginal pdf of the nonlinear filter:

¼k(x,#)
def
= fXk ,μjY1: k (x,#):

The constant dynamic (11) generally leads to
divergence of the standard PFs. This is due to the
fact that the parameter space is only explored at the
initialization step of the PF, causing impoverishment
of the diversity of the relevant particles. Among
the approaches proposed to avoid this trouble,
Storvik [21] marginalizes parameters out of the
posterior distribution, then assumes that the concerned
parameters depend on sufficient statistics. This
avoids the degeneracy of the particles. However, this
approach is not practically useful for general systems.
Kitagawa [16] and Higuchi [14] set an artificial
dynamic on the parameter, such as μk = μk¡1 + ³k,
which increases the a priori variance on the parameter.
Gilks and Berzuini [12] add a Markov chain Monte
Carlo procedure to increase the particle diversity, but
this is cumbersome. To avoid these additions Liu and
West [17] propose smoothing the empirical measure
of the parameter posterior probability distribution with
a Gaussian distribution.
More generally, regularization techniques are used

to avoid particle degeneracy [18]. The regularization
of the state model only, requires nondegerenate noises
and an analytical expression for ªk. These restrictions
were dropped in [8] by the regularization of the
observation model. However, as the state model is not
regularized, the approach remains subject to particle
degeneracy.
In order to circumvent these two problems

simultaneously, Rossi and Vila [20] jointly regularized
the state model and the observation model. In this
approach, the particles include state and observation
components. The construction and the theoretical
analysis of the corresponding filters differ from the
standard particle approach, as they are based on the
nonparametric estimate of the conditional densities by
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TABLE I
Convolution Particle Filter

ALGORITHM

filter initialization: x10 ¢ ¢ ¢xN0
IID» p0(¢)

for k = 1,2, : : : do

xi
k¡ »mk( ¢ j xik¡1) for i= 1 :N fstate samplingg

yi
k¡ »ªk( ¢ j xik¡ ) for i= 1 :N fobservation samplingg

filter updating:

¼N
k
(x) =

PN

i=1K
Y
hN
(Yk ¡ yik¡ )£KXhN (x¡ x

i
k¡ )PN

i=1K
Y
hN
(Yk ¡ yik¡ )

x1k ¢ ¢ ¢xNk » ¼Nk (¢) fresamplingg

end for

TABLE II
Convolution Particle Filter for Bayesian Estimation

ALGORITHM

filter initialization: xi0 » p0(¢) and #i0 » ½(¢) for i= 1 :N
for k = 1,2, : : : do

prediction:

xi
k¡ »mk( ¢ j xik¡1,#ik¡1) for i = 1:N fstate samplingg

yi
k¡ »ªk( ¢ j xik¡ ,#ik¡1) for i = 1:N fobservation samplingg

#i
k¡ = #

i
k¡1 for i = 1:N fparameter samplingg

filter updating:

¼Nk (x,#) =

PN

i=1K
Y
hN
(Yk ¡ yik¡ )KXhN (x¡ x

i
k¡ )K

μ
hN
(#¡#i

k¡ )PN

i=1K
Y
hN
(yk ¡ yik¡ )

(xi
k
,#i
k
)» ¼N

k
(¢, ¢) fresamplingg

end for

convolution kernels. The filter proposed to estimate
simultaneously the state and the parameters in (11),
extends the results of [20]. It is not necessary for the
kernel to be Gaussian, any Parzen-Rosenblatt kernel
will be valid.
The regularization with convolution kernels can

also be viewed as artificial noise. Thus, our approach
is connected to the methods [16, 14] presented
previously. However, contrary to these methods,
it respects dynamics (11) and allows convergence
results. In terms of artificial noise on dynamics, we
have identified a whole family of acceptable noises,
and we have also characterized the way in which their
variance must decrease to zero.
The CPF (Table I) applied to system (11) leads

to the algorithm presented in Table II. This second
algorithm provides consistent estimates of ¼Nk (x,#),
but also estimates the marginal conditional pdfs in Xk
and μ.

In practice, the parameter prior pdf ½, the number
of particles N, the kernels K, and the associated
bandwidth parameters hN must be by chosen by the
user.

V. CONVERGENCE

The L1-convergence of ¼Nk (x) to ¼k(x) as N!1,
for any fixed k, is proven in [20]. This result applied
to the particular case of the extended state-space
model (11) reads as follows.

THEOREM 1 Suppose that K is a positive
Parzen-Rosenblatt kernel, and that for all k:
² the conditional pdf fXk ,μjY1: k (x,#) exists,² the conditional pdf fYk jY1: k¡1 (y) exists, is continuous
and strictly positive a.s. (at least in the neighborhood
of the actual observation),

² the conditional pdf fYk jXk ,μ(y) exists and is bounded
a.s.,

² limN!1Nhq+d+pN = logN =1 and h2qN =O(N
¡®) with

® 2 (0,1).
Then, for any fixed k

lim
N!1

Z Z
j¼Nk (x,#)¡¼k(x,#)jdxd#= 0 a.s.

where

¼Nk (x,#)
def
=

PN
i=1K

Y
hN
(Yk ¡ yik¡)KXhN (x¡ xik¡)Kμ

hN
(#¡#ik¡)PN

i=1K
Y
hN
(Yk ¡ yik¡)

:

The theorem can be proved by induction on k. For
k = 1, the result holds from the convergence of the
convolution kernel density approximations. The proof
of the recurrence k! k+1 uses a decomposition
technique of the L1-error. This technique is presented
in Theorem 2. The detailed proof of Theorem 1 can
be found in [20].
The CPF leads to the following estimate of the

parameter:

μNk
def
=
1
N

NX
i=1

μ̄ik with μ̄ik » ¼2,Nk (¢) (12)

where

¼1,Nk (x)
def
=
Z
¼Nk (x,#)d#

¼2,Nk (#)
def
=
Z
¼Nk (x,#)dx

are the marginal pdfs of the CPF.
Now we prove the convergence of μNk :

THEOREM 2 In addition to the assumptions of
Theorem 1, suppose that the conditional pdf fμk jY1: k (#)
exists and that its support is included in a compact set
C, then

lim
N!1

μNk = E[μ j Y1:k] a.s.
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Theorem 2 is transposable to the state variable Xk.
More precisely,

XNk
def
=
1
N

NX
i=1

x̄ik with x̄ik » ¼1,Nk (¢)

is a consistent estimate of E[Xk j Y1: k].
PROOF OF THEOREM 2 Consider the pdf fμk jY1: k (#)
and let

¢N
def
=
1
2

Z
j¼2,Nk (#)¡fμk jY1: k (#)jd# 2 [0,1] a.s.

Consider an N-sample from the density ¼2,Nk :

SNk
def
=fμ̄1k , : : : , μ̄Nk g with μ̄ik » ¼2,Nk (¢):

We now show that there exists a subsample

fμ̄i1k , : : : , μ̄
iMN

k g ½ SNk , and a new sample f
¯̄
μ
1

k , : : : ,
¯̄
μ
NN
k g,

which together can be considered as sampled from
fμk jY1: k . Define

°1
def
=
min(¼2,Nk ,fμk jY1: k )

1¡¢N
(13)

°2
def
=
¼2,Nk ¡min(¼2,Nk ,fμk jY1: k )

¢N
(14)

°3
def
=
fμk jY1: k ¡min(¼2,Nk ,fμk jY1: k )

¢N
: (15)

These functions are pdfs. Indeed, consider two
pdfs h and g on Rp, and let f =min(h,g). Define
H (respectively G) the subset of Rp for which we
have min(h,g) = h (respectively min(h,g) = g). Let
I =H \G. We haveZ

f =
Z
H

h+
Z
G

g¡
Z
I

h

= 1¡
Z
Hc
h+

Z
G

g¡
Z
I

h

= 1¡
·Z

G

h¡
Z
I

h

¸
+
Z
G

g¡
Z
I

h

= 1¡
Z
G

h+
Z
G

g

= 1¡
Z
G

(h¡ g) = 1¡ 1
2

Z
jh¡ gj

this last equality follows from Scheffe’s lemma.
Hence (1¡ (1=2)R jh¡ gj)¡1f is a pdf, so °1 is. The
assertion for (14) and (15) is proved the same way.
We have

¼2,Nk =¢N°2 + (1¡¢N)°1
fμk jY1: k =¢N°3 + (1¡¢N)°1:

Fig. 1. Simulation scenario. Total observation duration 1 hr,
sampling interval 4 s. Initial relative distance 20025 m, target
speed 7 m/s, observer speed 10 m/s. Trajectories: target (plain
line), maneuvering observer (dashed line), initial positions (o).

This shows that each μ̄ik sampled according to ¼
2,N
k is,

with probability ¢N , sampled from °2. Let

Zi
def
=

(
1 if μ̄ik » °2
0 if μ̄ik » °1

and

NN
def
=

NX
i=1

Zi, MN

def
=N ¡NN:

The Zis are Bernoulli variables with parameter ¢N , so
NN » B(N,¢N) is binomial.MN is the number of μ̄

i
ks

sampled from °1. Let fμ̄i1k , : : : , μ̄
iMN

k g be this subsample.
Then let

¯̄
μ
1

k , : : : ,
¯̄
μ
NN
k

IID» °3 and

fμ̃1k , : : : , μ̃Nk g
def
=fμ̄i1k , : : : , μ̄

iMN

k g[ f ¯̄μ
1

k , : : : ,
¯̄
μ
NN
k g:

It is an N-sample from fμk jY1: k which holdsMN

common elements with SNk drawn from ¼2,Nk . Let

μ̂Nk
def
=(1=N)

PN
i=1 μ̃

i
k be the associated virtual estimate

of μk. Note that

jμNk ¡E[μ j Y1:k]j · jμNk ¡ μ̂Nk j+ jμ̂Nk ¡E[μ j Y1:k]j:
(16)

As fμ̃1k , : : : , μ̃Nk g are sampled from fμk jY1: k , the strong

law of large numbers ensures that limN!1 jμ̂Nk ¡
E[μ j Y1: k]j= 0 a.s. It remains to study the first term
of the RHS of (16). As fμ̃1k , : : : , μ̃Nk g and fμ̄1k , : : : , μ̄Nk g
haveMN common elements, we have

jμNk ¡ μ̂Nk j=
1
N

¯̄̄̄
¯̄ NNX
j=1

μ̄
ij
k ¡

NNX
j=1

μ̃
ij
k

¯̄̄̄
¯̄· 2NNN max

#2C
j#j:
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Fig. 2. EKF (a), PF (b), and CPF (c) with ¾ = 1 deg. True trajectory (vertical line) with empirical estimated trajectory after 20 Monte
Carlo independent runs and corresponding empirical uncertainty ellipses (every 10 min). Case of modified polar coordinate system with
low measurement noise intensity is known to be favorable to EKF (and unfavorable to standard PF), nevertheless CPF outperforms EKF.

However (1=N)NN is the empirical estimate of ¢N , by
Hoeffding’s inequality, for any ¢N ,

P
μ¯̄̄̄NN
N
¡¢N

¯̄̄̄
¸ "
¶
· 2expf¡2N"2g: (17)

By Theorem 1 we have ¢N ! 0 a.s., then (17) implies
that (1=N)NN ! 0 a.s. The proof is then completed.

VI. BEARINGS-ONLY TARGET MOTION ANALYSIS: A
SIMULATED CASE STUDY

We consider the classical problem of bearings-only
target motion analysis in the plane. We adopt the
modified polar coordinate system [1]. We address
the simplest version of this problem: one target
moving with a constant course and velocity. For more
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Fig. 3. EKF (a), PF (b), and CPF (c) with ¾ = 1:5 deg. True trajectory (vertical line) with empirical estimated trajectory after 20
Monte Carlo independent runs and corresponding empirical uncertainty ellipses (every 10 min). Compared with Fig. 2, performances of

EKF deteriorate much more than those of CPF. After maneuver, EKF is unable to find track.

advanced problems like multiple targets tracking and
association, or maneuvering targets, one can consult
[13, 15, 2, 19, 3]. Our purpose is not to propose a
sophisticated tracking algorithm but to compare:

1) the CPF,
2) the EKF,
3) the PF

applied to this well-known case study. The EKF and
PF are based on artificial dynamics for the unknown
parameter with a constant noise variance.
Consider a mobile (the target) with a rectilinear

uniform motion (i.e., with constant heading and
velocity) in the plane. This mobile is tracked
by an observer with a given trajectory. The state
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Fig. 4. CPF in Cartesian coordinate system with ¾ = 1:5 deg.
True trajectory (vertical line) with empirical estimated trajectory
after 20 Monte Carlo independent runs and corresponding
empirical uncertainty ellipses (every 10 min). Compared with
Fig. 3, performance of CPF are slightly better than in case of

modified polar coordinates. EKF (not plotted here) is known to be
very sensitive to choice of coordinates and to present severe

problems of divergence. CPF is therefore much less sensitive to
choice of coordinates.

vector is

Xk =
·
_̄ (tk)

_r(tk)
r(tk)

¯(tk)
1
r(tk)

¸¤
where r(t) is the relative range, v(t) the relative
velocity, and ¯(t) the azimuth. The state vector Xk is a
solution of the following nonlinear noise-free system:

Xk+1 =©(μ, tk+1, tk;Xk) (18)

where © is given (see [1] for details); here μ is the
initial position, velocity, and heading of the target.
The observations are a sequence of bearings

corrupted by noise:

Yk = ¯(tk) +¾vk

where vk is a white Gaussian noise N (0,1).
The parameters of the simulation scenario

described in Fig. 1 are total observation duration 1 hr,
sampling interval 4 s, target speed 10 m/s, observer
speed 10 m/s, observer initial position (0,0), target
initial position (30,000 m, ¡5000 m). Hence, the
initial true relative distance is 30,414 m.
The initial pdf for the 3 filters (EKF, PF, CPF) is

as follows: the initial relative distance pdf has a mean
of 33,000 m and a standard deviation of 5000 m; the
initial pdf on _̄(t0) is N (0,0:0012); the initial pdf on
_r(t0)=r(t0) is N (0,0:00052).

We perform 20 independent Monte Carlo runs
of this scenario with ¾ = 1 deg (Fig. 2) and ¾ =
1:5 deg (Fig. 3). We plot the corresponding empirical
positions (the empirical estimated trajectory) and the
corresponding empirical uncertainty ellipses (every
10 min). For the PF and the CPF we use 10,000
particles.
It is known that the EKF performs better in the

modified polar coordinate system than in the Cartesian
coordinate system [1]. In Fig. 2, where ¾ = 1 deg, the
performance of the CPF is better than that of the EKF.
In the Fig. 3, where ¾ = 1:5 deg, the performances of
the EKF deteriorate much more than those of the CPF.
After the maneuver, the EKF is unable to find the
track. In order to make use of the PF it is necessary
to add an artificial dynamic to the parameter with
constant variance noise; in doing so, the performance
of the PF markedly deteriorates.
In Fig. 4, the CPF is presented in the case of the

Cartesian coordinate system. The EKF is extremely
sensitive to the choice of coordinates and presents
severe problems of divergence. The performances of
the CPF are slightly better in the case of the Cartesian
coordinate system and are much less sensitive to the
choice of coordinates.

VII. CONCLUSION

The CPF presents some interesting features.
First, the CPF can be applied if the local likelihood
function (3) is not known analytically, or even if
the local likelihood function does not exist. The
sole prerequisite is to be able to sample from the
observation model (3). Second, the CPF can be used
to estimate constant parameters or deterministic
parts of the state dynamical system, whereas in
such situations, the classical PFs fail due to the
particle degeneracy phenomenon. Finally, in terms of
implementation, the CPF is as simple as the bootstrap
PF. The CPF appears to be an efficient extension of
the standard PF for the case of partially perturbed
dynamical systems and on-line parameter tracking.
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Tracking multple objects with particle filtering.
IEEE Transactions on Aerospace and Electronic Systems,
38, 3 (2002), 791—812.

[16] Kitagawa, G.
Non-Gaussian state space modeling of nonstationary time
series (with discussion).
Journal of the American Statistical Association, 82, 400
(1987), 1032—1063.

[17] Liu, J., and West, M.
Combined parameter and state estimation in
simulation-based filtering.
In A. Doucet, N. de Freitas, and N. J. Gordon (Eds.),
Sequential Monte Carlo Methods in Practice, New York:
Springer-Verlag, 2001, 197—223.

[18] Musso, C., Oudjane, N., and Le Gland, F.
Improving regularized particle filters.
In A. Doucet, N. de Freitas, and N. J. Gordon (Eds.),
Sequential Monte Carlo Methods in Practice, New York:
Springer-Verlag, 2001, 247—271.

[19] Ristic, B., Arulampalam, M. S., and Gordon, N. J.
Beyond the Kalman Filter: Particle Filters for Tracking
Applications.
Boston: Artech House, 2004.

[20] Rossi, V., and Vila, J-P.
Nonlinear filtering in discrete time: A particle convolution
approach.
Annales de l’Institut de Statistique de l’Universite de Paris,
50, 3 (2006), 71—102.

[21] Storvik, G.
Particle filters in state space models with the presence of
unknown static parameters.
IEEE Transactions on Signal Processing, 50, 2 (2002),
281—289.

CAMPILLO & ROSSI: CONVOLUTION PARTICLE FILTER FOR PARAMETER ESTIMATION 1071

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on November 24, 2009 at 04:28 from IEEE Xplore.  Restrictions apply. 



Fabien Campillo received an M.Sc. degree in applied mathematics in 1981, a
Ph.D. degree in 1984, and the “Habilitation à diriger des recherches” (HDR) from
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