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Abstract
The double porosity model allows to compute the pressure at a macroscopic scale

in a fractured porous media, but requires the computation of some exchange coefficient
characterizing the passage of the fluid from and to the porous media (the matrix) and the
fractures. We propose a new Monte Carlo method to estimate this coefficient. Here we
give an overview of Campillo et al [l, 2].

l Introduction
This paper presents an algorithm of Simulation of a diffusion in a fissured porous medium (the
matrix}. The algorithm gives the times and position when a Brownian particle hits for the first
time the interface between the matrix and the fissures. Then, the behavior of the particle in
the fissure is studied. The goal is to compute the exchange coefficient in the double porosity
model.

One should not lose sight of the fact that when one wants to use a Monte Carlo algorithm
to compute a functional involving stopped diffusion process (i.e. diffusion process given at a
certain stopping time), one tends to simulate the diffusion process itself which is, in many cases,
not a good strategy. Here it is possible to directly calculate the law of stopped diffusion and
derive a good approximation.

2 Double porosity model
The goal is to compute the exchange coefficient in the double porosity model. Let Ω = fif Ufim C
R2 be bounded, closed, with Qf Π ftm = 0. We assume that the media is periodic, and then
that Ω is identify with the whole space. f l m (resp. Ωί) is the matrix, that is a porous media
(resp. the net of "thin" fissures).
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The simplest equation giving the pressure p(£,z,y) of a fluid in such a medium at time t and
in the point (z, y) is:

|p(i, x, y) = Ap(t, x, y) , Λ = div(a(z, y) V) . (1)

The coefficient α represents the diffusivity of the rock, and we assume that a(z, y) = [om lnm(z} y)+
flf ΙΩ£ (z, y)] x W} with Of > am.

Equation (1) is written at the scale of the pores, whereas an oil tank can have length of
several kilometers. One of the methods to study the pressure consists in transforming (1) into
a System:

$o,|P,n = amAPm-a(Pm-P f) , Φ,£Ρ, = β,ΔΡ, + a(Pm - P,) , (2)

where ΦΩΦ = Meas(ft.)/Meas(Q) with · = m or f ; Pm and Pf are the mean pressures in the
matrix and the fissures over a given volume V:

= m or f .

The coefficients om and af are the effective diffusivity coefficients in the matrix and the fissures.
The coefficient α is called the exchange coefficient

Model (2) is the double porosity model, here presented in permanent regime (steady state
approximation) see Warren-Root [10]. We deal with the case where the ratio Of/am is large.
The oil is initially in the matrix, but, when moving, the oil stay essentially in the fissures
net. The term amAPm is neglectable compared to the other terms. The Laplace transform of
the average of the pressure Pf (i, z, y) is now solution of the simple equation (see, for example,
Ncetinger-Estebenet [7]):

A£Pf(s,z,y) = s/(s)£Pf(s,z,y),

where, in permanent regime, /(s) = [Φ{ Φη s 4- ]/[^m θ -f a].
It is known that the operator A is the infinitesimal generator of a Feller semi-group, and

then that a diffusion process admits A s generator. Furthermore this process is conservative
and continuous (see Lejay [4] for example).

Let (X, Y) be the 2-d diffusion process associated with the infinitesimal generator A intro-
duced in Equation (1). Its trajectories are interpreted s the movement of some particle in the
media. In the matrix (resp. the fissures), the particle moves like a Brownian motion (BM) with
speed 2am (resp. 2of). However, we may assume that once it has hit the interface between the
matrix and the fissure, the particle enters into the last one. A justification of this may be found
in Campillo et al [2].

We are interested by the Simulation of these particles. We give now the link between their
trajectories and the double porosity model.

As proved in Noetinger-Estebenet [7], the exchange coefficient is related to the diffusion
process (X,Y) by the fact that if e{(t) = lnm(Xi,Y t) and R{(t) = E[ef(t)ef(0)] is the auto-
correlation function of ει with uniform initial distribution, then

expr _*«-*?
The exchange coefficient is then link to the speed at which the pressure of the fluid initially in
the fissures reaches its equilibrium.
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With a regression technic, α may be computed knowing various values f(ii), . . . , R{(tk) of
the auto-correlation function for times t\ < · · · < i*. The function Rf(t) may itself be computed
using the approximation

for TV trajectories of particles. The only Information needed is then to know whether the particle
is in the fissure or in the matrix at time t. This is why the exit time and position from the
matrix/fissure is only what we simulate.

3 From the matrix to the net of fissures
Let us suppose that the fissures network is of the following form:

The fissures are supposed to be of zero width. The algorithm relies on the Simulation of
time/position of exit from a simple shape domain, namely the square:

Algorithm A : Computation ofexit time and position from the matrix

A.l Start at time/position (t, P) wit P G m.
A.2 For i G F:

A.2.1 -f/j «— projection of P on the line including the segment [A<,B<]
A.2.2 6i<

A. 3 i -f- Arg min.j£F j
A. 3. l If H i G [Ai,Bj] then one seeks if it possible to build a square C of which one on the sides

rests on the segment [Aj,B<]. For that, it is enough that δ> < d(Aj,#j) Λ d(Bi,Hi); eise
go to A.3.2.
In this case, C is the square of center P with one side resting on [Aj, B,·].
Now, we check ifC does not intersect any other fissure. It is enough to test this for that
all those whose distance Sj is smaller than \/2Jj.
If interior ofC intersects another fissure, then go to A.3.2, eise go to A.4.

A.3.2 C i- the square of center P and diagonal length 2<5j

A. 4 We simulate the exit time/position (<$£, P') from C for a Brownian particle with speed 2am.
If C is a square and the side reached is the one contained in [Α,·,Β,·], then the aJgoritlim stops
and returns the time/position (t + 6tt P') ; eise we return to step A.l with the new time/position

In the previous algorithm, we need to simulate random variables giving us the first time
τ at which i/2am W exits from a square when it Starts at its center, together with the posi-
tion v

/2 J/V?J where W = (W(1), W<2)) is a Standard 2d-Brownian motion.
Using the invariance of the BM under scaling and rotation, we may then assume that

2am = l and that the square is D = [-1, l]2. So, we are interested by the joint distribution of
r — inf{£ > 0 | Wt G O} and W? whose distributions are explicitly known s series whose high
order terms could be neglected leading to good approximations, see Milstein-Tretyakov [6]).
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4 Simulation of the particle in the fissures
The difficulty lies in the treatment of the particle at the matrix/fissures interface. First, we
deal with a unique infinite fissure of width 2p:

l·
This means that a(z,y) = o(y) = [a+ l[-Plpj(y) + a_ 1[-ΡιΡ]«(ι/)] x Id.
Let (X, Y) be the process with infinitesimal generator A, it has the same behavior s the

BM (at different speed), until it reached the fissure/matrix interface, i.e. R x {-p, p,}. It is
also clear that X depends on Y and is solution to the stochastic differential equation (SDE):

dX^v/MY^dBf, (3)

where Bx is a Standard BM. But the coordinate Y is independent from Bx, and may be studied
independently of X.

Our problem may then be decomposed in two sub-problems:
1. Simulation of transverse component Y: in particular, when can we say that the particle

has actually gone out the fissure ?
2. When this exit time is found, we have to know where the particle is at this time. It is

straightforward if there is just one infinite fissure, but is more complicated when we have
to face a fissures net: we have to simulate a Brownian motion on a graph.

4.1 Transverse component and skew Brownian motion
The infinitesimal generator of the transversal component Y is AY = ^(flj-) with a(y) =

A one-dimensional diffusion process may be characterized by its scale function 5, and the
distribution function V of the speed measure. Here S(x) = f* ^W dy and V(z) = x. Its speed
measure is the Lebesgue measure.

In the case of a constant coefficient with discontinuous coefficient at given points, Y is
solution of the SDE (see Lejay [4]):

dLf (γ)

LZ(Y) is the Symmetrie local time of Y at point z, so it is hard to simulate Y with discretization
schemes. We simplify the problem assuming that a(y) = a+ l[o,oo)(2/) + a_ I(_00t0)(y). Using the
results in Ouknine [8], we remark that:

Υ = φ(Γ) with <p(y) = y^2o^l(^}(y} + y^/2oIl(-.00tQ)(y) - (5)

Z7 is the skew Brownian motion (SBM) of parameter 7 = ^Ϊ~^Ξ G (—1,1). Equality (δ) is
useful, because the behavior of Y is to that of the SMB when it reaches 0. It means that the
point 0 appears s a permeable barner for the particle whose movement is given by Y. The speed
measure πιΖΊ and the scale function S2" are equal to m7·"1 (dz) = 2 [7 1R+ (x) + (l - 7) 1Χ- (χ)] dz
and 5Z7(z) = z [l^+(z)/7-f l^-(z)/(l — 7)]. Z7 may be constructed by the following manner:
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Algorithm A : Simulation of the skew Brownlan motion

A. l Let U be a reßected BM.
A. 2 Let (Bn)neN be the smallest family of disjoint, open intervals of R such that \Jn^Bn = R \

{t > 0| U = 0}. IfBn = (xl
nlx*n), then Uzin = U«r = 0, and U, > 0 V t e Bn. The Bn are the

interval of excursions.
A. 3 Let (en)n£N be i.i.d. random variables, independent from U s.t. P(en = +1) = l — P(en = —1) =

A.4 For any n € N; if e„ = -l, then we set Vt = -U* for t£Bn; eise V* = Ut. At the endpoints of
Bn) V is equal to 0.

The distribution of V so constructed is the distribution of the SBM Z7. The greater the
ratio +/ _ is, the greater is the probability that an excursion of Z7 to be positive.

In order to simulate when the diffusivity coefficient takes two different values (one over
R+ and one over R_), we have first to simulate a SBM and to use relation (5). Then the
trajectories of the SMB are easily constructed if we know trajectories of some reflected BM.
But this is rather tricky, because of the behavior of a Brownian particle around zero: we need
to simulate the excursions of the BM.

4.2 Longitudinal component
The Simulation of the transverse component gives the time t at which the particle will (lreally"
exit from the fissures. We want to know where this particle will be at this time. If the fissure
is unique and infinite, then the position of the particle follows a Gaussian distribution with
variance 2a+£ and mean 0, if it was initially at 0. But this is not the case.

To face on a more complicated fracture network, we may see the fissures net äs a non-oriented
graph:

Then we look at a particle moving äs a BM on each edge, and choosing a direction uniformly
at random at each vertex.

This means that the passage in intersections does not interact "too much" with the transver-
sal component of the diffusion process, because the time the particle spend there is small.

Here, the difficulty is to know what happens when the particle reaches an intersection.
Due to the irregularities of the trajectories, the particle will goes in the edges before returning
immediately to the intersection. This problem may be reduce to the Simulation of the excursions
the BM.

4.3 Simulations
We have seen we need to simulate the excursions of the BM, both for the transverse and the
longitudinal components.
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Simulation of the reflected Brownian motion: We present now an algorithm to simulate the
excursions of the reflected BM. This algorithm is taken from Hausenblas [3]. The idea is to
simulate only the excursions whose length are greater than a given parameter η. The algorithm
is:

Algorithm B : Simulation of the reflected Brownian motion

B. l A parameter η is fixed.
B. 2 One simulates the process until it reaches 0 at time t.
B. 3 One draws a random variable ίη of exponential time. This variable willgive us the time between

the excursion which has just nished and the next excursion oflife time larger than η.
ΒΛ At time t + tn, a new excursion oflife time at ieast η Starts. One draws his position χη after

having evolved during a time η.
B. 5 One Starts again at the step B.2 with new time/position

The law involved in this algorithm are know explicitly, details are given in Campillo et al [2].
To adapt this algorithm to the Simulation of the SBM, we have only to choose the sign of the
excursions whose length is greater than η using a Bernoulli random variable.

Simulation of a Brownian motion on a graph: The Simulation of the longitudinal and the Sim-
ulation of the transverse component are both reduced to the Simulation of some Brownian
particle on a graph. The difficulty is to consider what happens when the particles reaches some
intersection, but we have seen at the previous Section a way not to consider excursions whose
length are too small. Hence, we have to consider diffusions on a graph where: the probability
to go on one edge may be not uniform, and the speed of the particle may depend on the edge.

In the following figures, we gives the representation of the two types of graphs we have to
work on. But although sharing common ideas, both algorithms are slightly different.

1 - Q Q a l - Q

Graphs for the transverse component (left), and the longitudinal one (right).

Simulation of the transverse component: The first version concerns the transverse component
of the BM in the fissure. Since we neglect what happens in the intersection of the fissures, we
assume that the fissure is infinite.

The algorithm gives us a time t and a position y & [-p, p]. At this time, the particle has left
the fissure and started an excursion in the matrix whose length is at Ieast η. The transverse
component of the particle is then y. Once we have decided that the particle is "significantly"
in the matrix, we have to compute its coordinate at this time by simulating the longitudinal
component, and using the algorithm of Section 3 to know where and when the particle hits
again the fissure net.

Algorithm C : Simulation of the transverse component of the particle in a fissure

C.l The particle is initially at position y £ (-p, p).
C.2 We simulate the time t and the position at which the particle hits {-p, pj.
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C.3 Algorithm B is used to simulate the position of the particle after it started some excursion of
length at least η. A Bernoulli random variable of parameter 7 is used to determine whether the
particle remains in the fissure or not.

C.4 If the particle is in the fissure at this new time, we go to Step C.l. Eise the exit time and the
ex i t position is re turn ed.

In Algorithm C, we act s in Algorithm B. During some excursions of length smaller than η
and starting from some point p, the particle may reach a point below —p, so that the behavior
of the particle is changed, but we neglect the probability of such an event. When we evaluate
the new position of the particle, we also assume that if it remains in the side {y < p,}, then
it is in the fissure. This algorithm returns a new position in the interval (—p, -fp), but this is
an approximation of what could really happen so that the parameter η will be chosen carefully
(see Campillo et al [2]).

Simulation of the longitudinal component: The following algorithm generates a sequence of time
and intersection position. The Simulation of the transverse component gives us a time £exit-

Let (f»)te/ be a collection of vertices and (ej)jej be a corresponding edges joining the
vertices (v<)«e/· Each edge 6j is seen s a finite segment [α], α?]. For each vertex (=intersection
of fissures) e^, we denote by 7j and /? the collection of indexes of / such that the coordinates
of at- and a? are equal.

Algorithm D : Simulation of the longitudinal component of the particle in the fissures

D. l We assume that at time 0, the particle is on vertex Vj.

D.2 We choose the parameter η in function of the length of the edge V{ for i G Ij U ij. The
Algorithm B is then used. We draw an exponential time ίη, and at time ίη -f η, the particle is
at distance χη from the vertex v,·.

D. 3 We choose the edge ej at which the particle will be at time ίη + η using the discrete uniform
distribution on #1} U /?.

DA Th? position on edge 6j of the particle at time ίη -f η is given by χη.

D.5 We compute the time t at which the particle reaches for its rst time the boundary {α],α^}.

D.6 If t > texit then we go to Step D.8 with the new time/position (t + Ιη + η, ey).
D.7 As t < texn: the particle has reached at time t some vertice e,·/, which we choose randomly.

Then, we go to Step D.l we new time/position (£, e»/).

D.8 The particle exits from the fissure at time texit· We compute tie position of the particle at time
t exit conditioned by the fact that the particle was at time/position (ίη + η,χη), and that its first
exit time from the interval [aj,o^] happens at time/position (£, ey).

We made approximations: we neglect the fact that the particles exit from the fissures during
excursions of length smaller than η around the vertices.

Exit time/position from some interval: Algorithms C and D require to simulate where and when
a particle initially at some point y G (—p, p) hits {—p, p,}. This is the first exit time for
which we have explicit analytical formulae for these expression (still of the form of series whose
approximation is straightforward).
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