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Abstract
This paper deals with the problem of real time identificationof the linear characteristics of the lin-
ear system associated with a mechanical structure. More than the parameter itself, the algorithm
presented here is interested in estimating the confidence intervals for the parameter of interest. The
algorithm is based on the particular filtering theory, wherestatistical laws of hidden states are ap-
proximated by some evolving particle collection.

1 Introduction
A critical problem for mechanical structures exposed to unmeasured non stationary natural excitation
(turbulence) is an instability phenomenon also known asflutter. It is formulated as the monitoring
of the time varying complex eigenvalues associated to the discretized linear system corresponding
to the monitored mechanical system. It has already been investigated through batch identification
modal analysis using only output-only in-flight data has already been investigated. See Mevelet
al [8] for a case study of monitored aircraft using subspace identification methods.

For improving the estimation of the parameters of interest,the collection of frequency and damping
coefficients, and moreover for achieving this in real-time duringflight tests, one possible route is to
resort to tracking algorithms.

Frequency and damping coefficients can be monitored by a recursive maximum likelihood (RML)
procedure[1]. The considered tracking procedure is a special case of adaptive algorithms where
the gain is kept constant. The associated score function is evaluated by a joint Kalman filter and
its derivative w.r.t. to the parameters (the tangent filter). In the nonlinear case, these filters can be
approximated by particle filtering techniques [5]. Doucet &Tadic [6], Guyaderet al [7], and Caylus
et al [3] already applied these techniques to RML estimation.

Particle approximation for health monitoring was already proposed by Yoshida & Sato [10] in order
to handle non–Gaussian noise. Modal characteristics monitoring is also considered by Chinget al
[4]. In both cases authors use a state augmentation approachby including the unknown parameters
in the state process. This is also the method investigated here.

2 Modeling
2.1 Dynamical model and structural parameters

Let us consider observations sampled at a rate 1/δ

yk = L Z(kδ) (1)

of the stateZ(t) of a n–degrees of freedom mechanical system. These measurementsare gathered
throughd sensors, i.e.yk takes values inRd. The matrixL indicates which components of the state



vector are actually measured, i.e. where the sensors are located. The behavior of the mechanical
system is described by the following linear dynamical system

M Z̈(t) + C Ż(t) + K Z(t) = σ ζ(t) (2)

where the (non measured) input forceζ is a non–stationary white Gaussian noise with time-varying
covariance matrixQζ(t). M , C, K are respectively the matrices of mass, damping and stiffness.

Now let us describe the structural characteristics of the system (2). The modes or eigenfrequencies
µ and the associated eigenvectorsΦµ of the system (2) are solutions of

det[µ2 M + µC + K ] = 0 ,
[µ2 M + µC + K ] Φµ = 0 .

(3)

Then the mode–shapes areΨµ = L Φµ. The frequency and damping coefficients are

f = b
2π (Hz) , d = |a|√

a2+b2
∈ [0,1] (4)

with a = <(µ) andb = =(µ).

The monitored structure is defined by its modal characteristics: the collection of frequencies, damp-
ings and mode shapes, as well as the covariances of the noises. The problem is to follow the slow evo-
lutions of the structural characteristics of the mechanical system (2) by a recursive tracking method,
whose starting values will be defined as the output of the datadriven subspace method as described
in Van Overschee & De Moor [9, Fig. 3.13 p. 90].

The tracking algorithm will focus on the frequencies and dampings, the mode shapes are assumed
not to change significantly during the monitoring in regard to the changes in the eigenvalues. A
change in the mode shapes would most likely be a local change in the structure, thus will indicate
the presence of damage, whereas a change in the eigenvalues can still occur without presence of
damage and not affect significantly the mode shapes (as for example the effect of temperature on the
stiffness of the structure).

2.2 State–space model and canonical parameterization

We rewrite the preceding system (1)–(2) as a linear state–space model. Define

Xk
def
=

[

Z(kδ)
Ż(kδ)

]

andF
def
= eδA with A

def
=

[

0 I
−M−1 K −M−1 C

]

∈ R
2n×2n. From (2) we get

Xk+1 = F Xk + σ ζk (5)

whereζk
def
=

∫ kδ
(k−1)δ e(kδ−u) A

[

0
dBu

]

andBt
def
=

∫ t
0 ζ(s) ds is a Brownian motion. Henceζk is a (discrete–

time) white Gaussian noise with covariance matrix

∫ kδ
(k−1)δ e(kδ−u) A

[

0 0
0 M−1Qζ (u) (M−1)∗

]

e(kδ−u) A∗ du

which is approximated byδQζk with

Qζk
def
=

[

0 0
0 M−1Qζ (kδ) (M−1)∗

]

.



From (1) we get

yk = [L 0] Xk + ν vk (6)

where [L 0] ∈ R
d×2n andvk is a N(0,Qv

k) white Gaussian noise which allows to take into account
of the errors of modeling and the measurement noise. We suppose that the Hermitian matrixQv

k is
positive definite.

Let (λ,Φλ) be the eigenstructure of the state transition matrixF, namely

det(F − λ I ) = 0 , (F − λ I )Φλ = 0 . (7)

The parameters (µ,Φµ) in (3) can be deduced from the (λ,Φλ)’s usingeδ µ = λ andΦµ = Φλ. The
frequency and damping coefficients (4) are recovered from a discrete eigenvalueλ through

a = 1
δ

log |λ| , b = 1
δ

arctan
[

=(λ)
<(λ)

]

.

Hypothesis:We suppose that F admits2n pairwise complex conjugate distinct eigenvaluesλ1:n, λ̄1:n
with associated orthonormal set of eigenvectorsΦ1:n, Φ̄1:n (1). We also suppose that these eigenval-
ues have modulus less than one.

It turns out that this collection of modes forms a very natural parameterization for structural analysis.
It is invariant w.r.t. changes in the state basis of system (5)–(6). In other words, the (λ,Φλ)’s form a
canonical parameterization of the eigenstructure (or equivalently the pole part) of that system.

Change of variables

Define
Φ

def
= [Φ1:n] , Ψ

def
= [Ψ1:n] , Λ

def
= diag(λ1:n) .

We introduce the following linear transformation

T
def
= [Φ Φ̄] ∈ C

2n×2n ,

i.e. the matrix whose columns are the eigenvectors ofF. It is a unitary matrix, i.e.T−1 = T∗. Then
[

Λ (0)
(0) Λ̄

]

= T∗ F T ∈ C
2n×2n .

Define also

H
def
= [L 0] T = [L 0] [Φ Φ̄] = [Ψ Ψ̄] ∈ C

d×2n ,

Then after the change of variables
X̃k

def
= T∗ Xk ,

the vectorX̃k is of the form
[ xk

x̄k

]

and (5) reduces to

xk+1 = Λ xk + σΦ
∗ ζk , ζk

iid∼ N(0, δQζk) .
1Notations: xT is the transpose ofx, x̄ is the complex conjugate,x∗ is the transpose/conjugate,|x| the modulus,j will

denote
√
−1.



Note that in practice we just have access to the mode shapes matrix Ψ1:n and not to the eigenvectors
matrix Φ1:n, so in order to fully specify the state equation we suppose that the covariance matrix
Qζk is of the form [L 0]∗ Qk [L 0] for a given covariance matrixQk. Hencewk

def
= Φ∗ ζk is a white

Gaussian noise with covariance matrixQw
k

def
= δΨ∗ QkΨ.

The observation equation (6) becomes

yk = Ψ xk + Ψ̄ x̄k + ν vk , vk
iid∼ N(0,Qv

k) .

Note thatΨ x+ Ψ̄ x̄ = 2<{Ψ x} is a linear operator.

The state/space system

One finally obtains the following system

xk+1 = Λ xk + σwk , wk
iid∼ N(0,Qw

k ) , (8)

yk = 2<{Ψ xk} + ν vk , vk
iid∼ N(0,Qv

k) . (9)

In this model all parameters are assumed known, or previously estimated, except the eigenvalues
matrixΛ

def
= diag(λ1:n) and the noise intensitiesσ andν. The mode shapes matrixΨ = [Ψ1:n], the

sampling periodδ, and the covariance matricesQk andQv
k are given (thenQw

k = δΨ
∗ QkΨ). From

now on we suppose thatQv
k = I .

3 Parameterization
Consider the following linear system

xk+1 = F(ϑ) xk +G(ϑ) wk , wk
iid∼ N(0,Qw

k ) ,

yk = H(ϑ) xk + Σ(ϑ) vk , vk
iid∼ N(0,Qv

k) ,

The state processxk takes values inCn, the observation processyk in C
d, andϑ ∈ R

p. The state
initial law is x0 ∼ N(x̄0,R0). Initial conditionx0, state noisewk and observation noisevk are mutually
independent.

Suppose that the matricesF(ϑ) ∈ C
n×n, G(ϑ) ∈ C

n×n′ , H(ϑ) ∈ C
d×n andΣ(ϑ) ∈ C

d×d′ are differen-
tiable w.r.t.ϑ. We also suppose thatG(ϑ) G(ϑ)∗ ≥ M1 > 0 andΣ(ϑ)Σ(ϑ)∗ ≥ M2 > 0 whereM1 and
M2 are symmetric positive definite matrices.

Here we suppose that the unknown parameter is the realization of a random variable denotedθ (the
realizations of this variable are denotedϑ). Let ρ(dϑ) denotes the a priori law of this random, for
exampleρ = N(ϑ̄0,T0).

This model is equivalent to the following extended state-space system:

θk+1 = θk , θ0 ∼ N(ϑ̄0,T0) , (10)

xk+1 = F(θk) xk +G(θk) wk , x0 ∼ N(x̄0,R0) , (11)

yk = H(θk) xk + Σ(θk) vk . (12)



4 Convolution particle filter
The second approach takes place in a classical Bayesian framework:ϑ is the unknown realization of
a random variableθ with prescribed a priori probability lawN(ϑ̄0,T0). Let:

Mϑk (x,dx′)
def
= P(xk ∈ dx′|θ = ϑ, xk−1 = x) ,

Ψϑk (x,dy)
def
= P(yk ∈ dy|θ = ϑ, xk = x) .

An extended state variable (xk, θk) joining all the unknown quantities is considered and the posterior
law P(xk ∈ dx, θk ∈ dϑ|y1:k) is then approximated using a convolution particle filter.

Kernel estimation

A kernel K : R
n 7→ R is a bounded, positive, symmetric application such that

∫

K(x) dx = 1. We
denote

KhN (x)
def
= 1

(hN)n K
(

x
hN

)

wherehN > 0 is the bandwidth parameter. We also suppose thatK is aParzen-Rosenblattkernel, i.e.
|x|nK(x)→ 0 as|x| → ∞. In practice we use a Gaussian kernel:

K(x) =
1

(2π)n/2
e−|x|

2/2 .

Let x1 · · · xN be i.i.d. random variables with common densityf . The kernel estimatorfN of f
associated with the kernelK is given by

fN(x) = (KhN ∗ µN)(x)
def
=

1
N (hN)n

N
∑

i=1

K
(

x−xi

hN

)

for x ∈ R
n; µN =

1
N

∑N
i=1 δxi is the empirical measure associated withx1 · · · xN.

The convolution filter

Let {xi
0}i=1···N be a sample of sizeN of N(x̄0,R0). and{ϑi

0}i=1···N be a sample of sizeN of N(ϑ̄0,T0).

We describe now the iterationk−1→ k of the algorithm. Starting from{xi
k−1}i=1···N, we can simulate

the following samples

xi
k− ∼ Mk(x

i
k−1, · ) , ϑi

k− ∼ ϑi
k−1 , yi

k− ∼ Ψk(x
i
k, · )

for i = 1 · · ·N. We deduce the following empirical estimate of the joint conditional law of (xk, yk)
giveny1:k−1

P(xk ∈ dx, θ ∈ dϑ, yk ∈ dy|y1:k−1) '

1
N

N
∑

i=1

{

Kx
hN

(x− xi
k− ) KθhN

(ϑ − ϑi
k− ) Ky

hN
(y− yi

k− )
}

dxdϑdy (13)

whereKx
hN

, KθhN
andKy

hN
are suitably chosen kernels of appropriate dimensions. Here we propose to

use Parzen-Rosenblatt kernels, see Appendix 4. Note that inKx
hN

(resp. Ky
hN

) (resp. KθhN
) hN could



implicitly depend onN, d andx1:N
k− (resp.N, q andy1:N

k− ) (resp.N, p andϑ1:N
k− ). From (13) we deduce

the following convolution approximation of the optimal filter:

πk(dx,dϑ) ' πN
k (dx,dϑ) = pN

k (x, ϑ|y1:k) dxdϑ

def
=

∑N
i=1 Kx

hN
(x− xi

k− ) KθhN
(ϑ − ϑi

k−) Ky
hN

(yk − yi
k)

∑N
i=1 Ky

hN
(yk − yi

k)
dxdϑ . (14)

Then, we define
(xi

k, ϑ
i
k) ∼ πN

k (dx,dϑ) i = 1 · · ·N .

A posteriori law analysis

There are two possibilities: we can define the support of the particles (ϑi
k)i=1:N

ϑmin
k,`

def
= min

i=1:N
ϑi

k,` , ϑmax
k,`

def
= max

i=1:N
ϑi

k,`

Then, at timek, for each component̀= 1 : p, we have the confidence interval [ϑmin
k,` , ϑ

max
k,` ].

Another possibility is to make a Gaussian approximation:

ϑ̄k,`
def
=

1
N

N
∑

i=1

ϑi
k,` , σ2

k,`
def
=

1
N − 1

N
∑

i=1

(ϑi
k,` − ϑ̄k,`)

2

Then a confidence interval could be [ϑ̄k,` − 2σk,`, ϑ̄k,` + 2σk,`].

Choice of the parameters hx
N, hθN, hy

N

We choose:hx
N = Cx × N−1/(4+n), hθN = Cθ × N−1/(4+p), hy

N = Cy × N−1/(4+q) and

Cx = cx × [Cov(x1
k− , . . . , x

N
k− )]

1/2

Cθ = cθ × [Cov(ϑ1
k− , . . . , ϑ

N
k− )]

1/2

Cy = cy × [Cov(y1
k− , . . . , y

N
k− )]

1/2

with cx, cθ, cy ' 1 gives good results. For the simulations in the last section, on taking a Gaussian
kernel, we will see that thec’s are easily adjusted.

Simulations based on flutter evolution will be shown later.
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[6] Arnaud Doucet and Vladislav B. Tadić. “Parameter estimation in general state–space models
using particle methods”, Annals of the Institute of Statistical Mathematics, 55(2):409–422,
2003.

[7] Arnaud Guyader, François Le Gland, and Nadia Oudjane. “Aparticle implementation of the
recursive MLE for partially observed diffusions”, Proceedings of the 13th IFAC/IFORS Sym-
posium on System Identification, 1305–1310, Rotterdam, August 27-29 2003.

[8] Laurent Mevel, Maurice Goursat, and Auguste Sam. “Automated on–line monitoring during a
flight”, 22nd International Modal Analysis Conference (IMAC), Dearborn, Mi., USA, 2004.

[9] Peter Van Overschee and Bart De Moor. “Subspace Identification for Linear Systems: Theory
– Implementation – Methods”, Kluwer, 1996.

[10] Ikumasa Yoshida and Tadanobu Sata. “Health monitoringalgorithm by the Monte Carlo filter
based on non–Gaussian noise”, Journal of Natural Disaster Science, 24(2):101–107, 2002.


