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Abstract

We study a dass of ergodic stochastic control problems for diffusion processes.
We describe the basic ideas concerning the Hamilton~Jacobi-Bellmanequation.
For a given class of control problems we establish an .existence and uniqueness
property of the invariant measure. Then we present a. numerical approximation
to the optimal feedback control based on the discretizationofthe infinitesimal
generator using finite difference schemes. Finally, we. apply these techniques. to
the control ofsemi-active suspensions for road vehicle.

1 Introduction

This paper deals with a numerical procedure for optimal stochastic control probe;
lems and itwapplication to a nontrivial example. This procedureconsistsinap": c'

proximating the non linear Hamilton-Jacobi-Bellman partial differential equa- .
tion which is formally satisfied by the minimal cost function. We use finite differ­
ence techniques and with a suitable choice of the schemes, the resulting discrete
equation can be viewed as the dynamic programming equation for the minimal
cost function for the optimal control of a certain Markov process with finite state
space [26].

In section 2, we present the different Hamilton-Jacobi-Bellman (HJB in
short) equations which arise in the optimal control. of diffusion. processes in
IRn (for different cases: finite horizon, infinite horizon with discounted or undis­
counted cost functions). We stress the intuitive setup of the HJB equations rather
than the mathematical. aspects.

In section 3, we introduce a particular class _. denoted by C - of ergodic
control problems. Some characteristics of this problem are non classical (the
diffusion is degenerate, the coefficients are nonlinear and discontinuous) and
there is no available result concerning the HJB equation. Even the first step -'­
giving a meaning to the cost function ~ is non· trivial; this point is treated here
(we prove the existence and the uniqueness of the invariant measure associated
with the system, for any given adinissible control). This class of problems derives
from a particular application in control of suspension systems [4].

In section 4, the approximation procedure is detailed in a more general con­
text than the class C. For the special case of the class C we have already stated
two types of results [4]: existence and uniqueness property for the discrete HJB
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equation (with convergence of thec'algorithIll usedforsolviIlgit)·· anda. conver­
gence property ofthe approximation as the discretization step tends to O.Finally,
we apply these techniques to the suspension problem [4, 3] and perform some
numerical tests; related suboptimal and adaptive techniques may be found in
[3].

2 The HJBEquation

In this section we give an intuitive presentation of the HJB equations. For math­
ematical treatments of this problem one can consult: for the deterministic con~
trol [7, 17, 30], for the stochastic contr~l~fdiffusion processes on finite horiz0J.l
[7,.5,.17], for the control of diffusion processes on infinite horizon]7, 31, 36],
for the control of Markov chaills [10], for the control of Markov processes on
infinite horizon [15], for the probabilistic aspects[24] and for numerical aspects
[1, 6, 14,21, 25,26, 28, 32,34, 35]. For other aspects of thestochastic control
theory of diffusion processes on~ can consult [9] for the imPlllse control problem,
[8] for the optimal stopping time problem and [20] for the stochastic maximum
principle.

2.1 Finite-,-horizon problem

The problem We consider a diffusion process on IRn

where Wis a n-dimensional standard Wiener process. We suppose that u EU,
U is a givenclass ofadIIlissible controlswhich take values in U C IRk. Suppose
that for any (x, t), {u(x, t);u E U} = U.We will give later an example of such a
class.

We fix the instant T >0 and wedefine the followmg costfunctional

(2)

The stocha,sticcontrol problem is to findu fi:.U which minimizes the cost func­
tional Jamong all the admissible controls.

. We introduce the infinitesimal generator associated with the system (1)

ruA,(. ).. ~ ~.b.'( . .. ).. 81>(x) . I ~ ... ( )... 82
1>(x)

J., 'f' x .LJ.' x, u .. 8 .. + 2 ~ a.} Xu .8.
i=1 X. i,j=1 X. x J

with a(x) ~ O'(x)o'(x)*.

(3)



The HJB equation

Definition 1. The value function is defined by

v(x,t) ~ ~~tJ",t(u) ,

Optimality Principle For any h > 0,

v(x,t) = ~~£Ei,t [l
Hh

f(Xs,u(Xs,s)) ds +V(XHh,t+h)j
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(4)

(5)

(6)
-- -----<'

Proof. First we introduce (a version of) the Dynamic Programming Principle:
supp()!)eth~t(x, s) 7 ut ( x, s)is the optimal feedback for the control problem
over the time interval It, T) starting at point x, i.e.

J",t(uJ) = vex, t)

then, given h> 0, uJI[Hh,T] is the optimal feedback for the control problem over
the time interval It, T) starting at point XHh, i.e.

JXt+h,Hh('U,t) =V(XHh' t + h) a.s.. (7)

Now we consider

_( ) _ ..{-. u(x, s) ,.. s E It, t+. h),
u x, s -. At( ) .). h T)u x,s ,sEt+, ,

for some control U. By definition of vex, t) and using (7), we have

vex, t) ::::; J"AU)

= Ei,t [It
.+.h f(X,u)ds+l:T f(X,Ut)dS+h(XT)j

t: t+h .

=Ei,t [I t
+

h
!(X, u) ds + EJ:t+h,Hh (l:h f(X, ut

) ds + h(XT))]

= Ei,t [l
Hh

f(X,u)ds+v(XHh,t + h)j
4 Notations: The term E:,t in expressions of the form

I
t2

E:,t rv(Xt,t)dt ordlVt ,
t}

means that we consider the diffusion process X t solution of (1) starting from point x
at time t (i.e. X t = x) and using the feedback control u. When t =0, E:,t is denoted
byE.
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. So we get

and the equality holds ifu= itt, which proves (6).

Hamilton-Jacobi-Bellman equation The value function (4)satisfies the follow­
ing equation

: v(x, t) + inf [£U v(x, t)+ f(x,u)] =0, v(x, T) = h(x) , (8)
ut uEU

Proof. For notational convenience we consider the 1--'-dimensionalcase. E: t is
denoted by E. Using (6) ,

Moreover

V(XHh' t + h) = v(x, t) + v'(x,t) (XHh - x)

+~vl/(X,t)(XHh-X)2+h:v(x,t). +o(h) ,
2·· ut

so

E[V(XHh,t+hh)-v(x,t)] =v'(x,.t)E [XH~-X] (10)

+~ vl/(x, t) E [(XH~-x?]

a
+at v(x, t) + 0(1) .

Equation (1) with initial condition X t = x, leads to



243

Similarly

•

~liJ [fhb(X.,U(X.,,))d,]'

+~E [It+h b(Xs,U(Xs,S))dsli+ha(xs)dws]

+~ E [fh u(X.) dW.J'

,,:';, ~E [fhU(X.)dW.j'
1 It+h= hE t a2(Xs )ds

~ a2 (x) . (12)
h-'>O

"From (11,12) and (10) we get

E [.V(Xt+h,t +hh) - vex, t)]

~ v'(x,t)b(x,u(x,t)) + ~v"(x,t)a2(x)+ ~ v(x,t).
h-'>O 2 . vt

Let h ~ 0 in (9), so we get

l~£ [:tv(x,t)+ v'(x, t) hex, u(x, t))+ ~11"(x, t)a2(x) +-!(x, u(x, t))] =0.

This shows (8). The condition at final time is an easy consequenceof (5,4). The
preceding argument is made rigorous if we know a priori th~t

v E C2,1(IRn x]O, ooD ,
but the main question lies in the fact that vis not in generalC2,1 (cfS [31]).

Verification result Letv.bethe solution of the HJB equation (8). Any function
u(x, t) which satisfies the relation

£u(z,t)v(x,t)+l(x,u(x, t)}= inf [£Uv(x,t)+f(x,u)] , \f(x,t) , (13)
uEU

is an optimal feedback control, i. e.

leu) = inf leu) .
uEU

Proof. We need thefollowing.lemma (ef.[23] for a precise statement)

(14)
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Lemma 2 a Feynman-Kac formula. Let w(x, s) be a solution of the follow­
ing backward partial differential equation

:sw(x,s) + £u w(x,s) + M(x, s) = 0 ,

then, for any T > t,

w(x,t) =E~,t [iT M(Xs,S)dS+W(XT,T)]

Moreover, from (13) and (8) we get

:t v(x, t) + £u(z,t) v(x, t) + f(x, u(i, t)) = 0 ,

hence, using lemma 2 we find

and for r = T and t = 0, this last equality becomes

The definitions of J and v lead to (14).

Rigorous statements [7,]. The. main hypothesis. is the nondegeneracy of the

matrix a(x) ~ a-(x) a-(x)*. The case of degenerate diffusion is much more tricky.
So we suppose that

L:>.
a(x) = a(x)a-(i)* ?a-ol >0, 'if i E lRn

. (15)

Up to now, U was a class of Markovian controls (i.e. feedback controls);
througl:lOut this secti()u, we use a wider class containing controls which are not
necessarily Markovian (I.e. stochastic processes which are not only function of
the current state value X t ). We define the class U of admissible controls as follow
(5)

u = {u(t);O::;t::; T}E U {::=} {
u EL}(O,T;lRk).,

. u(t,w) E U, t a.e., w <l..s..

5 the space L}(O, T;IRk
) is defined by

, E L}(O, T; >1') = f~I~I~~~~,~:~:M~~:le,
where {Ft } is the filtration associated with the Wiener process 'w.



We also make the following; hypotheses

e U is a closed convex subset of IRk ,

ef(x,u) 2:: folu I2 -Go, hex) 2:: -Go, V(x,u)E IRn xU,

e b: IRn X IRk ---+ IRn
, rr : IRn --+ L(IRn,IRn) ,

b, rr are continuously differentiable, the derivatives are bounded,

Ib(x, u)1 ::;. b(1 + Ixl + luI), Irr(x)l::; a (1 + Ixl) ,

• f : IRn
X lRk ---+IR, h: IRn -'--/IR ,

f, h are continuously differentiable,

If(x,u)l::; 1(1 + Ixl2 + lul2
) , Ih(x)l::; h(1 + Ix12

) ,

18f/8X il, 18t/8Uil::; 1(1 + Ixl + luI), 18h/8xil::; h (1 + Ix\) .
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(16)
(17)
(18)

(19)

Concerning the quasilinear partial differential equation (8), we have the following
result

Theorem 3 Bensoussan[7J. Under assumptions (15-19), there exists one and
only one solution v of (8) such that (6)

v E LP(O,TiWl:::(IRn» , :tV ELP(O,T;Lfoc(lRn» , (20)

for any 2 ::; p < 00, and

Iv(x, t)1 ::; G(l + Ix 1
2

) , I::J ::;.G (1 + Ixl) .

This solution is explicitly given by (4J
Then there exists u: IRn x [0,00[--+ IRk such that

,Cu(x,t) vex, t) + f(x, u(x, t» = inf [,CU vex, t) + I(x, u)]
uEU

Using the estim<}tes (21), we can prove that

lu(x,t)1 ::; C (1 + Ixl) .

(21)

(22)

This last theorem does not establish that the infimum in the right hand side of
(4) is reached. The reason is that the feedback u(x, t) is not smooth enough to
ensure that the s.d.e. (1) has a strong solution.

With additional assumptions we can prove that the feedback u(x, t) is optimal
for the original problem (1,2). Indeed

6 The space Lfoc (lRn) is defined by

z E Lfoc(lRn) ¢::=> z</> E LP(IRn), V</> E C~(IRn) ,

and the space WI~:(IRn)isdefined by

z E WI20'cP(IRn)..<--->.. 8z 8
2
z·. LP (IRn)

'0--->' z, 8x;' 8x; 8x j E loc . ~



(24)
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Theorem4 Bensoussan[7]. Under the assumptions of Theorem 3, assume that

8 8
2

; '8 8
2

; exist and are continuous, bound~ll;l)
Xi U q Up U q

I
82b I bo l\lvl<---, fo > bo sup ---

8up 8uq - 1+ Ixl ",EIRn 1 + Ixl

Then u(x, t) is an optimal feedback control for the problem (1,2).

2.2 Infinite-horizon problems

The discounted case We consider the stochastic. contrbl problem defined by
the sta.te equation

(25)

and the cost function

(26)

Note that the feedback control does not depend on t anymore.
Formally, we can take h =0 and replace! by eat f in (2), we get

and (8) becomes

8
8 v~(x,t) + in! [.cLV~(X)+ e-atf(x,u)T= 0, v~(x,T)=0. (27)
t uEU

Let
-T( ) 1';. at T( t)Va x, t = e Va X, ,

so (27) reads

(28)

taking T -+ 00 in this last equation yields

where va(x, t) = iJ;f(x, t).
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. In fact iTa (X,t) does notdependowt, this can bedreckedusing (28}andt~e

definition of v;r(x, t), indeed

ii",(x,t) = e"'tv;:'(x,t)

= e"'t minEU 100

e-"'Sf(X u(X ))ds
U

x,t s, SuE t

- minEU100e-",(S-t)f(X .. u(X )) ds- uEU x,t t s, S

= minE loo e--:"'s f(Xs,u(Xs)) ds
uEU 10

thislast equality comesfrom the fact that equation (25) is homogeneous in t.
Hence iia(x,t) is now denoted ii",(x) and (29) can be rewritten as follows

(30)

Equation (30)is the HJBfor theinfinite-horizon control problem asso.ciated
with state equation (25) and the discounted cost function (26). The optimal
feedback control is given by .

U"'(x) E Argmin[£Uii",(x) + f(x,u)]
uEU

The undiscounted case We c.onsidf)r the diffusion process (25)..We want to
minimize an average cost of the form

J(u) ~liminfTIEITf(Xt,u(t))dt.T-+oo 10 (31)

Most frequently the discounted .cost function (26) is used. In manr applIca­
tions, the cost functional (31) is more realistic than (26) because it represents a
time average while (26) involves a discount factorwhidlis often difficult toeval­
uate and not always relevant .. In genera.I, (31)implies that the .control stabilizes
the system. In fact we need to suppose some recurrence and stability conditions
(cf. [27]). Froluthe mathematical viewpoint, the discounted problem is easier
than the undiscounted one, since the former avoid considering the· behavior of
the controlled process as t goes to infinity.

For the average ca.se (31), wewant to find a pair (v,p) where p is a constant
and v is a smooth function, such that the following HJB •equation is satisfied

inf [£Uv(x)+J(x,u)]=p.
uEU

Let (v,p) be a solution of (32), then the optimal feedback is given by

u(x) E Argmin['cuv(x) +f{x,u)]
uEU

and p is the optimal cost, i.e.

p= J(u) = inf J(u) .
·uEU

(32)
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The average· cost problem can be viewed as a limit model for the discounted
problem as 0: --+ 0, indeed

o:V",(.) --+ p.,
",-.0

v",(-) - v",(xo) --+ v(·) ,
",-.0

(in a suitable sense, see[7J for a rigorous proof).

3 A Class of Ergodic Stochastic Control Problems

We present a class of models which derive from a problem of conttolforsemi­
active suspension systems. In these models~ like in mostcrealistic ,Illodels--­
difficulties of the foll9wing type are met: the coefficients of the diffusion which
we want to control are discontinuous and strongly nonlinear.

In section. 3:1 we introduce the c1assC ofproblem~. Then, in section 3.2, we
consider J-Lu the invariant measure associated to a system of theclassC fora
given admissible control u, and we prove that J-Lu exists and is unique. Finally,
in section 3.3, we present the original semi-active suspensions problem.

3.1 The problem

Let us considef the following stochastic system

(33)

where X is a process which takes values in rn?'>lf. i~ a real standard Wiener
process and u > O. b maps rn. x rn.2 inrn.2 and is defined by

~.. (.<.Xl)..x- ,
X2

uE!U

where 71, 'Y2 are strictly positive constants.In (33), u is a feedback control
which belongs to the c1assU 9f admissible controls defined by (fix.:!!, :u; such that
O<:!!<u<oo)

u:rn.2 --+[:!!,uJ and thereexistsannite number ofsubman­
ifolds of rn.2 with dimension less than or equal to 1 outside
of which>uis continuous.

We are concerned with an ergodic type control problem, whose cost functional
is

.6... 1 iTJ(u) = hm.-r· E f(u(Xt),Xt)dt,
T---+oo 0

where the instantaneous cost function f is defined by

'VuEU, (34)

(35)



dXt = b(u(Xt),Xt ) dt+ (~)dWt

b(. ) ~ (. bl ( U, X») ~ ( X2 )
U,X - b2 (u,x) - -UX2-']lXl-'2sign(X2)

J(U) ~ lim -T
1

E iT f(u(Xt),Xt)dt
T-+CIO 0 .

feu, x) ~ (UX2 +11 Xl +12 sign(x2»2

Table 1. The class Cof ergodic control problems

l,From now on, we denote

, II, 12> 0
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(37)

bU(x) ~ b(u(x),x) , r(x) ~ f(u(x),x) , 'VuE U.

The Hamilton-Jacobi-cBellman equation for the ergodic control problem (33)
(34) can be formally written as (see seetion2)

min (£U v(·) + f(u,·)) =p .• on IR2
, (36)

uE!y',Uj

where v: IR2 ~ IR is defined up to.an additive constant, p is a constant and £u
is the infinitesimal generator associated with. (33).

f'U A.( ) ~ bU( ) 8</>(xr bU( ) 8</>(x)u2
.82 </>(x)

J,., 'f' X 1 X OXl + 2 X 8X2 + 2 82 X2 •

Remark. The arguments presented bellow may be applied to a wider class of
problelllfkIndeed, we can consider a systellof the form

d(i}) = G~~~tlt)) dt+ (~) dWt,
where Xl (resp. Xl) takes values in IRnl (resp. IRn2) andW is a standard
Wiener process. The main hypotheses are

(i) the discontinuous terms appear only in the "noisy part" of the system, that
is bl (x) is smooth and uu* > 0,

(ii) the system satisfies a stabilityproperty.(e.g.EIXt .l 2 ::; C, \It ~ 0).

Point (i) permits us to use a Girsanov transformation to remove the discontin­
uous terms.

Remark. In this case the choice of the value of the function "sign" at point 0 is
not important. Indeed, in (33) the noise is added to the second component, so
we can prove that

P(X;=O)= 0, \It. (38)
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Property (38) implies that, if we chang~theYal~~of sign(O), the (weak) solu.tion
of (33) will not be changed. If (38) was false, we should use differential inclusion
techniques to give a meaning to the stochastic differential equation (33).

3.2 The invariant probability measure

The cost function (34) can be rewritten as

(39)

where J-Lu is the invariant probability measure associated with system (33). In
this section we present an existence and uniqueness property for J-Lu which gives
a meaning to expressions (34,39). For the results presented in this section all the
details can be found in [13].

PropositionS. For any u E U, the diffusion process (33) admits an 'invariant
probability measure J-Lu.

Proof. We fixu E U. By means of usual techniques (e.g. [16] tho 9.3 ch. 4y,it is
sufficient to prove the following properties

(i) There exists a constant C such tha.t

(40)

(ii) The process X t solution of (33) has the Feller property, i.e. for any t ~ 0
and ¢ E Cb(rn?), the function

(41)

is continuous, where {Xn denotes the diffusion process (33) starting at
point, x at time O.

proof of (i) We define

!:>.
Vet) = E V(Xt ) ,

There exists 60 > 0 such that for any 60 > 6 > 0

Hence, it is sufficient to show that Vet) s Cte for any t ~ O.
We can check [13] that there exist strictly positive constants 6 and 8 such

that
d ..• . .. 6
dt V(tY :s: '-C(6, 8) Vet) + 28+ (}"2 ,

where C(6,8) > 0, which yields the conclusion.
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prooJoJ(ii) Ih(33), the drift co~fficientcanbewfittenas

Let

(42)

We define a new probability law

XZsatisfies - (0) -dXf =BXfdt+. (J .. dWt , (43)

where - from Girsanov's theorem - W t is a real standard Wiener process
under the probability law P.

For any sequence X n ~ x, we want to prove that

E¢>(x:n) = E[¢>(X:n) Z:n] ~. E¢>(Xf) = E [¢>(Xf) Zfl , (44)
n--+oo

where E denotes the expectation with respect. to P. We can .check that it is
sufficient to prove that

x:n n.:::7oo Xf P~a.s.,

z:n ~ Zf in P~probability.
n--+oo

(45)

(46)

(47)

(48)

Under the probability law P, X t is the solution of a linear stochastic differ­
ential system, so (45) is obvious. For (46), we show that

E it [u(X:n) X:n,2 - u(X:) X:,2] 2 ds n.:::7oo 0 ,

E it [sign(X:n,2) - sign(X:,2)] 2 ds n.:::7oqO .

The difficulty comes from the discontinuity .of the functions sign( .) and u( . ),
but using the definition of U we know that theses function are continuous a.e.,
which, using standard arguments,is enough to conclude•..
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Proposition 6. For any U E U, the diffusion process (39)aamits aurtique-i'TF
variant measure flu'

(49)

Proof. i,From now on, we fix uE U and we suppose that fL denotes an invariant
probability measure of the system (33), and Xt is the solution of this system
with fL as initial law (i.e. X(j has law fL). We also define Zt by (42) where X" is
replaced by X. It is sufficient to prove that

fL has a density p(x) with respect to Lebesgue mea­
sure, and p(x) > 0 for almost all x.

Indeed (49) implies that if there exist two invariant measures, they are equivalent.
So there exits at most one extremal. invariant measure, which.establishes the
proposition.

We first prove the following result

(50)

(51)x(O) = x .

Under P, for any t > 0, the law of Xt has a density
p(t, x) such that p(t,x) > 0, Vx.

Under P, consider the system (43) wheredW is replaced by vdt (v E L2 (lR+)),
we get

Let x."V(t) denote the solution of this last equation. We define the reachability
set

A(t,x)·~ {x."V(t) ; VvE L2 (lR+)} .

(51) can be rewritten as x=Ax + Bv and the. matrix [BIA.B] has full rank.
Hence this system is controllable [29]. So

\:It> 0, Vx E lR2
, A(t,x) = lR2

• (52)

Using[33]§3.6.l,we prove that --'-- under P - the law of X t is absolutely con­
tinuous with respect to Lebesgue measure and that its density p(t, x) is strictly
positive for any t > 0 and x.

Now we prove (49). For any 4> E Cb(lR2
)

(fL, 4» = E[4>(Xt) ZtT ,

=E [4>(Xt) E[ZtIXt]] ,

=L2 4>(x)E[ZtIX t = x]p(t,x)dx.

Since E[ZtIXt] ? 0 P-a.s. and under P the law of X t is equivalent to Lebesgue
measure, we get E[ZtIXt = x] > 0 Vx-a.e.. Using (50) andthe last inequality,
we prove that fL has a density

q(x) ~ E[ZtIXt = x]p(t,x)

and that this density is strictly positive for almost all x ElR?
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3.3 An example: a semi-active suspension. system

In this section we present a damping control method for a nonlinear suspension
of road vehicle (comprising a spring, a shock absorber, amass, and taking into
account the dry friction, cf. figure 1). The aim is to improve the ride comfort.

Among alternatives to classical suspension systems (passive systems) we dis­
tinguish between active and semi-active techniques: An aCtive suspension system
consists in force elements in addition to a spring arid a, damper assembly. :force
elements continuously vary the force according to some control law. In general,
an active system is costly, complex, and requires an externalpoW'ersourc~J19].

In contrast, a semi-active system requires no hydraulic power supply, and the
implementation of its hardware is simpler and cheaper than a fully active sys­
tem. A semi-active suspension system acts only on damping or spring laws, so
it can only dissipate or store energy.

Here we consider a system with control on the dampinglaw,the forces iIi
the damper are generated by modulating its orifice for fluid flow [2, 37]. We use
the simplest niodel which consists in a one degree-of---freedom model (this model
can be represented as a problem ofthe class C).

The equation of motion for a one degree-of-freedom model is

m jj + c if + ks y + z = -m e ,
(cf. figure 1 and table 2 for the exact definition of the terms).

m

c -+- control

Fig. 1. One degree-of-freedom model.

(53)

e denotes the input acceleration. The restoring force k s y + z, has a linear
part ks y, and a nonlinear part z which describes the dry friction force [11, 12]
defined by

z+ j3 (Iiflz +iflzl) = (k - ks)if , (54)

where j3 > 0 and k > ks > O. For "large displacements", z degenerate· to a
Coulomb friction force

z = Fs sign(if) , (55)
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a absolute displacement of mass m

y absolute displacement (y =a - e)
e stochastic input (surface road acceleration)

m sprung mass
cshock-absorber damping constant (controlled)

k s spring constant
Fs dry friction constant

..
Table 2. Notations.

with Fs = (k- ks )/2f3. The damping force is cywhere c > 0 is the instantaneous
damping coefficient (the .control is acting on this term).

The general model is described by equations (53,54). The problem is to .com­
pute a feedback lawc.= c(y,y) such that the solution of the system (53,54)
minimizes a criterion - related to the vibration comfort -

J(u) ~ lim -T
1 ErT

10,12dt = l,im T
1 El'T 1ji + el2dt .T_= h T-= 0

This model leads to a control problem for a 3-dimensionaldiffusion process.
If we want to obtain a 2-dimensional problem, we must use the system given
by equations (53,55) (i.e. we use a Coulomb force term). We get the following
simplified model

(56)

e is supposed to be a white Gaussian noise process, e= -rJdW/dt where W is
a standard Wiener process.

Using u = elm, 71 = ks/m, 72 = FS/m and

equation (56) can be rewritten as (33).
We get the following system

(57)

where

b(u, x) = (:~~:: ~D ~ (-(u X2 + 71 x:
2

+ 72 sign(x2)) ) (58)

Hence the instantaneous cost function is

(59)
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4 Numerica.l Approximation

We use the following procedure: we do not discretize directly the HJB equation
but we transform the original ergodic control problem to a control problem for a
Markov process in continuous time and finite state space (section 4.1). Then, for
the discrete case, we can write a dynamic programming equation (section 4.2);
this equation is solved numerically via an iterative algorithm (section 4.3).

We describe the approximation procedure in the case of a diffusion process
defined by

and with the following cost function

J(u) = liminf -T
1

E iT f(u(Xt),Xt)dt ,
T-+oo 0

where

b : IRk X IRn -+ IRn
,

a:· IRn -+ IRn x IRd ,

f : IRk X IRn -+ IR+ .

(60)

(61)

X takes values in IRn and Win IRd
• u belongs to a given class U of applications

from IR7>toU C IRk. We suppose that, for any uE U,thesolution X t of (60)
admits a unique invariant pro1:>abilitymllasure,.. so the cost function (61) is well
defined.

The infinitesimal generator associated with (60) is

(62)

where a(x) ~. a(x) a(x)*. We note bi(x) = bi(U,i) and fU(x) = f(u; x).
In section 4.4, we apply this approximation technique to the class C. For this

class we also present some convergence results which were proved in [4, 13}.

4.1 The finite state space problem

In a first step we approximate the solution X t of (60) by a controlled Markov
process xI" in continuous time and discrete (but infinite) state space. In a second
step, X t is approximated by a controlled Markov process X~,D in continuous
time and finite state space.
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{

<p(X + ei hi) - <p(x)
a<p(x) hi
OXi ~<p( x) -- <p(x - ei hi)

. hi

if bi(x) > 0

if bi(x) < 0

24>(x) + <p(x + eihi + ej hj) + <pCx - ei hi - ej hj)
2hi h j

<p(x + ei hi) + <p(x -ei h;) + <p(x + ej hj) + <p(x - ej hj)
2hi hj

a2<p(x)
---""'aXi aXj -

if aij(x) > 0

2<p(x) + <p(x + ei hi - ej hj) + <p(x- ei hi + ej hj)
2hi hj

+<p(x+ ei hi) + <p(x - ei hi) + <p(x t ejhj ) + <p(x - ej hj)
2hi hj

i,j =1, ... , n, i ¥ j , ei unit vector in the ith coordinate direction

Table 3. Finite difference schemes.

first step: discrete state space. Let hi (resp.ei) denotethefinite differencein­
terval (resp. the unit vector)in theith coordinate direction and h = (hI,'" ,hn ).

We define lRh, the h-grid on lRn , by

The infinitesimal generator (62) is approximated using finite difference schemes
given in table 3. The reason for the choices in the schemes will be explained
below.

,Cu is approximated by an infinite dimensional matrix ,CX oflRlNXIR,lN given
as.follows

'cU¢(x) ~ 'cX¢(~)~L 'cX(x,y)¢(y) , \fx E lRh
yERi:

the terms £h(x,y) of this matrix are detailled in table 4.
The.ma~rix,CX has the following property

L ,CX(a;, y) = 0 ,
yERi:

\fa; ElRh .
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£r(z,z) ~ _~ (",~\:) ~ 1,~,n'~E)'F~~;~n»

£Hz,z .,:" h;) ~1(a;~\z) _ ,~, I';;;~:)I) + (bf~»+

£r(.,z -~, h;)~1(a,~\z) -,~, I';;;~)I) t(bf~)~

" z:,." z:,. a;j(:!;)
.ck(x,x + ei h.+ ej hj) = £X(x,x eihi - ej h j )= 2hi h

j

" z:,.", z:,. aij(x)
£h(X,X + ei hi - ej hj) =£h{X,X - ei hi + ej hj) =2h

i
hj

i,j = 1, ... , n, i =f:. j

Table 4. The discrete infinitesimal generator.

Suppose that

aii(X) - L laij(x)1 ~ 0,
j;j#i

then

£h(X,y) ~ 0,

Vx E lRh,i = 1, ... ,n , (63)

Rema1:k. .Th: choice of the finite difference schemes we use (cf. table ~) depends
on the sign of the drift coefficients ofthe diffusion. process. The reason for the
choice is the following: if (63) is true then {£h(x,y); x, y E lRh} can be viewed
as th~ infinitesimal generator of a continuous-time Markov process xI: with
discrete state space lRh [18]. We will see later why this is important.

So we get a stochastic control problem for a Markov processXI: with infinites­
imal, generator £h' and the following cost function

L::, 1 iTJh(U) = lim E -T " r(Xf) dt.
T--->oo 0

U belOl;lgs to the class Uh defined by

U E Uh {:::::::} uis an application from lRhto u.

(64)
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second step: finite state space xI' has a discrete but infinite state space; if
we want to perform computations it is necessary to work on a finite state space.
We consider a bounded domain D of IRn

• We define a new state space

N ~ Card (IRk D) .
! -. - ,

(65)

Because we are working on a bounded domain, we must specify boundary con­
ditions. In practice, D will be chosen large enough so that the process will rarely
reach the border. Hence, the choice of the boundary conditions is of little im­
portance, provided that all the states communicate. Example of such conditions
(usually reflecting conditions) will be given later for the suspension problem.

So we get an approximation £'h,D to £1.

£'h,D ~(x) = L £'h,D(X, y) ~(y) .,
YEIR~,D

£1. D is a N x N-matrix.,

Remark. The choices in the finite differen~e schemes (cf. table 3) imply that

L £'h,D(X,y);= 0,
YEIR~,D

moreover, hypothesis (63) implies that

'VX E IRk D ,,

'VX, yE IRk D' x ::j:. Y .,

hD f::, 1
oz' (x) = - £u ( )'h,D X,X

Hence £'h,D can be interpreted as the infinitesimal generator of a controlled

M k X h D . . • d fi . X h D. d 'b dar ov process t' ill contmuous tIme an mte state space. t' IS escn. e
by the following terms

- a sequence {L1?,D; 1 ~ O} where the random variable L1?,D denotes the
elapsed time between the Ith and"the (1 + l)th jump,

- a Markov chain {~?,D ; I ~. o} with state space IRk,D, ~t,D denotes the state
of the process between the lth and the (1 + l)th jump.

The law of the random variableL1?,D and the transition probabilities of the

Markov chain {~?,D ; 1~ O} are defined as follows

- the pair (L1?,D, ~?+f) depends only on ~?,D,

- under the conditional probability law P( '1~?,D), the random variables L1?,D
and ~r+f are independant.

And for any x E IRk,D' under the conditional probability law P( 'I~?,D = x)

the random variable L1?,D obeys an exponential law of parameter o?,D(x)
where
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~the transition probabilities {1rh,D(x, y);YEffiii,J5} are'defined by

With a suitable choice of boundary conditions (usually reflecting conditions)
and with the finite differences schemes we used, we have: -C'h D(x, x) < ofor all

n .' ,
x E ffihD.

, "
With remark 4.1, the discretized problem can be viewed.as a control probleni

for a Markov process X:,D in continuous time, finite state space, and infinitesi­
malgenerat.or £hD' The cost function is,

h,D(U) g lim E T
1 rT

r(X:,D) dt ,
T-+oo Jo

and U belongs to a class Uh,D of control defined by

(66)

-¢=} it, is anapplicatioll from ffiiiD to U.,

The solution to this problem isgiven by the dynamic programming equation.

Remark. Let J-t~,D be the invariant measure of the processX:,D. Using J-t~,D,
the cost function (66) can be rewritten as

Jh,D(U) = 2:r(x) J-t~,D(x) .
xEm.~,D

The measure J-t~,D is solution of the following linear system

2: £'h,D(Y'X) J-t~,D(y) = 0,
YEIR~,D

2: J-t~,D(y) =1 .

YEIR~,D

'v'x E ffihD ,,

4.2 The "discrete" Hamilton-JacobI-Bellman .equation

Associated with the control problem defined in the last section we have the
following dynamic programming equation

min[. ~ £hD(X,y)V(y)+r(x)j. =p, 'v'XEffiii,D, (67)
uEU L.J ,

YEIR~,D

where p is a strictly positive constant and v: ffih,D -4 ffi (i.e. v E ffiN)is defined
up to an additive constant.



260

If (v, p) is a solution to (67) then

U{X)EArg~ill[ L .c~'D{X,y)3v{y)+r(x)] ,xElRi:,D (68)
yEIRi:,D

is an optimal feedback control law, and pis the minimal cost

Equation (67) can be viewed as an approximation to the HJB equation (36).
Equation (67) gives the solution to the ergodic control problem for the Markov

X h,Dprocess t .

4.3 The policy iteration algorithm

In order to solve (67), we use the policy iteration algorithm [15, 22]: suppose
that UO E Uh,D - the initial policy - is given. Starting with uO we generate a
sequence {uii) 2:: I}. The iteration u i -+uiH proceeds iIitwosteps{cf. table 5).

GJ compute (vi ,pi) we compute (vi ,pi) E :rn.Nx:rn.+ the solution of the linear system

L .ch~D(X,y)vi(y) + r j

(x) =pi, 'ix E :rn.i:,D
YElRi:,D

stopping test IlpHI - pi I ~ E:.

ill compute uHI we sol"Ve the N following optimization problems: 'ix E :rn.i,D

Table 5. The policy iteration algorithm, iterationui -+ uHI .

Re.m.ark. The fl.. rst step of this algorithm leads to a lin.ear system of dimension
2 . •N. Let lRh D = {x'; i = 1, ... ,N}, then the unknown parameters .are,

and we take v{xl) = O.
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Remark. For the second step, the optimization problems are nonlinear and they
are solved by means of iterative routines. The nonlinearity comes from the dis­
cretization technique we use. Indeed, the choice of finite difference approximation
(cf. table 3) depends on u, Instead of the schemes of the table 3, we can use cen­
tral differenceapproximation (so that it does not depend on u), in which case
the second step becomes explicit because the functions to be optimized are now
quadratic in u. On the other hand, with this kind of difference approximation, a
certain condition on the parameter h has to be fulfilled (h must be small enough)
for the matrix £~,D to be the generator of a Markov proceSs. See [26] p.175-179
for further considerations.

4.4 Application to the class of problem C

The approximation In this example, the discretized state space are IR~ and
IR~ D where h = (hI, hz) and D is of the form,

so

with

C) ... i-I
Xl' = -Xl +2XI-

N
.. ,

1 - 1
W_ _ _ j-l

Xz - -xz+.2xz-
N

.. ,
z -1

(cf. figure 2).
The matrix a(x) is degenerate

. . 1
hI::::: -_._-.- ,

N I -1
1

hz = .-.--­
Nz -1

Condition (63) is fulfilled .. The finite· difference schemes .of table 3 are simplified,
they are presented on table 6; the terms of the matrix £'h ar.e presented ()n table
7.

For this example we give explicit boundary conditions. We define

6. { .• (1) (Nt)}· . { (1)' (Z)(N2)}·rh,D= Xl 'Xl X Xz 'Xz , .•. ,Xz

U {X
(l)X(Z) x(Nt)} X {X. (.1) x(N2).}

. l' 1 , ... , 1. • Z 'z .

rh,D the set of points on the border. We chose very simple reflecting conditions,
we obtain the matrix £'h D described table8./,
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h1

X2

• •

Xl

(0,0) L

lh2

Fig. 2. Discretized state space.

if bi(x) >0

if bi(x) <°

i = 1,2, ei unit vector in the ith coordinate direction

Table 6. Finite difference schemes (class C).,

The convergence results We present two kinds of results. Firstly, consider the
discrete HJBequation (67), we can prove thatit admitsa unique solution and
that the policy iteration algorithm converges to this unique solution. Secondly,
we canalso prove a convergence result for the approximation as the discretization
step h tends to O. These results are presented for the class C.

existence and uniqueness of a solution to the discrete HJB equation
We have the following results

Theorem 7. The HJB equation (67) (with v(xl) == 0) admits a unique solution
(v, p) E lRN X lR+ .

For the existence part of theorem (7), we rise the following



263

Table 7. Discrete infinitesimal generator (class C). c

for X .~ IRtv \n,v et y E.IRi,v

for x E rh,V such that Xl = X~l)

£h,V(X,y)=':£h(X,y)

£h v(x,x) =£h(X,x)
£h,v(x,x -+- hI el) = -£h(x,z)

for X E rh,V such that Xl = x~Nl) £h,v(X,X)=':£h(X,X)
. £h,V(X,X -' hIed = c£h(X,X)

for x E n,v such that X2 = X~l) £h,v(x,x) = £h(X,X)
£h,V(X,X + h2 e2) = -£h(x,x)

for x E rh,V such that X2 = x~N2) £h,V(X,X) = L:h(X, x)
£h,v(x,x-h2e2) = -£h(x,x)

all other terms are null

Table 8. Discrete infinitesimal generator£h,V (class.C).

Corollary 8. The policy iteration algorithm converge to an optimal feedback con­
trol.

These results are proved in [4], but one can find the same kind of results in a
more general setup in [10].

Approximation: a convergence result We present a convergence result con­
cerning the approximation, when the discretization parameter h tends to 0 and
when the domainD tends to IR?(forthe complete proof of this result ef. [131).
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Theorem 9. We consider two strictly increasing sequences

{X~; h > O} and{x~; h > O}

such that xf > 0 and xf --- 00 as h --+ O. We define

D [ -h -h] [-h -h]h= -xI,X1 X -x2,x2

We suppose that

(69)

Then, for any u E U,

Remark. Theorem 7 proves the existence of an optimal feedback control law for
the discretized problem. With such a control, we can associate a feedback control
law Uh for the continuous state space problem, where Uh is piecewise constant.
Using theorem 9 we can easily conclude that

lim sup Jh,Di.(Uh) ~ inf J(u) .
h-+O uEU

We would like to prove the stronger result that the sequence {Uh; 11, > O} is a
minimizing sequence for the functional J, i.e.

J(Uh)--- inf J(u), when h ---0.
uEU

A numerical example

parameters As an ex~mple, we use.vaIues whiCh roughly correspond to a sus­
pension system for the seat of a truck: m = 60(kg),ks = 3500(N/m), F s =
40(N). These values have already been used in [4]. We also set (j = 0.5.

We use the following discretization parameters

Xl = Ymax = -Ymin = 0.1 (m) ,

X2 = Ymax = -Ymin.= 1 (lll/s) ,
nl = n2 = 30.

So we get a 30 X 30 =900 points grid.

optimal feedback control[4] The approximated optimal feedback control (68)
(plotted on figure 3)is computed using the policy iteration algorithm. The value
of the minimal cost is given below.

Now we present suboptimal control laws, fora more generaldiscussioncon~

cerning these techniques one can consult [4, 3].
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CONTOUR KEY
1 O.500E+Ol
2 O.768E+03
3 O.153E+04
4 O.229E+04
5 O.306E+04
6 O.382E+04
7 O.458E+04
8 0535E+04
9 O.611E+04
10 O.687E+04

-1.10!:-~-.7~5---+-5 --.7C25c--70--"--:-15~---~-:--;:7.+-5 ---:-!IO

DEPLACEMENI' *10 ~

CONTROL U 1X2

0.75

05

Fig. 3. The optimalfeedback control.

suboptimal feedback control #1 ne possibility is to find' a feedb1l.ck control
which minimizes the instantaneous cost function (59).'We obtain

_'() ~ks xlsign(x2)~ Fs
u x = IX2'·...

To take into account. the constraint ~.::; u ::; u, we use the following controllaw

u(x) = (u(x) V~)Au,

(cf. figure 4) (we·take ~ = 0 and 'it large).

suboptimal feedback cO:ntrol #2 The .previousresults lead us to the class
of suboptimal feedback controls ----: parametriz~d by (J Em? - of the following
form

ue(x) ~ [((JI + (J2 Xl sign(x2» V~) /\ 'it, (J = ((JI, (J2) E m? . ('70)
The techniques presented above Can also be applied to computethe suboptimal
~eedback controluq such that
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CONTOUR KEY
1 O.500E+Ol
2 O.lOOE+04
3 O.200E+04
4 O.300E+04
5 O.400E+04
6 O.500E+04
7 O.599E+04
8 O.699E+04
9 O.799E+04
10 O.899E+04

2~
1

-6S

-6.75

os

0.25

V
I
T
E
S
S
E

-6.25

0.75

'I.IO~-.::C7S:-'--~.5----:.2~S --~.J..-~2.5:-'--~--;7~S-----;;IO

DEPlACEMENf *10 ..

Fig. 4. The suboptimal feedback control #1.

where e;:::::: {O E m?;UfJ EU}.We get

91 = la7.2, 92= -12130. (71)
Q

The control law u6(x) is plOtted on figure 5. A feedback control where the sign
of the product Xl X2 (i.e. y iJ) appearshas already been proposed in [37].

comparison of the ·feedback controls Now we compare the three feedback
controls presented above to the constant control u(X) == Uo. The optimal con­
stant Uo (i.e. the constant which minimizes the cost) is 188. The different values
.of the cost are given in the following table

...

control type cost
constant control 2.93
suboptimalfeedbackc<>ntrol#1 2.68
suboptimal feedback control #2 2.37
optimal control 2.22
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