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Abstract

This paper deals with the problem of real time identificatidithe linear characteristics of the lin-
ear system associated with a mechanical structure. Morettirparameter itself, the algorithm
presented here is interested in estimating the confidemervais for the parameter of interest. The
algorithm is based on the particular filtering theory, whetiaistical laws of hidden states are ap-
proximated by some evolving particle collection.

1 Introduction

A critical problem for mechanical structures exposed to easured non stationary natural excitation
(turbulence) is an instability phenomenon also knowmiwatter. It is formulated as the monitoring
of the time varying complex eigenvalues associated to therelized linear system corresponding
to the monitored mechanical system. It has already beestigated through batch identification
modal analysis using only output-only in-flight data hagatly been investigated. See Mee¢l

al [8] for a case study of monitored aircraft using subspacatifieation methods.

For improving the estimation of the parameters of intertbst collection of frequency and damping
codficients, and moreover for achieving this in real-time dufifght tests, one possible route is to
resort to tracking algorithms.

Frequency and damping daeients can be monitored by a recursive maximum likelihoolli(iR
procedure[l]. The considered tracking procedure is a apease of adaptive algorithms where
the gain is kept constant. The associated score functiovaisiaed by a joint Kalman filter and
its derivative w.r.t. to the parameters (the tangent filtém)the nonlinear case, these filters can be
approximated by particle filtering techniques [5]. Doucet&dic [6], Guyadeet al[7], and Caylus

et al[3] already applied these techniques to RML estimation.

Particle approximation for health monitoring was alreadypmsed by Yoshida & Sato [10] in order
to handle non—-Gaussian noise. Modal characteristics orimgtis also considered by Chirgg al
[4]. In both cases authors use a state augmentation appbydnbluding the unknown parameters
in the state process. This is also the method investigated he

2 Modeling

2.1 Dynamical model and structural parameters
Let us consider observations sampled at a rate 1

yk = L Z(ko) (1)

of the stateZ(t) of a n—degrees of freedom mechanical system. These measureanergathered
throughd sensors, i.eyy takes values iiRY. The matrixL indicates which components of the state



vector are actually measured, i.e. where the sensors aatetbcThe behavior of the mechanical
system is described by the following linear dynamical syste

M Z(t) + CZ(t) + K Z(t) = o £(t) 2)

where the (non measured) input fortes a non—stationary white Gaussian noise with time-varying
covariance matri@é(t). M, C, K are respectively the matrices of mass, damping afithess.

Now let us describe the structural characteristics of tistesy (2). The modes or eigenfrequencies
w1 and the associated eigenvectdrsof the system (2) are solutions of

detf®M +uC +K] =0, 3)
[W>’M +uC+K]®, =0.

Then the mode—-shapes &g = L ®,. The frequency and damping dheients are

f=2H2z), d=_F-c01] 4)

with a = R(u) andb = J(u).

The monitored structure is defined by its modal charactesisthe collection of frequencies, damp-
ings and mode shapes, as well as the covariances of the nbiseproblem is to follow the slow evo-
lutions of the structural characteristics of the mechdrsgatem (2) by a recursive tracking method,
whose starting values will be defined as the output of the diatan subspace method as described
in Van Overschee & De Moor [9, Fig. 3.13 p. 90].

The tracking algorithm will focus on the frequencies and gengs, the mode shapes are assumed
not to change significantly during the monitoring in regavdtie changes in the eigenvalues. A
change in the mode shapes would most likely be a local chantieistructure, thus will indicate
the presence of damage, whereas a change in the eigenvatlussilcoccur without presence of
damage and notEect significantly the mode shapes (as for example fieeof temperature on the
stiffness of the structure).

2.2 State—space model and canonical parameterization
We rewrite the preceding system (1)—(2) as a linear statesesmodel. Define

def | Z(ko)
X = [Z(ké):|

andF £ with AZ [ 0 1. ] e R?™. From (2) we get
Xr1 = F X+ 0 &k ()

def

where( = f(ﬁm el-WAT 9 ] andB, £ [} £(s) dsis a Brownian motion. Hencg is a (discrete—
time) white Gaussian noise with covariance matrix

ko ki-WA |0 0 ks—u) A"
f(k—l)é e( U) |: 0 M! Q[(U) (M —1)* :| e( U) du

which is approximated by @ with

( def | O 0
Q= [o Mflal(kﬁ)(mfl)*} .



From (1) we get
Yk = [L O] X + v v (6)

where L 0] € R™?" andv is a N(0,Q)) white Gaussian noise which allows to take into account
of the errors of modeling and the measurement noise. We seppat the Hermitian matrigy, is
positive definite.

Let (1, @,) be the eigenstructure of the state transition mdtinamely
detF-a1)=0, (F-al)®,=0. @)

The parameterg(®,) in (3) can be deduced from the,(,)’s usinge’ = 1 and®, = ®,. The
frequency and damping cfieients (4) are recovered from a discrete eigenvaltteough

a=1ilogld, b=1 arctan{%} :

Hypothesis: We suppose that F admis pairwise complex conjugate distinct eigenvalaes, 1.
with associated orthonormal set of eigenvectdis,, @1, (1). We also suppose that these eigenval-
ues have modulus less than one.

It turns out that this collection of modes forms a very ndtpestameterization for structural analysis.
It is invariant w.r.t. changes in the state basis of system(6. In other words, thel(®,)’'s form a
canonical parameterization of the eigenstructure (onedgmtly the pole part) of that system.

Change of variables
Define

def

D= [q)l:n] 5 ¥ dZEf [‘Plzn] > A d:ef diag(/ll:n) .
We introduce the following linear transformation
TZ[® @] e 2

i.e. the matrix whose columns are the eigenvectois.df is a unitary matrix, i.eT~! = T*. Then

A©O| _ = 2nx2
[(O)K}_T FTeC2mn,

Define also
HE[LO]T=[LO][®®] =[P Y] eCH,

Then after the change of variables
G def

X =T" X,
the vectorX is of the form[ ] and (5) reduces to

X1 = AXg + 0 @ k Id N(O,cSQﬁ).

INotations: x" is the transpose of, x is the complex conjugates is the transpogeonjugate /x| the modulus,j will
denotev-1.



Note that in practice we just have access to the mode shapeg Ha, and not to the eigenvectors
matrix @1, so in order to fully specify the state equation we supposétthe covariance matrix

@, is of the form L 0]* Qc[L 0] for a given covariance matri. Hencew, = ®* ¢ is a white
Gaussian noise with covariance mai@g = 6 ¥* Q. ¥.
The observation equation (6) becomes

ykz‘l'xk+‘i>7k+vvk, Vi d N0, Q) .

Note that¥ x + ¥ X = 2°R{¥ x} is a linear operator.

The statgspace system
One finally obtains the following system

Xir1 = A Xy + 0 W, Wi id N, QY), (8)
vk = 2R (¥ X} + v i, vic © N(0,Q)). (9)
In this model all parameters are assumed known, or preyiastimated, except the eigenvalues

matrix A £ diag(l1,) and the noise intensities andv. The mode shapes matik = [¥1.,], the
sampling period, and the covariance matric& and@y are given (ther@! = ¢ ¥* Q«'¥). From
now on we suppose tha, = I.

3 Parameterization
Consider the following linear system

Xk = F(9) X + G(9) W, wi " N(0,QY),

vk = H(9) % + 2(9) Vi, vic U N(0.QY).

The state process takes values irC", the observation procesg in CY, and® € RP. The state
initial law is xg ~ N(Xg, Ro). Initial conditionxg, state noisev, and observation noisg are mutually
independent.

Suppose that the matric€¥) € C™", G(89) € C™", H(®) € C*" andx(9) € C™¥ are diferen-
tiable w.r.t.23. We also suppose th&{(#) G(¢#)* > M; > 0 andX(d) Z(¢#)* = M, > 0 whereM; and
M, are symmetric positive definite matrices.

Here we suppose that the unknown parameter is the realizatia random variable denotédthe
realizations of this variable are denotéll Let p(di) denotes the a priori law of this random, for
exampleo = N(o, 70)-

This model is equivalent to the following extended stataegpsystem:
Ok+1 = Ok, 6o ~ N(J0, 7o) (10)

X1 = F(Ok) Xk + G(6k) Wi » Xo ~ N(Xo, Ro) , (11)
Yk = H(6k) X + Z(6k) Vi - (12)



4 Convolution particle filter

The second approach takes place in a classical Bayesiaavirank: « is the unknown realization of
a random variablé with prescribed a priori probability laM (9, 70). Let:

MZ(x, dX') EP(x € dX'|0 = 9, X1 = X) ,
WE(x, dy) = P(yk € dylo = 9, %= X).

An extended state variablgy( 6¢) joining all the unknown quantities is considered and thet@aor
law P(xk € dx, 8k € didly1) is then approximated using a convolution particle filter.

Kernel estimation
A kernelK : R" - R is a bounded, positive, symmetric application such thit(x) dx = 1. We
denote w1

Kn(¥) = moy K(ﬁ)

wherehy > 0 is the bandwidth parameter. We also supposekhataParzen-Rosenblakernel, i.e.
[X"K(X) — 0 as|x| — 0. In practice we use a Gaussian kernel:

1 e
K(x) = 2 ® 22

Let x!---xN be i.i.d. random variables with common density The kernel estimatofy of f
associated with the kernil is given by

N
(9 = (Kn * an)(9) = (ﬁN)n >_K(R)
i=1

for xe R™ un = & 32N, 64 is the empirical measure associated with.- - xN.

The convolution filter
Let {x,}i-1..n be a sample of sizB of N(xo, Ro). and{#}}i-1..n be a sample of sizi of N(, 70).

We describe now the iteratid+ 1 — k of the algorithm. Starting frortuL_l}izl...N, we can simulate
the following samples

Xe ~Mi®e1. ). e ~ g, Yie ~ WX +)

fori = 1---N. We deduce the following empirical estimate of the joint ditional law of y, y)
givenyix-1

P(x € dx, 6 € dif, yx € dyly1x-1) =
N
EZ{KX(x—x‘ ) KE (9 — 9)c) KY(y—yic)} dxdod (13)
N 2 1K k) Ky k) K Y = Yie y
i=

whereKy, KﬁN and K,{N are suitably chosen kernels of appropriate dimensionse ierpropose to
use Parzen-Rosenblatt kernels, see Appendix 4. Note thg} iresp. K,XN) (resp. K,‘{N) hy could



implicitly depend orN, d andxtN (resp.N, g andyiN) (resp.N, p anddiN). From (13) we deduce
the following convolution approximation of the optimal diit

me(dx, d9) = m (dx, d?) = pi (X, Plyx) dxdd
o i1 KR X0) KR = 90) KO- o
Sty Kh vk = Yid

(14)

Then, we define o
(X, %) ~m(dx,d¥)  i=1---N.

A posteriori law analysis
There are two possibilities: we can define the support of értiqtes ¢} )i-1n

ﬂmin def

def _ . i max def
ke — ir:nllzrl\]l 0"’[ ’ g

= maxd\
k¢ i=1:N k¢

Then, at timek, for each componert= 1 : p, we have the confidence interva", 9{"®.
Another possibility is to make a Gaussian approximation:

N
— e 1 . o 1 . —
D.e == Z e » O'ﬁf g Z(ﬂLJ — k)
N < N-1<
Then a confidence interval could bﬁj — 207k ¢, Ek,g + 207k ]

Choice of the parametergihh,, hy,

We choosehy; = Cx x N"VHN R = Cp x N"V&P 1 = C, x N-Y/*0 and

Cx = & X [Cov(x, ..., x})]Y?

Cy = o x [Cov(@i ..., 0)]Y?

Cy = ¢ X [COV(Yic, - . ., YR )] M2
with ¢, ¢y, ¢, = 1 gives good results. For the simulations in the last sectartaking a Gaussian
kernel, we will see that the's are easily adjusted.
Simulations based on flutter evolution will be shown later.
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filter initialization: X, ~ N(Xo, Ro) andél, ~ N(go, 7o) fori = 1 : N
fork=1,2...do
prediction

X ~ Mﬁi“(x{(_l, dx) fori = 1 : N {state sampling}

Vi ~ ‘I’fkfl(x,‘(,,dy) fori = 1: N {observation sampling}
I =9}, fori=1:N {parameter sampling}

compute the parameteny, h;, hy,

filter updating:

Dol K~ Vi) Kiglx = ) Ky - )

® (dx, d) = .
) SR KOk — )

X di?

(X, ) ~ 7R (dx, d) {resampling}
end for

Table 1: The convolution filter for Bayesian estimation.
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