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Abstract

In Campillo [4] we presented a numerical algorithm for the computation of the optimal feed-
back law in an ergodic stochastic optimal control problem. This method, based on the discretiza-
tion of the associated Hamilton—-Jacobi-Bellman equation, can be used only in low dimensions
(2,4, or 6 in a parallel computer). For higher dimensional problems, we propose here to use
a stochastic gradient algorithm in order to find the optimal feedback within a given subclass
of parametrized controls. As is [{], we apply these techniques lo the control of semi-active

suspensions for road vehicles.

1 Introduction

In this paper we consider numerical procedures for stochastic control problems. Given a real case
study (here we consider semi-active control of vehicle suspensions) we can use different methods. For
low dimensional problerns, we can use optimal methods : we discretize the Hamilton-Jacobi-Bellman
equation (this approach is proposed in [4]). In higher dimensions this approach is cumbersome or
even impossible to implement, in this case we can look for the optimal feedback in a given subclass
of parametrized controls using a stochastic gradient algorithm. The aim of this paper is to compute
the stochastic gra.dlent in the simplest two-dimensional model relevant in our application, and to

give some numerical results.

In section 2 we introduce the stochastic control problem of ergodic type in IR? motivated by the

application to the control of suspension systems (see Bellizzi et al [1}).
In section 3, we derive the stochastic gradient for the above problem.

2 A stochastic control problem

2.1 The problem
Let {X,(#);1 > 0} be the solution of the following stochastic system in IR?
dx}0) = XX0)dt,
dX}(0) = — [u(0,X(0)) XZ(0) + BX}(0) + vsign(X}(0))] dt + o dW,

where
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e (3, v are strictly positive constants,
e W is a standard Brownian motion,

o u(f,z) is a feedback control parametrized by 8 € © (6 is-a compact subset of IR%, for some
d > 1). u(8,z) takes values in U = [uy,us], 0 < uy < uz < o0.

The components of 2 € IR? (resp. of X(0)) are denoted by z! and &2 (resp. by X} () and X, 2(0)).
For each 0 € O, we conslder the following long time average cost functional

02 Jim /0' £(0,X.(0)) dt &)

with 5
f(0,2) & [u(O, z)z? + Bzt + 'ysign(arz)]

<

A class of feedback controls : - Let U denote the set of feedback functions u(8, ) such that
e u:0 xR 5 U = [ug,ug),
o Vo € IR?, 0 — u(d,z) is C*,
¢ V0€ O,z —u(f,z)z? is C' on R x R\ {0} with bounded derivatives.

This last condition allows u to be discontinuous at x* = 0 ; it is the case for the optimal control
which we have computed in a previous work [4]

Note that in (2), the drift coeflicient is C! on IR X IR\ {0}, and it is discontinuous across z% = 0
with a jump of amplitude —2'7

Lemma 2.1 For any 0 € O, the system (1,2) admits a unique strong solution.
Proof In view of Yamada-Watanabe’s result (Karatzas-Shreve [8] proposition V-3.20), it is suffi-
cient to prove that .

(i) existence'of a weak solution,

(i) pathwise uniqueness

hold for system (1,2).
Part () has already been proved in Campillo et al [5] : using a Girsanov transformation, we remove
the discontinuous terms in (1,2). We can rewrite (1,2) as

dX! = X2dt
dX? = a(X},X?)dt + b(X2)dt + o dW,

where a is Lipschitz continuous and b is decreasing. Now let X and X’ be two solutions of this
system and let X = X — X'. We get

doy o

g% = X

d _

X2 = [aX], XP) = a(X, X2 + B(XD) — H(XD)
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so

61
ipm2 = 2X} X +2X7 dx;
dt todt todt ,
= 2[X} XP+ X7 (a(X}, XP) = (X', X9)) + X7 (6(XD) = H(XD) < CIX:I?
<o
Hence, using Gronwall’s lemma we prove the pathwise uniqueness. |

Note that the Lemma also follows from the monotonicity of the drift, and the results in Gyongy—-
Krylov [6] and Jacod [7].

2.2 An example : a semi-active suspension system

B

In this section we present a damping control method for a nonlinear suspension of a road: vehicle
(comprising a spring, a shock absorber, a mass, and taking into account the dry friction, cf. figure 1).
The aim is to improve the ride comfort.

Among alternatives to classical suspension systems (passive systems) we distinguish between
active and semi-active techniques. An active suspension system consists of force elements in addition
to a spring and a damper assembly. Force elements continuously vary the force according to some
control law. In general, an active system is expensive, complicated, and requires an external power
source. In contrast, a semi-active system requires no hydraulic power supply, and its hardware
implementation is simpler and cheaper than a fully active system. A semi-active suspension system
acts only on damping or spring laws, so it can only dissipate or store energy.

Here we consider a system with control on the damping law, the forces in the damper are generated
by modulating its orifice for fluid flow. We use the simplest model which consists in a one degree-
of-freedom model.

The equation of motion for a one degree-of—freedom model is (cf. figure 1 for the exact definition
of the terms) :
my+cy+ky+ Fysign(y) = —mé. @)

a absolute displacement of mass m
relative displacement (y = a - ¢)
e stochastic input

(surface road acceleration)
m  Sprung mass
shock-absorber damping constant
(controlled)
k, spring constant
F, dry friction constant

@

4]

Figure 1: One degree~of—freedom model.

¢ denotes the input acceleration, i.e. it models the roughness of the road surface. The restoring
force k, y + F, sign(y), has a linear part k,y, and a nonlinear part F,sign(y) which describes the dry
friction force. The damping force is ¢y where ¢ > 0 is the instantaneous damping coefficient (ythe
control is acting on this term). ‘

The problem is to compute a feedback law ¢ = ¢(y,7) such that the solution of the system (4)
minimizes a criterion. — related to the vibration comfort

é . 1 ; T “12 (T 1 T .- w2
- J’(u)r_Tll_l‘I‘}oTE/() la| dt_Th_xgoTE/O i+ é2dt .
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€ is supposed to be a white Gaussian noise process ¢ = —o dW /dt where W is a standard Wiener
process.
Using

¢ N aly
u—-n;’ﬂ_ ,’Y——m,a«DdX—<:'}),

m

equation (4) can be rewritten as (1), (2). - )

2.3 The “optimal” approach

This approach — presented in [4] — consists in discretizing the Hamilton-Jacobi-Bellman (HJB)
equation associated with the ergodic stochastic control problem for the diffusion (1), (2) with the
cost function (3) (but now the feedback function u is not parametrized)

The HIB equation is of the form

min (C"v(z) + f(u,2))=p, VzelR?

u€fus,uz]

where v : IR? — IR is defined up to an additive constant, p is a constant and £* is the infinitesimal
generator associated with the diffusion process (1), (2) (with u(d,z) replaced by u € U).

3 Stochastic approximation algorithms

The problem is to find 6* which minimizes the cost function (3). In [4] we have already proved that

the cost function is of the form -
JO) = [, £0,5) ¥ (da) (%)

where jif is the unique invariant measure of the process X,(0). As pomted out in Ladelli [9], the
gradient of J(0) is not equal to

/R, VoS (0,z) 7 (dz) .

It is possible to use a Kiefer—Wolfowitz—type algorithm in order to minimize J(@), thus avoiding
the computation of the gradient of J. However, it seems that stochastic gradient algorithms often
converge faster than Kiefer~-Wolfowitz algorithms. Motivated by this remark, we shall compute here
the gradient-of J(#), which involves differentiating X,(8).

3.1 The gradient process

In this section we investigate the regularity of the process X;(0) with respect to 0 and we establish
an equation for the gradient process

6,02 - X,0)
This derivation will give rise to the local time of the process {X2(0)} at 0.
Following Protter [11] we have the

Lemma 3.1 The processes X2 admits a local time at 0, which is the unique adapted, continuous,
nondecreasing process Ly such that Lo =0, [5° 1g\(0}(X2) dL, =0 a.s., and

t
X7 = X2+ [ sign(X2)dX? 421 . ©)
Moreover, L ;
. c? t 2
L= lm}:g.s. % /(; 1[_5,5](A?)d3 . | ()
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The following result -is proved-in the Appendix-below.

Proposition 3.2 For each t > 0, X,(0) is mean-square differentiable w.r.t. the parameter §; (i =
1,...,d), and Y3(,6) = 8X,(0)/00; is the solution of the following system

dYy(0) = A(0, X(0)) Yi(0) dt + BY:(0) dL, + C(0,X.(0)) p , (8)

with

A(0,z) & (_ﬂ_uz(o’x)ﬁ _\u(o,x) —luz?(ﬂ,w)w?)
(g j%), CWﬂ)é(_md%@ﬁ)'

Yo =0, and where L is the local time of X* at 0. We denote

>

B

Yi(0) = [H(LO)] -+ [%i(4,6)] -

For the sake of simplicity, from now on we suppose that 6 is scalar, so we drop the subscript z.
‘We have an explicit representation of Y;(0) in terms of X;(0). Let {®,(0), t > 0} be the solution of

dDy(0) £ A(0, X,(0)) Bu(0) dt + BO(0)dL,,  ®o(0) =1, (9)
then . ) : .
Yi(0) = [ 0(0)2,(6)™ C(6, X,(6)) ds - (10)

o
3.2 Aéymptotic properties of (X;(9),Y;(9))
We note 0 .
_{ X0

ft(a) - ( )’}(0) ) . (11)
In [4] we showed that X;(f) admits a unique invariant measure . We extend the process X;(0)
for all ¢t € IR, such that it is stationary and pf is the law of X;(8) for all ¢ € IR. We can then solve

equation (9) and define ®,(9) for all ¢t € R. It is easily seen that the Markov process &:(0) possesses
a unique invariant measure g iff the following integral converges a.s.

0
/ 8,(0) C(0, X,(0)) dt .
A sufficient condition for that fact is given in the following lemma

Lemma 3.3 Suppose that there exists C > 0 such that for all (0,z)

B+ug,(6,z)a2>C >0,
u(0,2) + u2(0,2) 22 > C >0,

then there exists A < 0 such that

lim sup L log "Q-,(ﬂ)'lu < Xas. | . (12)
teco L
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Proof. With the hypotheses of the Lemma and -using the properties of the solution of (9), we can

prove that
(),(0) 1—_.;,0 a.s. ; (13)

Moreover there exists C such that J®,(0)] < C, Vt > 0, and by bounded convergence E|®,(0)| — 0,
t — oo. Hence, given o < 1, there exists ¢ > 0 such that

B0l =a. (14)
Now, using the ergodicity property of ®,(6) as in Bougerol {2,3]
o1 .1
Am = logler(9)] = lim = E (log |2r(0)])

- Lo %ang [9.:(0)])

1 n—oo

< Ilim = 3 B (log 0w goni®)])
k=1

t n=oop

- %ang I2.(0)})

IA

1

7 log E[2.(0)]

log
i

where {®,;(0), t > s} is the solution of (9) satisfying ®,,(8) = I.

Note that ®,(0) and ®_,(0)~? are equal in law, so E|®,(0)] = E|®-.(0)""], and similarly as

above

<0

Jim -} log |@_7(6)"] = Jim %E (1og |2-r(0)*]) = Jim %E(l(_)g 182(0)]) < 0 as.

3.3 The gradient of the cost functional

Let
g(0,z) 2 u(0, ) 2* + B2t + ysign(z?)

so that f(0,z) = [g(o,a:)]z. We have

Jo(0,2) 29(0,z) ug(0,z) z?,
fa(0,2) 29(8, ) [u (8, z) 2* + 6],

and, in the sense of distributions, §(z*) denoting the Dirac measure “in the variable z?,

f2(0,2) = 2g(0,7)[us2(0,x)2* + u(0,z) + 27 6(z?)]
= 2g(0,2)[uz(0,z) 2* + uw(0,2)] + 4 By 2" 6(z?) .
Let
,f,', (0,2) = fa(d,z)
f2(0,2) = 2¢(0,z) [u,z (8,z) :1:2 + u(8,z)]

and

F(0,2,9) 2 fo(0,2)+ fo0,2)y .
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_ Tormally, if we take the derivative of the cost functional (3) with respect to 0, and if we interchange
the derivation and the limit as T' — oo, we get formally

Jim 18 | [ FO.X0, 70 de+ [ 484 X20)¥20) S0 df

and one can show rigorously that the gradient of the cost furictional is given by

Ve J(0) = lim lE TF(G, X,(0),K(0)) dt + T4ﬁ'yX,‘(0) Y2(0)dL.| - (15)
o T o

1t is possible to prove that the process (X:(0), Yi(0)) admits a unique invariant measure pz which
is regular with respect to the parameter 8, from which one can conclude that the limit (15) is well

defined.

3.4 Stochastic gradient algorithm
In order to minimize (5), we want to find 6* € © such tilat
Vo J(O)la:a* =0. (16)
The associated stochastic gradient algorithm is the following : given At > 0 and #; = k At, we

solve equations (1),(2),(8) with
0=0kfortkst<tk+1 Py

and 0y is given by .
Oks1 = Ok — pre [F (O, X (06), Yuu (0)) At + 478 X5, (00) Y, (0k) ALk]' ) (17)

where

ALy = Ly, — Ly, ,

and where the sequence of positive gains {p;} satisfies appropriate conditions.

4 Computational aspects and Numerical Results

4.1 Time discretization
We approximate X; by X given by the following Euler scheme
Tho= XX A (19)
Xpto= Xp?— (u(0,XP) Xp? + B X[ + ysign(Xp 2)) At + o AW] (19)

where a A
At = tk+1 et tk ) AW,? = I/Vik_n - mk ~ N(Oatk-l-l fand t];) .

4For Y; we also use an Euler scheme
Yo o= Yy 4vlae, (20)
Y = Y0P = (a0 X) + a0, XE) YY) Xp? o Y

2
—u(0, XP) Y At — BYM At — ;'—ZY,;"? AL?
where AL? is an approximation of Ltk 41 — Ly, given by

AL = {le+1 if X5 k+1<0

0 otherwise,

~{cf.: proposition 4.2).
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Proposition 4.1 Forallt >0 and all0 € ©

Xr(0) 5 X.(0) .

Proof We fixe § € ©. We use the notation

dX, = h(X,) dt + G dW, : (22)

where )

h(z) = hy(z) + ha(z) , hofz) = ( _7sign(xz)

hy is Lipschitz continuous and A, is discontinuous and monotonic. Let At = 1 /n, tx = kAt and
$a(t) =t if t € [t,tr41]. Let W be the polygonal interpolation of the Wiener process W, that is

mk-H - VVik

Wi = Wiy + (= ty) et

t€ [try tesa]
Then the Euler scheme (18) reads
dXp = h(XG, ) dt+ GdWp . (23)

Because X7 is not adapted to the filtration of the Wiener process and for technical simplification,
we can replace W} is this last equation by

vVlH-x - Vka

I/th=vvlk+(t—tk) Al )

t € [trn,te]

(with the convention W; = 0 for ¢ < 0) in this case X[ is adapted.
The difference between (22) and (23) gives

X, — X7] = [A(X.) - h(X})] dt + [R(X}) — B(XG, )] dt + G d[W; — W}
and by Ité formula ‘ ‘
X, - X' = 2 / ' (h(X,) — h(X2), X, — XP) ds +2 / t (B(X2) = B(XF (), Xo — X7) ds
[} . 0 :
+2 (X - X7, G(W, = W) + |G (W, — W)
+2 [ (G (W, = W), h(X) — h(XT)) ds - (2)

Now we have the following results

¢ By Lispchitz continuity of &, and monotonicity of A,

1
60 = h(X7), X, - X7)ds

2] : t .
= /0 (ha(X,) = ha(XP), X, — X™) ds + /0 (ha(X.) = ha(X7), X, — X2 ds

<0

t
< /0 (ha(X,) = hy(X™), X, — X7) ds

-
sc/ IX, - X*2ds .
0
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o By Lispchitz continuity of &, B
/ (h(X7) = R(XG, 1)), Xo — X2) ds.
<c / IX, — X*|2ds + C / — h(XG, ), Xo = X7) ds

< C’/ | X X"]2d3+C'/ [X3 — X¢"(,)|2ds+0/ |sign(X7?) — sign(X, (,))Izds
and
Blsign(X]) — sign(X323, )I* < C P(X?| < 0) + C B (Lygnappelsign(X]?) — sign(X32,)P2)
and this last term tends to 0 as n — oo.
¢ For 0 <p<l
1 02 n
2 |(Xe — X2, G (W — W) < p[Xe — X7 + -;IW:—Wz ?
¢ By Holder inequality
t . t 1/2
E2 /0 (G (W, — WP), h(X,) - h(X2))ds < C (E /0 W, — W,"’lzds>
So from (24) and Gronwall’s Lemma
t
X~ XpP < (et C [ PUXPY S 0ds) e @)
0 N -

where €, — 0, as n — oo.
It is simple to see that the sequence (X, " W™) is tight, so there exists a subsequence (also denoted
(X", W™)) and a process (Z, W) such that (X n Wn) — (Z, W) weakly. The process Y, is of the from

Yo=Xo+ [ x.ds +GW,
o ’ :
where W is a Wiener process, so we have P(JY?] < @) — 0 as a — 0. Then form (25) we deduce
t
limsup E|X; - X?P < C / P(IY?| < 2a)ds et
n=—+00 1]

"which tends to 0 as & — 0. Then by uniqueness of the limit we prove that X™ — X in L2, |

’

4.2 Approximation of the local time
From (6)
Ly = 21X2 = 2|X3] - 2 [ sign(X?)dx? (26)
t = g2l Ty 0 2 Jo g s/ s
We approximate L; the following way : in (26) we replace X7 by the polygonal interpolation of the
discrete process X** given in (19)

XM EY

n
k>0 i — 1%

(the — ) X027 + (¢ — 1) X370

k41 l[t

;'t:+1)(t)
with {} = k/n. So we get the approximation
Liin, % 1ot -
= 1?1 = g5 g [ sign(X g Xz, (27)
where ¢,(s) =t} if s € [t},1541)-
Proposition 4.2 ]
, v re {lX"“’ i X3 X5 <0,
o =

TRt k 0 otherwzse
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n,2

Proof _Let t € [t3,t,), Alf = thy, — tf, AXP? = X2 - Xp?,

dL? 1,2 1,2 AX}?J
dt 2dtlA | = 5 sign(Xeg )At;; ’
1, 2 AXk 1 ,,,2 AXP?
= GEnX) g - i) T
1 ’1?'2 . 1,2y . 1,2
= A [sign(X"?) — sign(X3%)]
then
s1gn(X" 2) _ 51gn( "12) = 2Sign(XZi,’:l) l(Xc"'sz?:’z(O) s
50
dL? o Xn,2 AXI?'ZI
- = sisn( ‘73+1)Tt3;- (KPP <0) -
and 2
iz AXP -
57 = Ssign(Xi,) Sk Ao € [, tha) 0 0, 2 X3 < )
k>0 ’ :
where A is Lebesgue measure. Finally,
AXY?

L;‘;: = L = sign(Xg 21) :

A Mo € U ) XX < 0)

and n
7,2 At k

bk fX’:.’ X"”
Als € [tt,t2+1);X;"2XZ‘;'2 <0)= { e AXT K
0

otherwise .

Propt;sition 4.3 For allt
. L -—) Lt

Proof Using the definitions (26), (27) of L, and L}, it is sufficient to prove that
/ sign(X?) dX2 —> / s1gn( (s)) dxm®
\ Using ‘the notations of the proof of Proposition 4.1, we have
2
l/ sign(X7?) dX? —/ sign(X 3" (_,))alX_:"2
<C [ Bl#(XG0) ~ H(X.) ds

+C /0 Blsign(X32,) - s1gn(X2)|2ds+C'El / sign(X32,)) dW? — W]

where ¢(z) = sign(a2?) h(z) satisfies |¢(z)] < C (1 + |z]). So the result follows from the same
arguments used in the proof of Proposition 4.1. |
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-4.3 Numerical results
We consider the example of section 2.2, We use the following parameters

m 110
K 26000
F 85

g 0.5

We use a feedback control of the form
u(0,z) = 0" + [—-02 ! sign(a:2)]+
where 0 and 07 are positive.
We do not exactly use the algorithm (17), but the following modification

r 0
Oksr = Ox — ( o ) [F (00, Xey (00), Y2, (00)) At +487 X3 (00) Yir(0) ALi]

that is we do not exactly use the direction of the gradient but another direction of minimization
which is more convenient in practice. Moreover we do not take p} = 1/i (which is not very good in

practice) but
b;

max(1,k —k;) ’

where a;, b, k; are given. In figure 2 we have an example of trajectories : k 0A," and k — (7,2,

p};=a;+ i=1,27

250000

200000 |

130000

100000

50000

Figure 2: Case 3, the plot of 9! /7

5 Conclusion

We have studied in this paper an ergodic stochastic control problem, where the control is to be chosen
in a parametrized family of feedback laws. We have computed the gradient of its cost functional. The
corresponding stochastic gradient algorithmn has been implementéd on an applied problem, and has
proved to be efficient. It would be worthwhile to prove the convergence of that algorithm towards a
global minimum of our cost functional. Unfortunately, the best results that we know in that direction
arc thosc of M. Métivier and P. Priouret [10], which required the cost functional to have a single local

(and hence global) minimum. There is no reason for that assumption to hold in our case. However,
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.using ideas from simulated annealing, one might perhaps show that our algorithm (or possibly a
modified version of it) converges to a global minimum. Such a study is far beyond the scope of the

preseht paper.

The authors wish to thank Prof. P. Bougerol for some helpful remarks used in the proof of Lemma,
3.3. :

Appendix : Regularity of X,(6)

We use the notation of Lemma 2.1,

dX}0) = X2(0)dt,
dX2(0) = a(0,X,(0))dt + b(X206))dt + o dW, ,
where b(z?) = —vsign(«?) is non increasing. In this section we suppose that @ is scalar and that the

function a(0, ) is regular enough in (0, z) : differentiable with bounded derivatives,

a(?,z) — a(0;z)
a(0,2") - a(0, )

a5(0,2) ('~ 6) + O} (¢ - 9)
a:(0,2) (' = 2) + O} (a' — 3) ,

N I

with ag(8, z), a-(0,z) bounded, continuous.and
sup O;_I(B)/I()I —0aslf|—0,

sup Op (z)/]z] — 0 as |z| — 0.
e
Define . L
o Xi0+1) - Xi(0)
=t aal

Xi - =1,2.

Lemma 8.1 The process X! is continuous with respect to 0, more precisely : there exists a certain

constant C > 0 such that - N
%] <ce®, vizo. o (28)
Proof .
d‘rz_ “1‘171 72d72
dt].X,l = 2X, th, +2X; Et-)&t ,
_ %2 _ 2
= 2th th + 2Xt2 a0+ h, X,(0 +”:)) a(6, X,(0)) +2 th b(X7(0 + h)}z b(XZ(9)) ,
— =
< GlIX)P+C,.
The result follows from Gronwall’s lemma. ) ’ |

Proof of Proposition 3.2

dX}! = Xldt,
o2 _ a(0+h, X(0+h)) — a(0, X,(0))
dX; P

dt +

B0 + 1) = HX20)
h
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and
ay} = Y2dt, ‘
2
dY? = (as(0, X:(0)) + as(0, Xe(0)) Yi) it — = Y dLy,

sO

[th - KZ] dt s

dX -1}
d[)I’f _ Yf] - [a(o + h, X,(a)iz — a(0, X,(8))

N [a(a +h, Xy(0+ k) — a(0 + b, Xe(0))

— ag(0, Xt(0)')] dt

h
+az(0 + h, X:(0)) — a,{0, X;(0))] X: dt
+az(07 Xt(o)) [Xt - Y;] di
-2 - 2
- Zoxo® gy FunrotX)
+az{0 + k, Xi(0)) — a.(8, X:(0))] X, dt
+az(0, X4(0)) [X: — Vi) dt
2 w2

OO U0 21y,

az(0 + b, X,(G))Xt] dt

Then

dX, -Y* = 2(X; -Y)dX; - Y] +2(X] - ¥)d[X] - Y]]
= 2(X; - ) (X] = Y))dt

- O}y (R _ o R X,
+2(X7 - Y7) ——-————”’X'}ﬁ"’( )it 42(X7 1) —”"’X',(f)( 2

+2(X2 = Y2) [au(0 + b, Xu(0)) — aa(0, Xe(0))) X, dt
+2(X? = Y2) a,(60, X,(6)) [X, — Y] dt
B(X2(0+ ) = H(XE(0)) ,

) .

dt-

+2(X? =13

+4 (X2 - ¥2) L Y2dL,
so we have the following inequality

_ i _ i
X -YiP < cf X, — Y, ds
0

1
+c [
i _
+ [ I 100+ b, X.(0) — a0, X, () ds
(1]

tope oy MXT(O0 + B)) — H(X3(0)) P27 o1 yryye
+CI/O(A, Y?) ) dst [ SH(RE- Y)Y L

Ofl;,x,(a)(h)
h

2 o 2
ds+C / t Ofanx,0) (B X_‘)l ds
o h

Let Al denotes the last term of the right hand side of this last inequality.
sign(X2(0 + k)) — sign(X2(0)) ds
- - h .

i
oAl g 7’ fxz-vd
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72
- (2 B )t 00|
o ° ° ) h .
t—rz___ 2 signs(Xf(U-{-h))—signe(Xf(O)) [t P2 _ 2y 2
| [R2-1) ) to- [ B Rz ¥R,

t
v o_v2
< 2 /0 |X, - Y,|?ds
+2 /‘ sign(X7(0 + k) — sign(X2(9))  sign.(X2(0 + h)) — sign,(X2(0))
0 h h

‘. ign, (X2(0 + h))  sign, (X2(0 oy
|82 - v LK ) sl Do [ Bz -vayvzan) .

2
ds

Let A? denotes the last term of the right hand side of this last inequality.
For A small enough

. 2 ) 2
At(xz - 1/32) Slgns(}‘s (0 + h)’z SIgne(‘Xs (0)) ds

- -[)t(Xf - }/,2) Signc(X3(0 + h)}z — Signe(Xaz(o)) 1[_;,;](X,2f(0)) ds

t s o 1
— 52 vy g2 L 2
=2 /0‘ (‘Xa 1/3 )Aa 2 1[’€»€](Xs (0)) ds
a.s. 2 t o '
=5 [®-yyxar,
~ 2 [Yor_yayve
,\h:00'2 [)‘(Aa _Y;)}/; dLS )
Then from (29),
- t
IXe~YiP<C [1X, —Y,Pds+u(0,he),
()
where ‘
limlimv,(0,k,e) =0 as.
h—0e—0

Then using Gronwall’s inequality
- ¢
[Xe = Yif* < (0, h,e)+ C / vs(8, 1, £)eCt=9) ds
o

50

IXt—Klz—)O.
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