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Abstract 

We consider a stochastic differential equation with 
linear feedback control with a onedimensional feed- 
back gain parameter. The problem is to find an on- 
line algorithm which adjust this gain in order to sta- 
bilize the system. We propose a stochastic gradient 
method which minimize the Lyapunov exponent as- 
sociated with the solution of this stochastic differen- 
tial equation. We present some simulation tests. 

1. Preliminaries 
We consider the following linear stochastic differ- 

ential equation in I R ~  

where 
A f = A i + p B i ,  i = O , l ,  

Ai and Bi are d x d matrices, p E R, W is a standard 
Wiener process. Here “odW” (resp. “ d W ” )  refer to 
the Stratonovich (resp. It6) stochastic integral. 

We define the Lyapunov exponent of the solution 
of (l} starting at 50 with parameter p 

A 1  X - lim -log llXtll . P-- t+mt  

Equation (1) is exponentially stable with probability 
one if and only if, under suitable conditions, A, < 0. 

Let Sd-l = {z E Rd; 1 1 ~ 1 1  = 1). We can define the 
projection of Xt onto Sd-’ by Ut = llXtll-l Xt, it is 
the solution of the following SDE on Sd-’ 

n 
h:(u) = A y ,  - (A;u ,u)u ,  i = 0 , l .  

Here (x,y) is the scalar product and 1 1 ~ 1 1 ~  = (2,~). 
For each matrixM, h(M, -U)  = -h(M,u) ,  so that 

h(M,  -) can be viewed as a vector field on the projec- 
tive space Pd-’ (obtained from Sd-’ by identifying 
U and -U) .  Therefore (2) can be considered as a 
stochastic differential equation on Pd-’. 

Hypothesis 1.1 FOT ail U E Pd-’ and p E IR 
dimLie Algebra{he(-},i = O,l}(u) = 1. 

Proposition 1.2 (See [l]) Under Hypothesis 1.1, 
process Ut admits a unique invariant probability mea- 
SUR &, and 

In [3], we proved that, under Hypothesis 1.1, ap- 
plication p t+ A, is continuous. We deduce that 
2) = {A , ;p  E R} is a connected interval of R, then 
System (1) is said to be stabilitabde (resp. non  stabi- 
Zizable) if 2) n [-m,O[# 0 (resp. D rl[-m, 0[= 0). 

2. Gradient of the Lyapunov exponent 

Here, we suppose d = 2. We introduce the process 
@t defined by Ut = (cos&,sin&)*. The process Bt 
take is values in [0,7r] which can be identified to P’. 

Throughout this section, p is fixed. We know that 
the system (1) is exponentially stable with probabil- 
ity one if and only if A, < 0. In order to find p which 
minimize A, we can use a gradient algorithm. 

Under Hypothesis 1.1 

l T  
A, = lim-a T + & * T L  s - @(Ut) dt . 

where 

Let +t be the fundamental solution of (3). 
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Proposition 2.1 suppose that there exist a < 0 
such that $ logIl+tll -+ a p.s. as t -+ 00, and that 
Hypothesis 1.1 i s  fulfilled, then Equation (3) admits 
a unique stationary solution. 

The proof of this result is technical and will be 
presented elsewhere. We deduce that the process Zt : 

WLbW - 

admits a unique invariant measure, and 

3. Stabilization algorithm 

We want to find a parameter p such that A, < 0. 
A natural idea is to use a gradient algorithm which 
minimize A,. 

Pn+i + pn - yn G(p,) , n 2 0 . 

where yn > 0 is a decreasing gain parameter 
Let A be a time step and 

I," [nA,(n+ l ) A )  , n 2 0 .  

We use an (approximated) gradient algorithm given 
in two two steps : 

Simulation s tep We simulate (Xt , -x)  solution of 
(1) over I," with p = pn fixed. Let Xn+l and yn+l 
be the value of the Milshtein scheme approximations 
of these processes at the end of the interval I," (i.e. 
at t = (n + 1) A). 

We compute (Un+l, Vn+l) using a projection tech- 
nique : 

Upda te  s tep  
rithm : 

We end up with the following algo- 

po given. For practical implementation we use the 
standard following gain coefficient 

b 
^/n=c+ 7 n 2 0 ,  max( 1, n - no) 

c >_ 0, b > 0, and no 2 1 given. 

Fig. 1. Example : Graph n -+ llxn 11 

Fig. 2. Example : Graph n -+ A, (approximation of &). 

4. Numerical simulation 

We take : X O  = (100,100)*, YO = (0.01,0.01)*, 
A = we make lo5 iterations, and 

= 2 lo4, c = 1 loF1, b = 4 po = 0.5. 
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