- Optimal Ergodlc ‘Control of Nonlinear Stochastic
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Abstract

We study a class of ergodlc stochastic control problems for diffusion processes.
We describe the basic ideas concerning the Hamilton—Jacobi-Bellman equation.
For a given class of control problems we estabhsh an existence and uniqueness
property of the invariant measure. Then we present a numerical approximation
to the optimal feedback control based on the discretization of the infinitesimal
generator using finite difference schemes. Finally, we apply these techniques to
the control of semi-active suspensions for road vehicle.

1 Introduction

This paper deals with a numerical procedure for optimal stochastic control prob-
lems and its'application to a non trivial example. This procedure consists in-ap-
proximating the non linear Hamilton—Jacobi-Bellman partial differential equa-
tion which is formally satisfied by the minimal cost function. We use finite differ-
ence techniques and with a suitable choice of the schemes, the resulting discrete
equation can be viewed as the dynamic programming equation for the minimal
cost function for the optimal control of a certain Markov process with finite state
space [26]..

In section 2, we present the different Hamilton-Jacobi-Bellman (HJ B in
short) equations which arise in the optimal control of diffusion. processes in
IR™ (for different cases: finite horizon, infinite horizon with discounted or undis-
counted cost functions). We stress the intuitive setup of the HJB equations rather
than the mathematical aspects.

In section 3, we introduce a particular class —:denoted by C — of ergodic
control problems. Some characteristics of this problem are non classical (the
diffusion is degenerate, the coefficients are non linear and discontinuous) and
there is no available result concerning the HIB equation. Even the first step —
giving a meaning to the cost function — is non trivial; this point is treated here
(we prove the existence and the uniqueness of the invariant measure associated
with the system, for any given admissible control). This class of problems derives
from a particular application in control of suspension systems [4].

In section 4, the approximation procedure is detailed in a more general con-
text than the class C. For the special case of the class C we have already stated
two types of results [4): existence and uniqueness property for the discrete HJB
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equation (with convergence of the algorithm used for solving it) and & conver-
gence property of the approximation as the discretization step tends to 0.-Finally,
we apply these techniques to the suspension problem [4, 3] and perform some
numerical tests; related suboptimal and adaptive techniques may be found in

[3].

2 The HJB Equation

In this section we give an intuitive presentation of the HIB equations. For math-
ematical treatments of this problem one can consult: for the deterministic con-
trol [7, 17, 30}, for the stochastic control of diffusion processes on finite horizon
[7, 5, 17], for the control of diffusion processes on infinite horizon [7 31, 36,
for the control of Markov chains [10], for the control of Markov processes on
infinite horizon [15], for the probabilistic aspects [24] and for numerical aspects
[1, 6, 14, 21, 25, 26, 28, 32, 34, 35]. For other aspects of the stochastic control
theory of diffusion processes one can consult [9] for the impulse control problem,
[8] for the optimal stopping time problem and [20] for the stochastic maximum
principle.

2.1 Finite-horizon problem
The prbblem We consider a diffusion process on IR”
dX; = b(Xt,’U'(Xt,t))dt + O'(Xt) th 5 0 <t<L T v Xo =g € R" ) (1)

where Wis a n—dimensional standard Wiener process. We suppose that‘ wel,
U is a given class of admissible controls which take valuesin U C RF. Suppose
that for any (m 1), {u(a: t), weElU}= U We W111 give later an example of such a
class. <
We fix the mstant >0 and we deﬁne the followmg cost functlona,l

| J(w) £E [/0 f(Xt,"u,(Xt,t))dt +~h(XT) . (2)

The stochastic control problem is to find @ E U which minirhizes the‘ cost func-
tional J.among all the admissible controls. .-
. We introduce the infinitesimal genera,tor associated with the system (1)

[’u(ﬁ(w) Zb( z, )6¢($)+ Z ”( )g:d’(z) 1 4 (3)

1.11’

with a(z) 2 a(a;) o(z)".
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The HIB equation
Definition 1. The value function is defined by

ow,t) & inf Low), @)
with*

Tos(u) £ B2,

/t f(X;,u(Xs,s))derh(XT)}. : 5)

Optimality Principle For any h > 0,

t+h

'y(q;,.t)': Hellt:l Eg,t [ f(Xs,u(Xm 5)) ds+ v(Xt+h>t + h):’ . (6)/
u t : e

Proof. First we introduce (a version of) the Dynamic Programming Principle:
suppose that (z,s) — 4*(z,s) is the optimal feedback for the control problem
over the time interval [t, T] starting at point z, i.e. :
| Toa(@) = v(a, 1)
then, given k> 0, 4| [t4+h,T] is the optimal feedback for the control problem over
the time interval £, T] starting at point Xyyp, €.
th+h’t+h('ﬁ,t) = W(Xt+h, t+ h) a.s. . - i (7)
Now we consider

_ _ [ i(z,s), s€[t,t+h],

e, ) = {u(w 5), s€lt+h,T],
for some control 4. By definition of v(z,t) and using (7), we have

v(2,t) < Jot(%) ,

[ t+h‘ ; T . )
=Eg, (X, %) ds+/ f(X,4")ds + h(X7)
V i t+h

' t+h : T
= BY, / F(X,@)ds + BL, on ( / P ds+ h(XT))]
t : t+

t+h g N
= E;, f(X,a)ds +v(Xepn,t + h):l .
A ,

4 Notations: The term E7, in expressions of the form
‘ . 1y .
E;‘,t'/ U(X¢,t)dt or dW;
t o
means that we consider the diffusion process X, solution of (1) starting from point =

. at time ¢ (i.e. X; = z) and using the feedback control u. When t = 0, E , is denoted
by E. -
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- So we get
t+h
v(z,t) < By, / F(Xs,u(Xs, 8))ds + v(Xern, t + R)|
A ,
and the equality holds if @ = 4*, which proves (6).

Hamilton-Jacobi-Bellman equation The value function (4) satisfies the follow-
ing equation

0 . u N — —
—a—t-'v(:c, t)+ ;IGIE [ v(z,t) + f(z,w)] =0, wv(z,T)=h(z). (8)

Proof. For notational convenience we consider the 1-dimensional case. E, is
denoted by E. Using (6) o

_ et
inf E ’?(Xt+h,t + h) ; 'U(:L',t)'+ _1_
ueY h h t

f(XSau(X& S)) ds| =0. (9)

Moreover

'v(XHh, t+h)= 'v(m t)+v'(z, t) (Xt4n — )
+z 'v"(a: t) (Xern — ) + h v(:z; t) + o(h),

SO

p[entt Doset] [ Kene] (io>

+% v"(z,t) E {_(Xt'l'hh_ -’3)2]
+§t- v(z,t) +o(1) .

Equation (1) with initial condition X; = z, leads to

3 t+h ‘ e
E Xt—"’h il - E —]1 / b(Xs,u(Xs,8))ds + B l / o(Xs) AW,
h hJ; e hJe

i+-h
=By [ WKeuXeepds
h_—_zo'b(x,u(m,t)) . g - (11)
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Similarly | |

: 2

a2 t+h
E[Qfﬁﬂ;b_z)] = %E[/ b(Xs,u(Xs,s))ds}
2 t+h ‘ i+h
+2 B / b(Xyyu(Xs,5)) ds / o (Xs) dW,
t t
.

1 t+h z
+E / o(Xs) AW,
: t

‘ 1 t+h 2
~ 1B /t o(X.) dW,

1 t+h
= }—l'E / Uz(Xs)dS
t

= a‘z(w) . B ; o (12)

iFrom (11,12) and (10) we get

5 [v(Xt_,.h,‘t +hh) — vz, t)]

~ o _1_ ey 2 é_
2, (z,t) b(z,u(z,t)) + 5 (@,t)a (z)+ Y 'v(a:,rt)‘ -

Let b — 0 in (9), so we get
Helzfl [% v(:g,t) + o' (z, 1) b(z, w(z, t)) + -;-'v”(a:, t) o*(z) n f(a:,u(z, t))] =0.

This shows (8). The condition at final time is an easy consequence of (5,4). The
preceding argument is made rigorous if we know a priori that

o v € C¥(IR™x]0,00[) ,
but the main question lies in the fact that v is not in general C%! (cf. [31]).
Verification result Let v be the solution of the HIB equation (8 ) Any function
#(z,t) which satisfies the relation

LU= y(z,t) + f(z,0(z,1)) = 12{, (L% v(z,t) + f(z,u)] , V(z,t), (13)
is an optimal feedback control, i.e.

J@)=jf ). (14)

Proof. We need the following lemma (cf..[23] for a precise statement)
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Lemma2 a Feynman-Kac formula. Let ¥(z,s) be a solution of the follow-
ing backward partial differential equation

%W(m, )+ LT (z,5) + M(z,s) =0
then, for aeny T > t, ,
T
¥(z,1) = B, / M(X,,8)ds +¥(Xp,T)]| .
A ,
Moreover, from (13) and (8) we get
9 i(2,0) (4 - a(5.1)) =
P v(z,t)+ L v(z,t) + f(z,@(x,8)) =0
hence, using lemma 2 we find
v(z,t) = BZ, [/ F(Xs,u(X5,8))ds + v(,Xr,r)] , t<7T,
t

and for r = T and ¢ = 0, this last equality becomes

'u(z 0)

/ F(X0 (X, 5)) ds + h(XT)}
The deﬁmtlons of J and v lead to (14)

ngorous statements [7] The main hypothesis is the nondegeneracy of the

matrix a(z) =p o(z) o(z)*. The case of degenerate diffusion is much more tricky.
So we suppose that

a(z) éa(.f::)a(a‘v)* >o0l>0, HVzeIR” R ()

Up to now, U was a class of Markovian controls (i.e. feedback controls);
throughout this section, we use a wider class containing controls which are not
necessarily Markovian >(i e. stochastic processes which are not only function of
the current state va.lue Xt) We deﬁne the class U of a.dmlss1ble controls as follow

)
w={u(t);0<t<T}eld < UEL(OTIRk)’ ‘
e D u(t,w) €U, t ae., was. .
% the space LL(0, T;IR%) is defined by

At w) —» z(t,w) is measurable,
€ L5(0,T;RY) < S E[] lz(t)[2 dt < oo,
2(t) € L*(, F, P), tae.

where {F;} is the filtration associated with the Wiener process w.
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‘We also make the following hypotheses

o U is a closed convex subset of IR* | (16)
« fe) > foluP - Co, Ba)2~Co, Vimu)eR"xU, (17
eb:R"xRF - R", ¢:R"— L(R*,R"), (18)

b, o are continuously differentiable, the derivatives are bounded,
b, )l B+ ol +[ul) , lo(z)| <7 (1+1]al)
ef:R*"xR*-R, h:R"-R, 1)
f, h are continuously differentiable,
[f(@,w)l < F O+ of +uf’), @) <R+ [a,-|2)
10#/0mil, 105/0ul < F (L4 fal + lul) ,  19h/Bzi] < B(1+1a) .
Concerning the quasilineai partial differential eqﬁa’cion (8), we have the foHoWing
result

Theorem 3 Bensoussan[7]. Under assumptions (15—19), there ezists one and
only one solution v of (8) such that (°) :

v e POTWERY), sve POTILMRY),  (20)
Jor any 2 < p < 00, and
o, < CA+1a?) , | 22| <C(1+]al) - e

This solution is explicitly given by (4).
Then there exists @ : IR™ x [0, 00[— IR* such that
LU= y(z,t) + f(,i(z, 1)) = 125 (L% v(z,t) + f(z,u)} .

Using the estimates (21), we can prove that .
li(z,8)] < C(1+]z]) - (22)

This last theorem does not establish that the infimum in the right hand side of
(4) is reached. The reason is that the feedback @(z,t) is not smooth enough to
ensure that the s.d.e. (1) has a strong solution.

With additional assumptions we can prove that the feedback 4(z, t) is optimal
for the original problem (1,2). Indeed

P (IR") is defined by
z€ L], (R") < z¢eL”(R"),VoeCs(R"),
and the space W2 ?(IR") is defined by

5 The space I

: oz &z
2,p n . n
eWP(R") = =z, Fo: ama L (R").

foc
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Theorem 4 Bensoussan[7]. Under the assumptions of Theorem 3, assume that

. of &f 9%b b
0z;0uy’ OupOuy’ Ox;Ou,’ OupOu,
2 2 v,
.[af]ZfOI %b bo [Vv]

b .
duy Oug Oup Oug| ~ 1+ |z}’ fo>bo fe‘i{)n 1+ |z

ezist and are continuous, boundé@3)

(24)

Then i(z,t) is an optzmal feedback control for the problem ( 1 ,2).

2.2 Infinite—horizon problems

The dlscounted case We consxder the stochastic control problem defined by
the state equation :

dX, = b(Xs, u(X2))dt + (X)) dW,, t>0 (25
and the cost function

Ju)EE /0 et F(Xeu(Xy))dt . (26)

Note that the feedback control does not depend on ¢ anymore.
“Formally, we can take h = 0 and replace f by e** f in (2), we get

PN :
Jr(w)2 B / et f(Xeyu(Xy)) dt |
o ;
and (8) becomes
-a;vff(m,t) + 11615 [£¥vI(z) +e > f(z,u)] =0, vg(z,T) =0. (27)

Let ‘ ;
L (z,t) £ et vE(z,t), R (28)
s0 (27) reads ' ' )
0 u ~T T V —aT ~Ty . —
5 7T (2,t) + mf [£*3Z (z,t) + f(z,u)] = @ ¥ (=, t) e 'va(:zz,T)=0
taking T — oo in this last equa.tion yields

(—%ﬁa(z,t) + nellf] [£% Fa(x,t) + f(2,0)] = @ba(z,t) , t20, (29)

where §4(z,t) = 9 (z,t).
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~In fact 95z, t) does not-depend-on-t, this can be-checked using (28) and- the -
definition of vZ (z,t), indeed

Bo(,t) = e* v°(z, t)

=e” mmEﬂf e % f(Xsu(X,))ds

= min E¥, / e (D f( X, u(X,)) ds

ueU

= min-F e”?° f(X,,u(Xs))ds
uelU 0

this last equality comes from the fact that equation (25) is homogeneous in ¢.

Hence va(:z: t) is now denoted 74 (z) and (29) can be rewritten as follows

1nf [C% G (z) + f(a: u)] = a’ua(z) , t >0. (30)

Equation (30) is the HIB for the infinite-horizon control problem associated
with state equation (25) and the discounted cost function (26). The optimal
feedback control is given by

ua(z) € Argmln [c* a(:z;) + f(a: u)]

The undiscounted case We consider the diffusion process (25). We want to
minimize an gverage cost of the form

J(ﬁ) 2 lim inf lE / i f’(Xt,u(t))’ dt . (31)

Most frequently the dzscounted ‘cost function (26) is used. In many applica-
tions, the cost functional (31) is more realistic than (26) because it represents a
time average while (26) involves a discount factor which is often difficult to eval-
uate and not always relevant. In general, (31) implies that the control stabilizes
the system. In fact we need to suppose some recurrence and stability conditions
(cf. [27]). From the mathematical viewpoint, the discounted problem is easier
than the undiscounted one, since the former avoid considering the beha.v10r of
the controlled process as ¢ goes to infinity. :

For the average case (31), we want to find a pair (v,p) where p is a constant
and v is a smooth function, such that the following HJB equation is satisfied

&IGI%‘] [L¥v(z) + f(w,u)]: P (32)

Let ('v, p) be a solutioni of (32), then the 6pfima1 feedback is givéﬁ By “ .
' i(z) € Argmin[£* v(z) + f(z, )]

and p is the optimal cost, i.e.

p=J(1) = ;IéfUJ(u) ;
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The average cost problem can be viewed as a limit model for the dlscounted
problem as o — 0, indeed ‘ :

a'ﬁa(') a:)O P
() = ulz0) =, o)

(in a suitable sense, see [7] for a rigorouskprocf).

3 A Class of Ergodic Stochastic Control Problems

We present a class -of models which derive from a problem of control for-semi—
active suspension systems. In these models.— like in most realistic models —
difficulties of the following type are met: the coeflicients of the diffusion which
we want to control are discontinuous and strongly nonlinear.

In section 3.1 we introduce the class C of problems. Then, in section 3.2, we
consider ji, the invariant measure associated to a system of the class C for a
given admissible control 4, and we prove that p, exists and is unique. Finally,
in section 3.3, we present the original semi-active suspensions problem.

3.1 The problem

Let us consider the following stochastic system
dXt = b(u(Xt) Xy) dt+ ( ) th , (33)

where X is a process which takes values in R?, W is a real standa.rd Wlener
process ‘ando >0.b ma,ps R x IR? in ]R2 and is deﬁned by

bi(u, ) Tk Ts. o A fay
b(u, z 1 . , T=
( )= (bz(u :c)) ( -—uzz — WL Y2 31gn(z2‘) RIS YA
where 71, 2 .are strictly posmve constants. In (33), w is a feedback  control

which belongs to the class./ of admissible controls defined by (ﬁx u, % such that
0<z<¥<o0) - ,

» ; Tu:REP— [u, ) and there exists a finite number of subman—
w€U < “ifolds of IR? with dimension less than or equal to 1 outside
g of which u is continuous.

We are concerned with an ergodic type control problem, whose cost functional
is : ~ : :

|n> ‘

J(u) Jim / fl(Xs), Xo)de, Yuel, (34)

where the instantaneous cost function f is defined by

F(u,8) 2 (os + 1 31 + 72 sign(w2))” - ~(35)
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dX; = b(u(X:), X3) dt + (3) AW,
v N bl(u,a:) A z )
blu, ) = (bz(u,z)) - (—u:cz —n z:z— Yo sign(q:z)) > M1 >0
T i N N 3 .
()2 Jim l E / F(u(X), X0 dt

flu,z) = (u z2 + 11 21 + 72 sign(z2))?

Table 1. The class C of ergodic control problems - -

¢ From now on, we denote , o o
b (x) £ b(u(z),z), f“(z) £ fu(z),z), Yuel.

The Hamilton-Jacobi-Bellman equation for the ergodic control problem (33)
(34) can be formally written as (see section 2) :

uren{i{l_](ﬁ“v( )+ f(u,-)) =p onIRZ - (36)

where v : IR? — R is defined up to an additive constant, p is a constant and £*
is the infinitesimal generator associated with (33).

o) 2 B iy D 2 2HED g

+ b3 (z)

Remark The arguments presented bellow may be applied to a Wldel‘ class of
problems. Indeed; we can consider a system of the form ~

()= (1), Yaru (O awi,

where X; (resp. X?) takes values in IR™ (resp. R™ 2) and W is a standard
Wiener process. The main hypotheses are -

(1) the discontinuous terms appear only in the “noisy part” of the system, that
is b1 (z) is smooth and oo* > 0,
(ii) the system satisfies a stability property (e.g. E|X;|> < C, Vt > 0).

Point (i) permits us to use a Glrsanov transformatmn to remove the dlscontm—
uous terms.

Remark. In this case the choice of the value of the function “sign” at point 0 is
not important. Indeed, in (33) the noise is added to the second component, so

we can prove that )
P(X?=0)=0, Vt. o (38)
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Property (387)7'7implies thz;.t, if we cila,ngéﬁtﬁér value of éign(O), the (weak) solution
of (33) will not be changed. If (38) was false, we should use differential inclusion
techniques to give a meaning to the stochastic differential equation (33).
3.2 The invariant probability measure
The cost function (34) can be rewritten as

J('u,):(fu,p,u), Yuel, (39)

where p,, is the invariant probability measure associated with system (33). In
this section we present an existence and uniqueness property for p,, which gives
a meaning to expressions (34,39). For the results presented in this section all the
details can be found in [13].

Proposition 5. For any u € U, the diffusion process (. 33) admzts an ‘inveriant
p'robabzhty TEASUTE [Ley. ;

Proof. We fix w € U. By means of usual techniques: (e & {16] th. 9.3 ch. 4) it is
sufficient to prove the following properties

(i) There exists a constant C' such that
Elxf<C, vt>0. (40)

(i) The process X; solution of (33) has the Feller property, ie forany t > 0
and ¢ € Cy(IR?), the function ‘

R?5z— E¢ (X‘"') | (41

is contmuous, Where {X?} denotes the dlffusxon process (33) sta.rtmg at
point, z at time 0.

proof of (i) We define
o VA a 2 2
V() = EV(Xy), V(z) =7 (1)’ +ezr 22 +(z2)° -
There exists 9 > 0 such that for any gg > € >0
1 N
V(@) 2 5 (1 (21)* +(22)°) -
Hence, it is sufficient to show that V(t) < Cte for any t > 0. 7

We can check [13] that there exist strictly posﬂ'.lve constants ¢ and & such
that . : :

ety Yy < = 2
dtV(t)_ C(e,&)V(t)+26 4+ 0%,

where C(e,8) > 0, which yields the conclusion.
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proof of (i) In (33), the drift coefficient can be written as - S

b(u,w)‘=§z+(__ 0 )

U Ty — Yz sign(zz)

£(28)(2)* (o)

W, 2 Wt+/ H(XZ)ds
[}

Let

Y(@) & =2 (u(z) 22+ 7 sign(z2))
zZ? £ exp ( / P(XE)dW, — = / P(XE)? ds) . (42)

We define a new probabzhty law

dP A oy—1
—i = (47 t>0.
dP 5 ( t) s v = 0
X* satisfies
dX? =BX?dt+ ( ) dw, , (43)
where — from Girsanov’s theorem — W, is a real standard Wiener process

under the probability law P.
For any sequence z,, — z, we want to prove that

E§(X;") = Elp(X;") Z{"] — EH(X])=E[$(X])Z]] , (44)

where E denotes the expectation with respect to P. We can check that it is
sufficient to prove that : '

X — X? P-as., ' ’ C(45)
n-—o00 - B
Zf» — ZT in P-probability. . (46)

n—>00 :

Under the probability law P, X; is the solution of a linear stochastic differ-
ential system, so (45) is obvious. For (46), we show that

e
F [ [z Xt —u(x0) X ds = 0, (47)
0 : e
P [ s s de 0. 9

The difficulty comes from the discontinuity of the functions sign(-) and u(-),
but using the definition of & we know that theses function are continuous a.e.,
which, using standard arguments; is enough to conclude.’
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Proposition6. For any u € U, the diffusion process (33) admits a unique in-
VATIANT MEASUTE [byy.

Proof. ;From now on, we fix 4 € i and we suppose that y denotes an invariant
probability measure of the system (33), and X, is the solution of this system
with 4 as initial law (i.e. Xo has law p). We also define Z; by (42) where X? is
replaced by X. It is sufficient to prove that

i has a density p(z) with respect to Lebesgue mea-

sure, and p(z) > 0 for almost all z. (49)

Indeed (49) implies that if there exist two invariant measures, they are equivalent.
So there exits at most one extremal invariant measure, which establishes the
proposition. ’

We first prove the following result -

Under P, for any t > 0, the law of X, has @ denszty (50)
B(t,z) such that p(t,z) > 0, Vz. ' : -

Under P, consider the system (43) where dW is replaced by vdt (v € L? (IR+))

we get (2) _ (_sz1> + <g)v, z(0) ==z . ; (51)

Let 2*7(t) denote the solution of this last equation. We define the reachability
set

At z) = {m” U(t); Yve LZ(]R,"')}

(51) can be rewritten as £ = Az + Bw and the matrix [BlA B] has full rank.
Hence this system is cqntrolla.ble [29]. So

V>0, VoeR?, A(t,z)=IR>. | (52)

Using [33]'§3.6.1, we prove that — under P — the law of X; is absolutely con-
tinuous with respect to Lebesgue measure and that its density B(t, z) is strictly
positive for any ¢ > 0 and z.

Now we prove (49). For any ¢ € Cb(]RZ)
(1, ¢) = E[¢$(Xy) Zt] ) ‘
=F [¢(Xe) E[ZtIXt]] 5
= /1;2 #(z) E[Z:])X; = x]ﬁ(t, z)dz .

Since E[Z:|X:] > -0 P-a.s. and under P the law of X, is equivalent to Lebesgue
measure, we get E[Z;|X; = 2] > 0 Vz—a.e. . Using (50) and the last inequality,
we prove that p has a density

4(z) S B(ZJX, = 2} B(t,z) ,
and that this densn:y is stnctly positive for almost-all z.€ IR2
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3.3 An example: a semi—active suspension system

In this section we present a damping control method for a nonlinear suspension
of road vehicle (comprising a spring, a shock absorber, a mass, and taking into
account the dry friction, cf. figure 1). The aim is to improve the ride comfort.

Among alternatives to classical suspension systems (passive systems) we dis-
tinguish between active and semi-active techniques. An active suspension system
consists in force elements in addition to a spring and a damper assembly. Force
elements continuously vary the force according to some control law. In general,
an active system is costly, complex, and requires an external power source [19].
In contrast, a semi-active system requires no hydraulic power supply, and the
implementation of its hardware is simpler and cheaper than a fully active sys-
tem. A semi-active suspension system acts only on dampmg or sprmg la.ws so
it can only dissipate or store energy.

Here we consider a system with control on the damping law, the forces in
the damper are generated by modulating its orifice for fluid flow [2, 37]. We use
the simplest model which consists in a one degree—of— freedom model (this model
can be represented as a problem of the class C).

The equation of motion for a one degree—of-freedom model is

my+cy+k3y+z——me, : (53)
(cf. figure 1 and table 2 for the exact definition of the terms).

y k, I-] Fs ' ¢~ control

Fig.1. One degree—of-freedom model.

¢ denotes the input acceleration. The restoring force k; ¥ + z, has a linear
part k,y, and a nonlinear part z which describes the dry friction force [11, 12]
defined by ‘
z+B(lglz+9lel) = (k- ka)g , (54)
where 8 > 0 and k > k; > 0. For “large dlsplacements”, z degenerate to a

Coulomb friction force ]
z = F,sign(y) , (55)
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a absolute displacement of mass m

y absolute displacement (y = ¢ —¢)

e stochastic input (surface road acceleration)
T Sprung mass :

¢ shock—absorber damping constant (controlled)
k, spring constant
Fs dry friction constant

Téble 2. ‘Notations.

with F = (k ks)/28. The dampmg force is cy where ¢ > 0 is the instantaneous
damping coefficient (the control is acting on this term).

The general model is described by equations (53,54). The problem is to com-
pute a feedback law ¢ = ¢(y,79) such that the solution of the system (53,54)
minimizes a criterion — related to the vibration comfort —

||I>

T,,
J(u) A -—E/ |6 dt = hm %E/ lj + &P dt .
0

This model leads to a control problem for a 3—dimensional diffusion process.
If we want to obtain a 2-dimensional problem, we must use the system given
by equations (53,55) (i.e. we use a Coulomb force term). We get the following
simplified model

M + i + oz + Fysign(y) = —mé , (56)

¢ is supposed to be a white Gaussian noise process, € = —o dW /dt where W is
a standard Wiener process.
Using v = c/m, nmn=k /m, v2 = Fsfm a.nd

()

equation (56) can be rewritten as (33).
We get the following system

where

blu, ) = (Z;%ZZD é(—(wéﬂl $T2+"rz sign(wz))) )

Hence the instantaneous cost function is

flu,z) = Iy + & = [uzz 4+ 71 71 + Y2 sign(z2)|* .  (59)
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4 Numerical Approximation

We use the following procedure: we do not discretize directly the HIB equation
but we transform the original ergodic control problem to a control problem for a
Markov process in continuous time and finite state space (section 4.1). Then, for
the discrete case, we can write a dynamic programming equation (section 4.2);
this equation is solved numerically via an iterative algorithm (section 4.3).

We describe the approximation procedure in the case of a- dn‘fusmn process
defined by

dX; = b(u(Xy), Xs) dt + o(Xs) AW, (60)

and with the following cost function
1 T
J(w) = limint — B / Fu(Xe), Xa)dt (61)
— 00 0 ¢ |

where L
b:RF xR" - R",
o m"—»m"led
f: ]RkXIR"—->1R+

X takes values in IR™ and W in IR%. u belongs to a given class I of applications
from R to U C IR*. We suppose that, for any u € U, the solution X; of (60)
admits a unique invariant probability measure, so the cost function (61) is well
defined.

The infinitesimal generator associated with (60) is

(@) 2 Zb( a"‘(””)+ S aste e

. 9.7—‘1

where a(z) £ o(z)o(z)*. We note b¥(z) = b;(u,z) and f¥(z) = f(u,z).
In section 4.4, we apply this approximation technique to the class C. For this
class we also present some convergence results which were proved in [4, 13].

4.1 The finite state space problem

In a first step we approximate the solution X; of {60) by a controlled Markov
process X} in continuous time and discrete (but infinite) state space. In a second
step, X; is approximated by a controlled Markov process X in continuous
time and finite state space.
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Bateh)—p@) .
o) . b (z) > 0
| Bz $lz) ~ ¢g —eih) @y <o

FHe) _ Mot eih) = 26(2) + 6o = echs)
T YT 2 -

(26(z) + $(z +eihi +e5hy) + Sz — eihi — e hy)

2h; hj g

_Peteihi)td(z—eihi)tdz+eih;)+dlz—e;hy)
' 2 by

82(]5(:11) N if a,-j(m) > 0

902 | 24(2)+ $(o+eihi — i hy) + @ —echi + e; by)

2hihy
Hzteihi)tdlz—ehi)+d(z+teih;j)+dlz—e;h;)
+ - 2h; hjf ‘ '

if a;j(z) <0

\

,7=1,...,m, 1 # j, e; unit vector in the ith coordinate direction

Table 3. Finite difference schemes.

first step: discrete state space 'Let k; (resp. e;) denote the finite difference in-
terval (resp. the unit vector) in the ith coordinate direction and b = (h1, ..., hy).

We define IR7, the h—grid on IR™, by

Zé{wGIR";wi:nihi+h,~/2, i=1,...,n, n; € Z} .

The infinitesimal generator (62) is approximated using ﬁnite difference schemes
given in table 3. The reason for the choices in the schemes will be explained

below.
L is approximated by an infinite dimensional matrix £} of I‘R]N x RN given
as follows . ‘

Lo9(0) = L1 2 Y L3 9)d(), VoeRE

yE]R;:

the terms L} (x,y) of this matrix are detailled in table 4.
The matrix £} has the following property

3 Li(zy)=0,  VzeRy.
yERP ’
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i k k#£1d
wi o A1 ai(e) law(z)| ) | @G@E)*
Ch($7$+61 hz) - —2' ( kkz h:chk ) + hi

Fwf h; by h;

L@,z — e h;) A % (aﬂ(m) Z lazk(m)")'-}- (5} (=)~

i A i A aj;.(:n)
Li(z,z+eih;+eih;)=Li(z,z—eih; —e;h;) =
i 2hik;
a; (z
L@,z +eihi ~ ejhy) = Li(z,3— eshi + e h;) = @)
’ 2h; h;

L,j=1,...,m, 7’96.7

'u 4; 7 a;i(x a;r{z b:‘m
Eh(m,a:)z_z:( ( ) Z lhkgk)l) _Zl h(,«)l

Table 4. The discrete infinitesimal generator.

Suppose that

ai;(z) — Z [az]($)|>0 Vee Ry, i=1,...,n,
Fi# ’

then

Li(z,y) >0, Vo,yeR}, z#y.

(63)

Remark. The choice of the finite difference schemes we use (cf. table 3) depends
on the sign of the drift coefficients of the diffusion process. The reason for the
choice is the following: if (63) is true then {L¥(z,y); z, y € IR, } can be viewed
as the infinitesimal generator of a continuous-time Markov process X}* with

discrete state space IR}, [18]. We will see later why this is important.

So we get a stochastic control problem for a Markov process X} with infinites-

imal generator L}, and the following cost function

hl\U) = Tlm —T o f ( t -
U belongé to the class Uy, defined by

w €U, <= wisan application from IR} to U.

(64)
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second step: finite state space X} has a discrete but infinite state spz’iée; if
we want to perform computations it is necessary to work on a finite state space.
We consider a bounded domain D of R™. We define a new state space

IRZ’Dé]RZﬂD={x1,x2,...,:pN}, NéCa‘/rd( wD) - (65)

Because we are working on a bounded domain, we must specify boundary con-
ditions. In practice, D will be chosen large enough so that the process will rarely
reach the border. Hernce, the choice of the boundary conditions is of little im-
portance, provided that all the states communicate. Example of such conditions
(usually reflecting conditions) will be given later for the suspension problem.

So we get an approximation L} , to L}

Lipdle)= ) Lip(z.9)4(),
yelR,’:’ D

L} pis a N x N-matrix.
Remark. The choices in the finite difference schemes (cf. table 3) imply that

) Z Ly plz,y) =0, Va:G]RZ’D,

yER?

moreover, hypothesis (63) implies that

=‘C;‘t,D($’y) 2 0 s Vﬂ:, NS IRZ,D 5T # Y-

Hence £}, j, can be interpreted as the infinitesimal generator of a controlled
Markov process Xth "D in continuous time and finite state space. Xth P is described
by the following terms

— a sequence {A"?; 1 > 0} where the random variable AMP denotes the
elapsed time between the Ith and the (I + 1)th jump, ,

~ a Markov chain {flh D 1 > 0} with state space R3 b, ¢ denotes the state
of the process between the {th and the (I 4 1)th jump.

The law of the random variable A:”D and the transition probabilities of the
Markov chain {élh’D ;71 > 0} are defined as follows

— the pair (A;"’D, 1}3-11)) depends only on .flh’D,
— under the conditional probability law P(- |§lh D), the random variables A?’D
and fl}'ﬁ) are independant.

And for any z € IR}, p, under the conditional probability law P(- ]flh’D =1z)

— the random variable A;”D obeys an exponential law of parameter 6?’1)(.7:)
where 1

P YRS
! () 'Z,D(m’m)
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-~ -the transition probabilities {7 P(z,y);y € Ry 5} are-defined by

7rh’D(.’17 y) é _EZ,D(x’y)
i ‘CII:,D(:’;’ ‘1")

With a suitable choice of boundary conditions (usually reflecting conditions)
and with the finite differences schemes we used, we have: 4.0(2,7) < 0 for all
z € Ry p. : .

With remark 4.1, the discretized problem can be viewed as a control problem
for a Markov process Xth’D in continuous time, finite state space, and infinitesi-
mal generator L} . The cost function is

O Jim E 51,- /0 i FUxPPydt, - (66)
and u belongs to a class Uy, p of control defined by
u €Up,p <= ' uisan application from IRy 5, to U.
Thé solution to this lproblen'1 is given by the dynamic prog;;mming equé,tion. :

Remark. Let p™P be the invariant measure of the process‘Xgz D, Using ph?,
the cost function (66) can be rewritten as S

Tap) = Y [ piP(@) .

z E]R:, D
The measure p!? is solution of the following linear system

3> Liply,e)uhPy) =0, VzeR:,,
I yem’:,D ‘

> mPly)=1. |
yERD ;- o
4.2 The “discrete” Hamilton-Jacobi-Bellman equation

Associated with the control problem defined in the last section we have the .
following dynamic programming equation’

min | Y Lip(@9)v@) + )| =p, VoecRip,  (67)
yGIR;"’D

where p is a strictly positive constant and v : Ry, p — IR (i.e. v € RY) is defined
up to an additive constant.
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If (v, p) is a solution to (67) then
a(z) € Argnéitz} Z LZYD(z, y)l'v(y) + f4z)| , z€ R p (68)
u
yeERY 5
ié aﬁ optima,l’ feedback control lé.w, and p is the minimal cbst

p=Jnpli)= mm Jhp(u) .
€Un.p

Equation (67) can be viewed as an approximation to the HJB equation:(36).
Equation (67) gives the solution to the ergodic control problem for the Markov

process X" hD,
4.3 The policy iteration algorithm
In order to solve (67), we use the policy iteration algorithm [15, 22]: suppose

that u® € U, p — the initial policy — is given. Starting with u® we generate a
sequence {u’;j > 1}. The iteration u/ — u/+! proceedsin two steps (cf. table 5).

compute (v, p) | we compute (v7,p7) € IRN xIR* the solution of the linear system

S L@ P+ @) =6, VeeRip

yERY |
stopping test| P = | <e.

@ compute ' | we solve the N following optimization problems: Yz € Rj p

W@ e min [ Y P00 0+ G
yER?

Table 5. The policy iteration algorithm, iteration u — u7*tt.

Remark. The first step of this algorithm leads to a linear system of dimension
N. Let lRi’ p ={z*;7=1,..., N}, then the unknown parameters are

v(z?), v(z%),..., (), p, ,

and we take v(z') =0
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Remark. For the second step, the optimization problems are nonlinear and they
are solved by means of iterative routines. The nonlinearity comes from the dis-
cretization technique we use. Indeed, the choice of finite difference approximation
(cf. table 3) depends on u. Instead of the schemes of the table 3, we can use cen-
tral difference approximation (so that it does not depend on ), in which case
the second step becomes explicit because the functions to be optimized are now
quadratic in . On the other hand, with this kind of difference approximation, a
certain condition on the parameter h has to be fulfilled (h must be small enough)
for the matrix £2P to be the generator of a Markov process. See [26] p.175-179
for further considerations.

4.4 Application to the class of problem C

The approximation In this example, the discretized state space are R2 and
IR}, ;, where h = (hy, h2) and D is of the form '

D= [_51751] X [_5271-2] ’

SO .
- {zf), 22, ... (Nl)} % {m(l) 2. e gNz)} :
with " ‘
N o | 1
$§1)=—$1+2$1N1—_~—1, h1=‘ﬁl—_—1a
G _ _z 495 J-1 4, 1
SRRy ME N o

(cf. figure 2).
The matrix a(z) is degenerate

a(z) = (0 0) .

Condition (63) is fulfilled. The ﬁnitvé'diiferencé schemes of table 3 are simpliﬁéd,
they are presented on table 6; the terms of the matrix L} are presented on table
7. : '

For this example we give explicit boundary conditions. We-deﬁne
Ihnp & {2, (Nl)} { RSO .’ngz)}’ ‘
0o, o) x {of, 26}

Inp the set of points on the border. We chose very simple reﬂectmg conditions,
we obtain the matrix £} ,, described table 8. ‘ :



o

T2
1_._’1’_1_,.
z(Né) .
2
_ 2
(0,0) [ B
zgz) b -
ha
mgl) d
zgl) m§2) “ee ngl)

Fig. 2. Discretized state space.

oz +e; b)) — $(z) if b¥(z) >0

(=) hs
Bz #(z) — ¢’(: —eih) ey <o

62¢(z) ¢z + ex ha) — 2¢(z) + qS(z — e hz)
Oz = h2

t=1,2, e; unit vector in the 7th coordinate direction

Table 6. Finite difference schemes (class C)..

The convergence results We present two kinds of results. Firstly, consider the
discrete HIB equation (67), we can prove that it admits a unique solution and
that the policy iteration algorithm converges: +0 this unique solution. Secondly,
we can also prove a convergence result for the approximation as the discretization
step h tends to 0. These results are presented for the class C.

existence and uniqueness of a solution to the discrete HJB equation
We have the following results

Theorem 7. The HJB equation (67) (with v(zl) =0) admits a unique solution
(v,p) € IRN x R*.

For the existence pa,rt of theorem (7), we use the followmg
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A P )
Lie,0) & -2, - 37 L
2 =12 *
o B

Ly(z,z+ e hy) A : :
1 <

Li(e,z— e ha) ég)%);\

. a o | (Bt
£h(m,$+62 hz) = Eh—g + T

g A o’ (bg(z))_
£h(2,$— €2 hz) = -2—h§ + T

Table 7. Discrete infinitesimal generator (class C).

forz € R} p\ Thp et y €RE p £5 p(2:9) = L(a,)

for z € Iy, p such that z; = :zzgl) .o, -’1?)’—': Li(=z,z)
L3 p(@sz + by er) = —L3(z,3)

for z € F’y,D such that z; = zgl\{l) ‘CZ,D(Q?,Z)_:,AC%(:C,Q:) |
Ly, p(z,z = hyey) = =Li(z,2)

for z € I}, p such that z, = mgl) , L} plz,x) = Li(z,)
Ly p(z,z+ hs e2) = —Li(=,z)

for z € I', p such that z; = a:gNz) L} p(z,z) = Li(z,2)
Ly plz, 2 — hz e2) = —Li(z, )

all other terms are null

Table 8. Discrete infinitesimal generator JC",;’ b (class €).

Corollary 8. The policy iteration algorithm converge to an optimal feedback con-
trol.

These results are proved in [4], but one can find the same kind of reslllts in a
more general setup in [10].

Approximation: a convergence result ‘We present a convergerce result con-
cerning the approximation, when the discretization parameter b tends to 0.and
when the domain D tends to IR” (for the complete proof of this result cf. [13]).
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Theorem 9. We consider two strictly increasing sequences
{zkh >0} and {Z2;h >0}

such that 0 > 0 and T* — oo as h — 0. We define

‘Wé suppose that

lim 5, =0, uwhere &= radius(Dy) . (69)
. - M g ;o
Then, for anyuw €U,
Jh D;.(u) - J(u)

Remark. Theorem 7 proves the existence of an optimal feedback control law for
the discrétized problem. With such a control, we can associate a feedback control
law 43 for the contituous state space problem,‘ where i, is piecewise constant.
Using theorem 9 we can easily conclude that

lim sup Ji p;, (4r) < inf J(u) .
h—0 ueU

We would like to prove the stronger,r/ééult‘ that the sequence {dx;h > 0} is a
minimizing sequence for the functional J, i.e.

J(ép)— inf J(u), when h—0.
) ucU
A numerical example

parameters As an example, we use values which roughly correspond to a sus-
pension system.for the seat of a truck: m = 60(kg), k, = 3500(N/m), F, =
40(N). These values have already been used in [4]. We also set o = 0.5.

We use the following discretization parameters c

T1 = Ymaz = —Ymin = 0.1 (m) 5 N
Ty = ?)maax = —ﬁmin =1 (m/s) 5

ny =mng =30.

So-we get a 30 x 30 =900 points grid.

optimal feedback control[4] The approximated optimal feedback control (68)
(plotted on figure 3) is computed using the pohcy iteration algorlthm The value
of the minimal cost is given below. ~

Now we present suboptimal control laws, for a more general discussion con-
cerning these techniques one can consult [4, 3].
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__CONTROL U(X1,X2)

CONTOUR KEY
0.500E+01
0.768E+03
0.153E+04
0.229E+04
0.306E+04
0.382E+04
0458E+04
0.535E+04
0.611E+04
0.687E+04

1

SVRIRUL RN

IO )t

075" F

DEPLACEMENT

Fig.3. The optimal feedback control.

suboptimal feedback control #1 ne possibility is to find a feedback control
which minimizes the instantaneous cost function (59). We obtain

- —ks zysign(ze) — Fy-
i(z) = — ol 2.

To takeinto account the constraint . < u <%, we use the following control law

w(z) = (i(z) Vo) AT,

~

(cf. figure 4) (we take u = 0 and ¥ large). ° -

suboptimal feedback control #2 The previoﬁsresult‘s lead us to the class
of suboptimal feedback controls — parametrized by 6 €.IR? — of the following
form e , o : ;
A o \ _' iy
up(z) = [(61 + B2 21 sign(z2)) Vu) AT, 0= (01,02) € R?. (70)
The techniques presented above can also be applied to compute the suboptimal
feedback control us such that

. Jh,Dh (ué) = Igle‘g thDh (uﬂ) >
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___CONTROL U(X1,X2)

1 CONTOUR KEY
1 0.500E+01
2 0.100E+04
075 r : 4 3 0.200E+04
4 0.300E+04
5 0.400E+04
16 0.500E+04
05 3 7 0.599E+04
. . 8 0.699E+04
- 9 0.799E+04
05 [, 1 10" | 0.899E+04
L= > ‘
S
S
E
025 :
05
415
i 75 ; ETRE 25 5 75 L
DEPLACEMENT "o
Fig. 4. The suboptimal feedback control #1.
where © = {0 € IR?; up € U}. We get - .
61 = 137.2, 6, = —12130. ' (71)

The control law u;(z) is plotted on figure 5. A feedback control where the sign
of the product z; z» (i.e. ¥ §) appears has already been proposed in [37].

comparison of the feedback controls Now we compare the three feedback
controls presented above to the constant control 4(X) = uo. The optimal con-
stant up (i.e. the constant which minimizes the cost) is 188. The different values
.of the cost are given in the following table

control type cost
constant control 2.93
g suboptimal feedback control #1{2.68
o suboptimal feedback control #2{2.37
optimal control 2.22
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