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1 Introduction

This paper is concerned with change detection in
a partially observed diffusion model, i.e. detection of
a change, occuring at some unknown change time,
in the drift coefficient or the observation function.
The problem is to decide, based on observations
{Y;, 0 <t < T} in a finite time interval, between :

o The null hypothesis (Hg)
dXt = b(Xt) dt + Etha s

dY; = h(X,)dt+edV§

where {Wf ¢t > 0} and {V,F, t > 0} are independent
Wiener processes under P., and Xy = z.

e The alternate (multiple) hypothesis (Hy) :
For some 0 < 7 <T', with T" < T

dX: = [b(X:) + a(X:) Lt > T)] dt +edWi7 |

dY: = [h(X0) +9(X) 1y > yldt+edVT

where {W,"" ¢t > 0} and {V;"7 , ¢ > 0} are indepen-
dent Wiener processes under P ,, and Xy = Z.

The proposed approach is to use a generalized like-
lihood ratio (GLR) test, i.e. to consider the following
region for rejecting the null hypothesis (Hg)

Daz{ sup pa(T)>C} ,
0<7<T!

where ¢ is a given threshold, and p.(7) = £:(7) —
£.(T) denotes a suitably normalized log-likelihood
function for the estimation of the change time 7,
based on observations {Y;, 0 <t < T}.

The purpose of this paper is to prove that the
threshold ¢ can be chosen in a such way that both
the probability of false alarm and the probability of
no detection go to zero as € | 0. These probabilities
are defined respectively as

F.=P,(D.) and M.= sup P, (D).
0<T<T!

This result is an extension to the partially observed
case, of the results obtained in Campillo, Kutoyants,

LeGland [2].

2 Log-likelihood Function

It was proved in Campillo, LeGland [1], that
the log—likelihood function for the estimation of the
change time 7, based on observations {Y;, 0 <t <
T1, can be expressed as

l(1) = £ log/ﬂeXp{ EiZF(r,w) } dP: 7(w)

where Q = C([0,7]; R™), and

T T
Frw) = [ Wawydvi-} [T we@wora.
0 0

Throughout the paper, the following time—dependent
coefficients, parametrized by the unknown parameter
T, are used

b™(t,z) = b(z) + a(z) 1(25 > )

h7(t,z) = h(z) + g(z) l(t >r) -



An efficient way of computing the GLR test statis-
tics has been proposed in [1], using a pair of forward—
backward SPDE’s, one involving the coefficients be-
fore the change, the other involving the coefficients
after the change. With this formulation, integration
over the path space Q is replaced by integration over
the state space R™.

Indeed, consider the forward SPDE
dp; = { 5" Apg = V(bpi) ydt+ e hpg dYy

with Dirac initial condition pu§ = 6z, and the back-

ward SPDE
dv; + { % g2 Av + [b+ a] Vs }dt
+e 2 [h4g]vidY; = 0,
with initial condition (at final time) v§, = 1.

Proposition 2.1 The log-likelihood function p.(T)
can be computed as

[.. v pan)

pE(T) = 62 IOg ’
[ witz)

and the GLR test statistics as

’Ua

@) ()
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3 Large Deviations

sup p.(r) =& log sup
0<7<T 0<r<T!

The key idea to study the asymptotic behaviour of
the error probabilities F. and M, when ¢ | 0, is to
study the limiting expression of the GLR test statis-
tics pe(7) as € | 0, using large deviations arguments
similar to those in James, LeGland [3]. The situation
can be summarized as follows.

e Under the null hypothesis (Hg)

(i) whene | 0

P.( sup |Y;—y|>6)—0,
0<t<T

where {y:, 0 <t < T} is the output of the fol-
lowing limiting deterministic system
.'I.J‘t = b(a:t) s rog = T
(1)
Yo = h(z:) .

(i1) {P:, € > 0} satisfies a large deviations principle,
with rate function

T .
1(6) =} / 160 — b(0)dt |

if ¢ € Q is absolutely continuous, I(¢) = +oo
otherwise.

e Under the alternate hypothesis (Hy) :
Foral 0 <7 <T' withT' < T

(i) whene | 0

P.,( sup |Y;i—yi|>6)—0,
0<t<T

where {y; ,0 < t < T} is the output of the
following limiting deterministic system

T

z; = b(z7) + a(27) 1(t >7) xh =%
(2)
v = h@) +9@) >y

(i1) {P: 7, > 0} satisfies a large deviations princi-
ple, with rate function

T .
I(r,¢) = %/0 |gs — b7 (t, 6,)|2 dt ,

if ¢ € Q is absolutely continuous, I(7, ¢) = +oo
otherwise.

These large deviations results are used in the next
two sections, to obtain the limiting behaviour, under
either the null hypothesis (Hg) or the alternate hy-
pothesis (Hy), of the log-likelihood function p. () as
€ | 0. In both cases, the convergence result is stated
in the form of a Varadhan theorem in probability,
uniform w.r.t. the parameter 7 (see Proposition 4.1
and Proposition 5.1 below).

4 Probability of False Alarm
If no change has occurred, the following limiting

expression holds for the statistics p.(7) under P. as
el 0

T .
po(r) = — inf | %./C e — b7 (1, 80)] dt

¢ dpo=T
T
+§/|w—mameﬂ
0

T N
T mLJ§A|@—M@Wﬁ

¢ do=7T
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T .
= — inf B [ %‘/0 |¢t - br(t:¢t)|2 dt

¢ po=7T

T
+ %/ lye — h7(t, ¢1)17dt ] <0
0

where {y;, ¢t > 0} is the output of the limiting de-
terministic system (1). Notice that the following ex-
pression is also available for po(7)

/ e — b0 dt

/I% h(on)|2dt

T .
+%/|@—M+dwm”t

po(m) = — mf

T
+%/|m—w+dwm%ﬂ.

Proposition 4.1 The following large deviations re-

sult holds

Pe( sup_ e () = po(7)| > ) — 0,

0<7r<
when € | 0.

Define
= sup po(7) <0 .
0<r<T!
Proposition 4.2 The probability of false alarm F.
goes to zero as € | 0, provided the threshold c satisfies

€ > Cmin = Pp - (3)

The lower bound e, can be computed exactly,
using a pair of forward-backward dynamic program-
ming equations, one involving the coefficients before
the change, the other involving the coefficients after
the change. With this formulation, optimization over
the path space Q is repaced by optimization over the
state space R™.

Indeed, consider the forward dynamic program-
ming equation

058,
S =5 VS = b VS + 5 =P,

with initial condition Sp(z) = 0, and Sp(z) = S
(with S large enough) for # # Z, and the backward
dynamic programming equation

Vi _
ot

with initial condition (at final time) Vp = 0.

LIVVIP+[b+a] VVi+ 3 |y —

[h+4l* =0,

Proposition 4.3 The limiting statistics po(T) can
be computed as

po(r) == inf {(S,()+ V() }

and the threshold lower bound cpin as

Cmin = — Inf 1nf { Sy (

,dnt,, inf z)+ Vi (z) } .

As an alternative to the exact computation of the
threshold lower bound ¢pin, it is interesting to see
whether it would be possible to obtain estimates that
would be easier to compute, and therefore could be
used in practice.

O Lower bound for cmin

From the particular choice ¢ = 27, it follows that

T
pdﬂZ—%/lm—%Pﬁ-

From the particular choice ¢ = z, it follows that

T T
pir) 2 =4 [ latwol i+ [ ool ar]
and therefore

1
Cmin Z Cmin

T T
_ _[%/ |a(xt)|2dt+%/ 9@ dt] |
T T

where ¢!f. would be exactly the threshold lower
bound in the case of complete observation, see [2].

O Upper bound for ¢y,

From the definition of po(7), it follows that
T .

po(r) < =inf [ 4 [ lé - b+ (ol at
T

T
+%/ lye — [h + g)(e) dt ]

and therefore

!
min

IA

Cmin C

T .
—int [ 3 [ 16~ B+ dlool” at

T
4 [ =B deorat] <o



5 Probability of No Detection

If a change has occurred at time 7y, the follow-
ing limiting expression holds for the statistics p.(7)
under P ;,ase | 0

T .
p(r0,7) = — inf [%/ | — b7 (t, ¢)|? dt
0

¢ ¢o=T

T
+%/0 7 — b7 (¢, 602 dt |
T N
+ inf [%/ b — b(0)|? dt
- 0

T
+ / v — h(é:)?dt ] |

where {y;°, ¢ > 0} is the output of the limiting de-
terministic system (2).

Proposition 5.1 The following large deviations re-

sult holds

P. 7,( sup |pe(7) —p(70,7)| > 6) — 0,
0<7<T!

when ¢ | 0.

It is clear that the mapping 7 +— p(70, 7) achieves
its maximum for 7 = 75, which implies that the MLE

for the estimation of the change time is consistent.
Define

pi(ro) = max p(ro,7)=p(r0,70)

1.e.

T .
pr(m) = int 15 [ 1o b a

0=

T
+%/0 Wi — h(é0)|2dt] >0,

where {y;°, ¢ > 0} is the output of the limiting de-
terministic system (2).

Proposition 5.2 The probability of no detection
M, goes to zero as € | 0, provided the threshold c
satisfies

p*(70) - (4)

¢ < Cmax = Inf
0<To<T"
The upper bound c¢pax can be computed exactly,
using a family, parametrized by the true change time
7o, of dynamic programming equations, all of them
involving the coefficients before the change, but us-
ing different outputs {y;", 0 < ¢t < T}. With this
formulation, optimization over the path space Q is
repaced by optimization over the state space R™.

Indeed, consider the forward dynamic program-
ming equation

057"

a—; =L |VSPPP—b VSl + L |y —h|*,

with initial condition SJ°(z) = 0, and S°(z) = S
(with S large enough) for z # z.

Proposition 5.3 The limiting statistics p*(my) can
be computed as

*(r0) = inf S7°(z)
P = inf SP)

and the threshold upper bound cmax as

Cmax = inf inf S7°(x) .
0<70<T" ze R™

Here again, as an alternative to the exact com-
putation of the threshold upper bound emax, it 1s
interesting to see whether it would be possible to ob-
tain estimates that would be easier to compute, and
therefore could be used in practice.

O Upper bound for ciyax
From the particular choice ¢ = z, it follows that
T
p*(m0) < %/ lye —yi° 1 dt .
To
From the particular choice ¢ = x7°, it follows that
T T
<t [ )P d [P
To To
and therefore

1"

Cmax < Crmax

0< o< T’

T
= inf [%/ (202 dt

T
+4 [ laemPal

where ¢ . would be exactly the threshold upper
bound in the case of complete observation, see [2].

O Lower bound for cmax

From the definition of p*(7g), it follows that

T .
pr(m) 2 it 13 [ 16060 d

To

T
+4 [ - heopa

To



and therefore

/
Cmax 2 Cmax

= inf
0<To<T!

T N
nf [ 4 [ ldo— bl b

0

T
+%/ WP — h(é0)[2dt] >0 .
To

6 Conclusion

From the previous discussion, it is possible to se-
lect the threshold ¢ in such a way that both the prob-
ability of false alarm and the probability of no detec-
tion go to zero as ¢ | 0. Actually, the threshold ¢
should satisfy simultaneously

Cmin < € < Cmax

where the threshold bounds cpin < 0 and epax > 0
have been defined in (3) and (4) respectively. This is
possible provided the following detectability assump-
tion holds

Cmin < Cmax (5)

1.e. whenever one of the two above quantities is non—
zero. Remark that for this assumption to hold, it is
necessary that 77 < T.

Estimates

" /
Cmin S Cmin § Cmin

<0,
and

/ "
0 < cmax < Cmax < Cpax >

1 and CII

have also been obtained, where ¢/, max would
be the threshold bounds in the case of complete ob-
servation. Therefore, a sufficient condition for (5) to

hold, is
/

/
Cmin < Cmax >

whereas a necessary condition would be

11 11

Cmin < Cmax -

Robustness w.r.t. mis—specification of the change
coefficients a(-) and g(-) can also be investigated, as

in [2].
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