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We consider the problem of the non-sequential detection of a change in the drift coefficient of a
stochastic differential equation, when a misspecified model is used. We formulate the generalized
likelihood ratio (GLR) test for this problem, and we study the behaviour of the associated error
probabilities (false alarm and nodetection) in the small noise asymptotics. We obtain the
following robustness result: even though a wrong model is used, the error probabilities go to zero
with exponential rate, and the maximum likelihood estimator (MLE) of the change time is
consistent, provided the change to be detected is larger (in some sense) than the misspecification
error. We give also computable bounds for selecting the threshold of the test so as to achieve
these exponential rates.
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1. INTRODUCTION

The problem of detecting abrupt changes at some unknown change time
in the statistical characteristics of a dynamical system has numerous
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applications, e.g., in industrial quality control, navigation system moni-
toring, seismic data processing, segmentation of signals, edge detection in
images, etc. A recent and very complete presentation of change detection
problems in discrete-time stochastic systems, including both theory and ap-
plications, is given in Basseville and Nikiforov [1]. In general, three types of
problems can be considered:

e off-line detection of change (non-sequential hypotheses testing),
e on-line quickest detection of change (sequential hypotheses testing),
e estimation of the change time (parameter estimation).

The quickest detection problem for a Wiener process with drift is con-
sidered in Shiryayev [9, Section 4.4]. Using a Bayesian framework, an
optimal stopping time 7" is found, which minimizes a risk function, and
the decision is then to accept the hypothesis that a change has occurred in
the time interval [0,7]. The problem of estimating the change time in a
deterministic signal with additive Gaussian white noise is considered in
Ibragimov and Khasminskii [3, Section VIL.2]. The asymptotic properties
of the maximum likelihood and Bayes estimators of the change time are
described as the noise intensity goes to zero. The same problem is consid-
ered as the observation time goes to infinity in Vostrikova [12]. These re-
sults are generalized to diffusion processes with small noise in Kutoyants
[4, Section 3.5] and [6, Chapter 5).

We consider here the problem of the non-sequential detection of a
change in the drift coefficient of a stochastic differential equation, when
a misspecified model is used. Our purpose is to formulate the generalized
likelihood ratio (GLR) test for this problem, and to study the behaviour
of the associated error probabilities (false alarm and nodetection) in the
small noise asymptotics.

Here, misspecification is understood as follows: There always exists a
gap between the idealized mathematical model which is used in the statis-
tical algorithm, and the mechanism which generates the actual obser-
vations. Also, it can happen that the true model is very complicated, and
has to be replaced by a simpler (and wrong) model. As a consequence,
it is important to study the behaviour of the statistical algorithms under
misspecification, i.e., when the mathematical model does not coincide with
the actual observations. One possible approach for taking robustness
into account, is to consider local deviations on the parametric model.
This approach has proved rather fruitful in general situations, see Huber [2].
Sometimes however, the assumption that the mathematical model and the
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actual observations are close is not realistic. In such situations, and if
the underlying models are regular (in the statistical sense introduced by
LeCam), then the estimators are not consistent, since the true value of
the parameter does not exist. Nevertheless, it is possible to study the
behaviour of some estimators under these circumstances, see White [13],
McKeague [8], and Kutoyants [5] and [6, Section 2.6]. The change detec-
tion problem, which is the problem considered here, corresponds to a non-
regular situation. For this reason, the true value of the parameter does
exist, and the algorithm of change detection is consistent, i.e., we obtain
a consistent algorithm based on the wrong model.

Our motivation for using the small noise asymptotics is twofold: First, the
models with small noise are simple to analyze, even simpler than models
with a large number of i.i.d. observations. Secondly, they are nonlinear and
sufficiently general, and the results obtained for these models could be later
generalized to other models. The small noise asymptotics is also justified
from the point of view of applications, since many dynamical systems can
be considered as deterministic systems with small random perturbations.

The structure of the paper is the following: In Section 2 we define the
statistical model and we formulate the GLR test for the problem of change
detection. In Sections 3 and 4 we study the asymptotic behaviour of the
probability of false alarm and the probability of nodetection, respectively,
when the model is misspecified. We prove that the error probabilities
go to zero with exponential rate, as the noise intensity goes to zero, pro-
vided some detectability assumption is satisfied by the limiting determin-
istic system, and provided that the modeling errors are smaller (in some
sense) than the change to be detected. In Section 5 we discuss how the
threshold should be selected so as to guarantee that both the probability
of false alarm and the probability of nodetection go to zero with expon-
ential rate. Under the hypothesis that a change has occurred, we prove
also that the maximum likelihood estimator (MLE) of the change time
is consistent. This means that the correct decision and estimation are
made, even though a wrong model is used.

2. STATISTICAL MODEL

Let {X,,0<t< T} denote the available m-dimensional observation over a
finite time interval [0, T], and consider the problem of deciding between
the following two hypotheses
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e Under the null hypothesis Hy
dX, =bX,)dt +edW;, Xo=z 0<t<T, (H

where {W¢,0 <t < T} is a m-dimensional Wiener process, with identity
covariance matrix.

e Under the alternate hypothesis H;, there exists a change time 0 <7< T’
with T' < T, such that

dX, = b(X,)) + a(X ) sn)di + ed W™, Xo=z, 0<t<T, (2)

where {W ;7,0 < ¢t < T} is a m-dimensional Wiener process, with identity
covariance matrix.

Let Q° and {Q,0 <7 <T'} denote the corresponding probability
measures induced on the canonical space C([0, T}; R™).

Remark 2.1 The reason for requiring 7’ < T is intuitively clear. It is
impossible to detect a change occurring immediately before the end of the
observation interval [0, T], unless increasing dramatically the probability
of false alarm. From the mathematical point of view, this will be reflected
in the detectability assumption (18).

In the model above and throughout the paper, it is assumed that all the
drift and change coefficients are Lipschitz continuous. Since any Lipschitz
continuous function satisfies a linear growth condition, this assumption is
sufficient to guarantee the existence and uniqueness of a solution to the
stochastic differential equations (1) and (2), see Liptser —Shiryayev [7, Sec-
tion 4.4]. In addition, the change coefficient is assumed to be bounded, so
as to obtain exponential bounds for probability errors, based on the
exponential bound (20) for continuous martingales. It is assumed for
simplicity that the diffusion coefficient is constant, but all the results
in this paper would generalize immediately to the case of a bounded non-
degenerate state dependent diffusion coeflicient.

Let ¢.(r) denote the suitably normalized log-likelihood function for
estimating the change time 7

L(r)= &2 log Z’Q; .

The following expression holds

T T
0.(r) = / a*(X,)[dX,—b(X,)a’t]—% / la(x,)dt, 3)



ASYMPTOTICS OF THE GLR TEST 113

which depends only on the available observations {X,, 0 << T}. Using
Eqgs. (1) and (2), the following equivalent expressions are obtained

L(r)y= 5/ a*(X,)dw; — %/ |la(X,)| dt, 4)

and

EE(T) = 5/ a*(Xt) thE’T + %/ |a(Xt)|2d[. (5)

Heuristically, if no change occurs at all, then it follows from expression
(4) that £.(7) will be nonpositive, asymptotically as € | 0, for all 0<7< T,
On the other hand, if a change actually occurs at time 7, then it follows
from expression (5) that £.(r) will be nonnegative, asymptotically as ¢ | 0,
at least for this particular value 7. This motivates the introduction of the
following statistics.

According to Van Trees [11, Section 2.5] the generalized likelihood ratio
(GLR) test for deciding between the simple hypothesis Hy and the com-
posite hypothesis H; is defined by the following region

D. = { sup £.(1) > c},

0<r<T’

for rejecting Hy, where ¢ is a given threshold. In other words, if the event
D, holds, then the null hypothesis Hy is rejected, and the maximum likeli-
hood estimator (MLE) for the change time 7 is defined by

7. € argmax £, (7).
0<r<T"

Under the alternate hypothesis H;, the behaviour (consistency, asymptotic
probability distribution) of the estimator 7. has been investigated for the
one-dimensional case in Kutoyants [4, Theorem 3.5.2].

The purpose of this paper is to prove that both the probability of false
alarm and the probability of nodetection associated with the above GLR
test, go to zero with exponential rate when ¢ | 0. These error probabilities
are evaluated under the true model, which may be different from the model
(1), (2) used to build the test. The frue model is defined as follows: If no
change actually occurs, then

dX; = bo(X;)dt +edV;, Xo=2z, 0<t<T, (6)
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where {V7,0 <t <T} is a m-dimensional Wiener process with identity
covariance matrix, and under the alternate hypothesis, if a change actually
occurs at time 7, then

dX; = [bo(X;) + ao(X)l>n)|dt +ed Vi7", Xo=2z, 0<t<T, (7)

where {V{7,0 <¢< T} is a m-dimensional Wiener process with identity
covariance matrix. Let P® and {P2,0 < 7 < T’} denote the corresponding
probability measures induced on the canonical space C([0, T}, R™). The
probability of false alarm and the probability of nodetection are defined
respectively as

F.=P°(D.) and N.= sup P: (D).
0<m<T!

Here and throughout the paper, 7 will denote the true but unknown change
time.
Notice that

dX, — b(X,)dt = [bo(X,) — b(Xy)|dt +ed Vi, 0<1<T,
and forall 0 <7, < T’

dX; — b(X,)dt = [[bo(X:) — b(X,)] + ao(X:) (ssr))dt +ed Vi™,
0<t<T,

which yield the following two equivalent expressions for the normalized
log-likelihood function £.(7), after substitution into (3)

T T T
(1) = 5/ a*(X,)d v; +/ a*(X;){bo(X;) — b(X,))dt — %/ |la(X,)|*dt,

(8)
and
t(r) =< / LX) Ve + / " () bol(Xe) — b(X,)dr
+ / VT a*(X,)ao(X,)dt—% / T|a(X,)|2dt, 9)
respectively.

We prove below that the error probabilities F, and N, go to zero with
exponential rate, as the noise intensity € goes to zero, under some additional
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conditions expressing that the modeling errors are smaller (in some sense)
than the change to be detected. Under the hypothesis that a change has
occurred, we prove also that the maximum likelihood estimator 7. of the
change time is consistent. The behaviour (consistency, asymptotic prob-
ability distribution) of the estimator 7, is studied for the one-dimensional
case in Kutoyants [6, Theorems 5.6 and 5.7]. This means that the correct
decision and estimation are made, even though a wrong model is used.

3. PROBABILITY OF FALSE ALARM

Recall the expression (8) for the normalized log-likelihood function

T T T
G = [ aavi+ [ @) - bl - 3 [ tatxorar

T

- E/TT a*(X,)d Ve — /TT [}2-|a(X,)|2 - a*(X,)X(X,)] dt,

where the misspecification coefficient 2 by — b is the difference between the
true and the assumed drift coefficients, and where {V¢,0 <t < T} is a m-
dimensional Wiener process under the probability measure P°. Introduce
the limiting expression obtained as £ | 0 under the probability measure P¢

T
) == [l a (et |

where {x,, 0 <1< T} is the solution of the limiting deterministic system
)'c,:bg(x,), xo=2 0<t<T. (10)

Notice that the misspecification coefficient x is bounded along the limiting
trajectory, i.e.,

sup |x(x))] < oo. (11)

0<i<T
We introduce the following consistency assumption.

AsSUMPTION FA Forall0<¢t<T

3 lalx) — a* (x)x(x) 2 0.
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Remark 3.1 Using the identity

1o 1 2 1o
§|a| —GX~§|G—X| §|X|7
an equivalent form of Assumption FA is: Forall 0<¢< T

[bo(xe) = b(xo)| < [bo(x:) — [b(x:) + a(x,)]],

which means that along the limiting trajectory, the true drift b, should
be closer to the assumed drift before change b, than it is to the assumed
drift after change 5+ 4. In general, it is difficult to check this assumption
since the limiting trajectory {x,, 0 <t< T} depends also on the unknown
coefficient by. However, a sufficient condition for Assumption FA to hold
is the following stronger assumption.

AssuMmpTiON FA’ For all xe R”

SlaP @ (x)x(x) > 0.

Remark 3.2 1If there is no misspecification, ie., if b=5y, then Assump-
tion FA’, and a fortiori Assumption FA, is always satisfied.

Under Assumption FA, it is easily checked that the mapping 7+ £y(7)

achieves its maximum for =T, i.e.,

032 sup £o(r) = 4(T")

0<7<T’

__ /T Bm(x,)ﬁ - a*(x,)x(x,)} <0, (12)

7

Heuristically, as € | 0

PEl: sup ZE(T) > C:| ~ 1([6>C),

0<r<T!

hence F,~0 if £ < c¢. This is made rigorous in the following statement,
where a nonasymptotic upper bound is given for the exponential rate of
convergence of F, to zero.

TuEOREM 3.3  Assume that

o the drift and change coefficients by, b and a are Lipschitz continuous,
o the assumed change coefficient a is bounded.
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Then, the probability of false alarm F. satisfies

9252
FESCCXP{‘WTL}’

provided Assumption FA holds, and provided the threshold ¢ satisfies

br2c—1t;>0.
The constant K depends only on the uniform bound of the assumed change
coefficient a and on the bound of the misspecification coefficient x along the

limiting trajectory, and the constant 0 < 8 <1 depends only on the Lipschitz
constants and on the final time T.

Proof Assume first that the following large deviations estimate

6?6?
PE — < —_—— 1
ogsilgpr/ () — bo(T)| > 6} <cC exp{ KT }, (13)

holds for any é > 0. Notice that
be(7) < bo(7) + [€:(7) — Lo(T)],
hence

sup L(7) < L5+ sup [L(7) — bo(7)].

0<r<T’ 0<r<T’

If the threshold c¢ satisfies

Sr2c—1t5>0,

then

FE:PE[ sup £.(7) >c] SPE[ sup |€.(7) — £o(7)| > 6F

0<r<T’ 0<r<T’

9262
Sce"p{—m}
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Turning now to the proof of the large deviations estimate (13), the follow-
ing decomposition holds

T T
e -t = [ a@dvi -3 [ 1P - lat)P
+ [ la ) — @ Gl = 1) + (7).
e Study of I'(1) By definition

T .
e = [ @avi - [ woav:

and therefore

T T
sup |I'(T)!§5/ a’(X,)dV;|+¢e sup / a'(X,)d v
0<r<T" 0 o<r<1' | Jo
< 2e sup / a’(X,)dV:|.
0<r<T 0

The uniform boundedness of the assumed change coefficient a, and the
exponential bound (20) imply

, 6262
P* I 66| <2 ——
| ol > o8] < 2o { - 2
for any § > 0 and any 8> 0.
e Study of I”(7) By definition

T
1) = =5 [ lax) - a() la(X) + aw)lde

T

T

+/ la(X:) — a(x.)]"x (x,)dt +/ a* (X)) [ x(X:) — x(x:)]dk.
The uniform boundedness and Lipschitz continuity of the assumed change
coefficient a, the Lipschitz continuity of the misspecification coefficient Yy,
and the estimates (11) and (21) imply

T
sup |I"(7)] < KL/ |X; — x;|dt <KLC € sup |V{|,
0<r<T" 0

0<t<T
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where the constant C > 0 depends only on the Lipschitz constant of the
true drift coefficient by, and on the final time 7. Finally, the exponential
bound (20) implies

Pe| sup [I"(r)] > (1-6)8| < 2mex U =0ye 078
- _ _
o<rar = MR T

for any > 0 and any 6 < 1.
Collecting the two above estimates, we obtain

pe| sup Iet) ~ (o)) > o] < 20w { - 0 )

0<r<T’ 8K2Te2
(1 —6)%8?
- 2mexp { T 2K22CTE [

for any 6 > 0 and any 0 <@ < 1. For the particular choice §=(1+ LC/2)"",
the two exponential expressions have the same argument, and

6*8*
€ _ < -
P OSSBSpT’ [€:(7) — bo(T)] > (5] < Cexp{ Rk },

for any 6 > 0, where C=2(m + 1). [ |

4. PROBABILITY OF NODETECTION
Using the identity
|2

1 1
a*(by — b) +a*ay — E|a|2 =a*(by— b) +a*(ap — a) + =

51

k]

the expression (9) for the normalized log-likelihood function reads
T T
L(r) = a/ a’ (X,)dv ;™ +/ a* (X:)[bo(X,) — b(X,))dt

r T

+/ X,aoXtdt——/ |aX,|dt
VT

TVTY 1 2

_. / aopavin— | [5|a(x,>| — (X)X (X)| de
r T

+/ |: |a Xt | +a (Xz) (Xt):| dt,

V1o
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where the misspecification coefficient xébo — b is the difference between
the true and the assumed drift coefficients before the change time, the
misspecification coefficient 7 é(bo + ag) — (b + a) is the difference between
the true and the assumed drift coefficients after the change time, and
where {V;™ 0<¢<T} is a m-dimensional Wiener process under the
probability measure P . Introduce the limiting expression obtained as
€ | 0 under the probability measure |

U, 7)) = — /TTVTO B|a(xt70)|2 _ a*(df")x(x?)} dt

+/TT BW(X?)IZ+a*(xj°)n(x:o):|dt’

V7o

where for all 0<7,<T’, {x*,0 <¢<T} is the solution of the limiting
deterministic system

.56:0 = bo(X‘tro) + ao(xtT")l(,ZTO), Xgo =z, 0<t<T. (14)

Notice that x; = x;* for all 0<¢<7, i.e., the solutions of the limiting
deterministic systems (10) and (14) coincide before the change time 7o, hence
the equivalent expression

1o, 7) = — /TT\/TO [%la(xt)IZ _ a*(xt)x(x,)] i
+1T[?Wﬁﬁ+fummwﬁm

V7o

Notice also that uniformly for all 0 <7y < T’, the misspecification coefficient
7 is bounded along the limiting trajectory after the change time T, i.e.,

sup sup (x| < oo. (15)

0<n<T' 7o<t<T
We introduce the following consistency assumption.

AssuUMPTION ND(rg) For all 0 <t <7y (1 fixed)
1 2 *
Sla(e)? = a (x)x(x) 2 0,

and for all 1o <t< T (74 fixed)

1 * T T
S1aGeP) + @ (4P )n() 2 0.
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Remark 4.1 Using the identities
Slaf —ax=3la—xP—3IxP and o +an = glat ol ~ i
an equivalent form of Assumption ND(rg) is: For all 0 <t <7 (7 fixed)
[bo(x:) — b(x)| < [bo(x:) = [b(x:) + a{x,)]I,
and for all 7o <t < T (1 fixed)
|[Bo(x7*) + a0 ()] = [b(xP) + a(xP)]| < |[bo(x7) + ao(x)] — b(xP)],

which means respectively that (i) along the limiting trajectory before the
change time 7, the true drift by, should be closer to the assumed drift
before change b, than it is to the assumed drift after change b+a, and
that (ii) along the limiting trajectory after the change time 7, the true
drift by+ay should be closer to the assumed drift after change b+ a,
than it is to the assumed drift before change 5. In general, it is diffi-
cult to check this assumption since the limiting trajectory {x;°,0 << T}
depends also on the unknown coefficients by and a,. However, a suf-
ficient condition for Assumption ND(7g) to hold for all 0<74< T’ is
the following stronger assumption, which also includes Assumption FA’.

AssuMPTION NDY  For all xe R™

3laP @ (x)x(x) > 0,

and

SlaCo +a (anx) > 0.

Remark 4.2 If there is no misspecification, ie., if b=5by and a=a,, then
Assumption ND', and a fortiori Assumption ND(ry), is always satisfied.

Under Assumption ND(rg), it is easily checked that the mapping

7+ €(19, T) achieves its maximum for 7=17, i.e.,

£*(m) 2 sup £(r9,7) = £(79, T0)

0<r<T’

T
:+/TO Bia("tn’w+a*(x,”’)n(xj°) at>0, (16)
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and

T0 € M(19) 2 argmax ¢(7, 7).
0<r<T!

Remark 4.3 In the simple case where a(x) =« and n(x) =0 for all x & R™,
we have £7(19)=|a|A(T - 70)/2, and obviously the minimum of this ex-
pression w.rt. 0<7,< 7' is achieved for 7,=7". Unfortunately, the
situation is not always as simple, ie., the minimum of ¢*(rg) w.r.t.
0<7¢<T’is sometimes achieved for some 0 < 75 < T', as illustrated by
the following example.

Given a constant B > 0, consider the following one-dimensional model
without misspecification: the drift coefficient is defined by bo(x)=b(x) = Bx
for all x€ R, and the change coefficient is defined by ay(x)=a(x)=—Bx
for all x€R. In this simple case, the limiting trajectory can be computed
explicitely, ie., x° =eB")z for all 0<t<T. From these preliminary
computations, we obtain

1 /7 1
f*(TO) :—2—/ }a(xtTo)|2dt:§B2|Zl2(T_TO)EZBTO.

Provided B satisfies 1 < 2BT < T/(T~ T'), the unique minimum of £* (r,)
w.r.t. to 0 <7y < 7" is achieved for 0 < 70 =T —1/2B < T".
Heuristically, as € | 0
P[50 ) < ] % Lo,
0<r<T"

hence N.~0 if £*(79) > ¢ for all 0 <7, < T"’. This is made rigorous in the
following statement, where a nonasymptotic upper bound is given for the
exponential rate of convergence of N, to zero.

THEOREM 4.4 Assume that

® the drift and change coefficients bo, b, ay and a are Lipschitz continuous,
o the assumed change coefficient a is bounded.

Then, the probability of nodetection N, satisfies

0282
Nes Cexp\ ~ggara
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provided Assumption ND(ro) holds for all 0<1o<T’, and provided the
threshold ¢ satisfies

A

Sv2 inf £%(r) — ¢ > 0.

0<7y<T'

The constant K depends only on the uniform bound of the assumed change
coefficient a and on the bounds of the misspecification coefficients x and n
along the limiting trajectories, and the constant 0 < 0 <1 depends only on
the Lipschitz constants and on the final time T.

Proof Assume first that the following large deviations estimate

6252
P| s ) - )l > o] < con{ - b )

holds for any é > 0. Notice that
€(r0,7) < L(7) + [e(T) — £(70, 7)1,
hence

2*(m9) < sup £.(7)+ sup |€.(7) — £(mo,T)|.

0<7<T" 0<r<T"

If the threshold ¢ satisfies

8(r0) 207 (r) — ¢ > 0,

then

P s tutr) <] < P5| sup 160 - b7l > o)

0<r<T’ 0<r<T’

626 () }

< cenp{ - e

If in addition the threshold ¢ satisfies

A

Sv2 inf 6(m) = inf £*(r)—c>0

0<7rp<T’ 0<rp<T’

then

9262
N. = Pe V4 < <C —— N L
T g T“[ossBsI)T’ «(7) c} - exp{ 8K2T€2}
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Turning now to the proof of the large deviations estimate (17), the fol-
lowing decomposition holds

VT

() b7 =< [ a0pavim 5 [T )~ fae Pl

T

* /T k [a*(X:)x(X;) — a*(x:)x(x,)]dt

+3 [ 16O = )Pl

V7o

+/ [@*(Xo)n(X,) — a* (xP)n(xP))de = T'(7) + 1"(7).

VT

o Study of I'(v) By definition

T T
' () :5/ a*(X,)d Ve —g/ a*(X)dVem,
0 0

and therefore

T T
sup |1'(7)] ga/ a’ (X)dVy™l + e sup / a (X,)dvor
0<r<T! 0 0<r<T [ JO
< 2e sup / a (X,)dvm.
0<r<T 0

The uniform boundedness of the assumed change coefficient a, and the
exponential bound (20) imply

626°
P [ogsipr/ \I'(1)| > 06] < 2exp { KT },
for any 6 > 0 and any 0> 0.
e Study of I”(7) By definition

1

1) == [ ) - o) ax,) + ae)ld

TVTY

[ )~ ae)) x(dn + [ e - xtxola

T

17 *
e [ oty a)]* atx) + a)]

V7o

[ L) — el n(a s [ a0 e - )] ae

V1o ™VTY
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The uniform boundedness and Lipschitz continuity of the assumed change
coefficient g, the Lipschitz continuity of the two misspecification coefficients
x and 7, and the estimates (11), (15) and (21) imply

T
sup |I"(7)] < KL/ |X, — x}’|dt <KLC e sup |VEP,
0<r<T" 0 0<i<T

where the constant C > 0 depends only on the Lipschitz constants of the

true drift and change coefficients by and ay, and on the final time 7. Finally,
the exponential bound (20) implies

Pe | sup [I"(7)] > (1 —0)§| <2mex —w
™| ociar = AMEXP T akeAcTe |

for any 6 > 0 and any 6< 1.

The end of the proof is exactly the same as the end of the proof of Theorem
3.3 above, and is therefore omitted. [ ]

5. DETECTABILITY AND THRESHOLD SELECTION

It has been proved in Theorems 3.3 and 4.4 above, that both the proba-
bility of false alarm and the probability of nodetection go to zero with
exponential rate when ¢ |0, provided Assumption FA holds, provided
Assumption ND(7g) holds for all 0 <79< T’, and provided the threshold
¢ satisfies simultaneously
ly<c< onglolsz,E (10),

where £{ and £%(7) are defined in (12) and (16) respectively. This is pos-
sible under the following additional detectability assumption

- /TT B'a("’”z - a*(xt)X(xt):| dt

7

< inf /TOT B|a(x;o)|2 + a(x?)n(xf")}dt. (18)

0<ny<T’

Note that for this assumption to hold, it is necessary that T’ < T.

Remark 5.1 Tt follows from the estimates given in Theorems 3.3 and 4.4
above that the larger is the upper bound K on the assumed change
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coefficient a, the slower is the exponential decay to zero of the two error
probabilities. This can look surprising at first sight, since one would
expect large changes to be better detected. However, what really matters
for the performance of the test, is rather the lower bound on the change
coefficient. Indeed, assume that for all xe R™

which is always possible under the stronger Assumption ND'. Then

'

_ /T [%Ia(x;)l2 _ a*(x,)x(x,)}dt < —%Ki(T 7Y

1 v T 1 * T( TN
< EKf,(T —-T'Y< inf {— |a(x;'°)|2 +a (xt")n(xt“) dt,

Tosnsr J |2

which results in the following lower bound

A> (KR4 KT T,

for the threshold margin A, i.e., for the length of the interval in which
the threshold can be selected. Therefore, a sufficient condition for the
detectability assumption (18) to hold is simply (K2 +K%) >0 and T’ < T.
In addition, the particular choice ¢ = (K% — K%) /4 for the threshold results
in the following lower bounds

1 1
‘SFZZ(K;"'KJ%/)(T“T/) and 5NZZ(K§+K§,)(T—T’)
for the constants governing the exponential decay of the error probabilities

in the small noise asymptotics.

Considering the change time estimation, it follows from a large deviations
estimate similar to (17), that the following consistency result holds

PE [d(7, M(ry)) > 8] 2% 0,

where {7.,e > 0} is any MLE sequence for the change time, and

M(m) 2 argmax ¢(p, 7),
0<r<T!
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is the set-valued deterministic change time estimator. If in addition to
Assumption ND(7y), the following identifiability assumption

1 2 N
Slalxn) [~ @ (v)x (o) > 0
1 (19)
2 *
Ela(x70)| +a" (xn)n (x5 ) > 0,
holds, then there is no other point than 7, in the set M (7). This consis-
tency result is proved for the one-dimensional case in Kutoyants [6, Theo-
rem 5.6], and the asymptotic probability distribution of the estimator
7. is given in [6, Theorem 5.7]. If there is no misspecification, i.e., if b=b5,
and a=ay, then condition (19) reduces to

a(xr,) # 0,

and the corresponding results are proved for the one-dimensional case in
Kutoyants [4, Theorem 3.5.2].

In conclusion, it is possible both to detect a change and to estimate the
change time, using a wrong model, provided the change to be estimated is
larger then the misspecification error.
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A: EXPONENTIAL BOUNDS

Let {M,,0<t<T} be a m-dimensional continuous martingale on a
probability space (2, F, P) with M;=0, and let {{M),,0 << T} denote
the corresponding increasing (quadratic variation) process, with values in
the space of symmetric nonnegative m x m matrices. If

<M>T < CYI,

then

62
P[ sup |M,|>6J <2m exp{-g}, (20)

0<e<T

for all 6§ > 0, see Stroock and Varadhan [10, Theorem 4.2.1].
This bound can be used to estimate the difference between the solution
{X,,0 <t <T} of the stochastic differential equation

dX[ = ¢1(Xt)dt+dBl7 X[) =2z, 0 S { S T’7

where {B,,0 <1< T} is a m-dimensional Wiener process, and the solution
{x:,0<t< T} of the corresponding ordinary differential equation

Xe=¢(xr), x=12, 0<t<T.
If the drift coefficient is Lipschitz continuous, i.e.,
|pr(x) — ¢o(x)] < L|x ~ x|,

for all x, x' € R™, and all 0 <¢< T, the Gronwall lemma gives

T
/ X, — xiJdi < Cy, sup |By, (1)
0

0<t<T
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and

sup |X; — x| <Dy sup |B),
0<1<T 0<e<T

where the constants C;=(e""—1)/L and D;=¢" depend only on the
Lipschitz constant L, and on the final time 7. Using the exponential bound
(20), the following exponential estimates hold for probabilities of large

deviations
T 62
P X, —x|dt > 6] <2 - ,
[ e )

and

62
P| sup |X; — x| > 6| <2m expq — ,
{05:5' e ] - p{ ZDiT}

for all 6 > 0.



