Ergodic Control Applied to Car Suspension Design

F. Campillo, F. Cérou, E. Pardoux

INRIA Sophia Antipolis Routes des Lucioles F-06565 Valbonne Cedex

Abstract Stochastic ergodic control is used to compute feedback laws for semi-active vehicle suspensions. We present an overview of a study supported by RENAULT¹. For the practical implementation we can numerically solve the Hamilton-Jacobi-Bellman equation, which gives an approximation of the optimal law. An other possibility is to seek for the best feedback in a given class of a parametrized feedbacks via a stochastic gradient algorithm.

1 Introduction

In many applications we need to control the *long-time* behavior of a dynamical system in the sense that we want to minimize a cost function of the form

$$J(u) = \lim_{T \to \infty} \frac{1}{T} E \int_0^T f(u(X_t), X_t) dt \qquad (1)$$

where X_t is solution of the following stochastic system

$$dX_t = b(u(X_t), X_t) dt + \sigma dW_t$$
(2)

and $u(\cdot)$ is a feedback control.

The problem addressed here is to compute a numerical approximation of the optimal feedback $\hat{u}(\cdot)$. i.e. a feedback which minimizes the cost function J(u).

First, we present the semi-active vehicle suspension problem. Then we propose two approaches: the first one, called here "optimal". consists in solving numerically the Hamilton-Jacobi-Bellman equation (cf. Campillo [4]), the second, called here "sub-optimal", consists in looking for the best feedback control in a given class of parametrized controls (cf. Campillo [7]).

The first approach, tractable only in small state space dimension, results in a parallel algorithm (and so, could be treated on a parallel computer), the second one is essentially sequential.

2 Semi-active vehicle suspension

In this section we present a damping control method for a nonlinear suspension of road vehicle. The aim is to improve the ride comfort (or a tradeoff between ride comfort and road holding).

Active suspension system is an alternative to classical suspension systems (passive systems). It consists in force elements in addition to a spring and a damper assembly. Force elements continuously vary the force according to some control law. In general, an active system is expensive, complicated, and requires an external power source (cf. Gooddall [9]). To overcome theses difficulties, the semi-active suspension system was developed. It requires no hydraulic power supply, and its hardware implementation is simpler and cheaper than a fully active system. A semi-active suspension system acts only on damping or spring laws, so it can only dissipate or store energy.

Here we consider a system with control on the damping law. The forces in the damper are generated by modulating its orifice for fluid flow (cf. Alanoly [1]).

2.1 One degree of freedom model (1-DOF)

We use the simplest model which consists in a

CH3229-2/92/0000-2056\$1.00 © 1992 IEEE

¹under contract H6.10.601/INRIA/17

m mass

y

 \boldsymbol{x}

e

- C viscous damping constant (variable)
- K suspension stiffness
- F dry friction constant

Figure 1: 1–DOF model

one degree-of-freedom model comprising a spring, a shock absorber, a mass, and taking into account the dry friction (cf. Figure 1).

The equation of motion for a one degree-offreedom model is

$$m \ddot{y} = -C \dot{x} - K x - F \operatorname{sign}(\dot{x}) . \tag{3}$$

The restoring force $Kx + F \operatorname{sign}(\dot{x})$, has a linear part Kx, and a nonlinear part $F \operatorname{sign}(\dot{x})$ which describes the dry friction force. The damping force is $C\dot{x}$ where C > 0 is the instantaneous damping coefficient (the control is acting on this term).

The problem is to compute a feedback law $C = C(x, \dot{x})$ such that the solution of the system (3) minimizes a criterion — related to the vibration comfort

$$J = \lim_{T \to \infty} \frac{1}{T} E \int_0^T |\ddot{y}|^2 dt$$

 \ddot{e} is supposed to be a white Gaussian noise process, $\ddot{e} = -\sigma \, dW/dt$ where W is a standard Wiener process.

Using the state vector is $X_t = [x, \dot{x}]^*$, we can see that this problem is of the form (1) and (2).

2.2 Two degree of freedom models (2-DOF)

2-DOF in parallel

The equations of motion for the two degree-offreedom model described in figure 2 are

$$m\ddot{z} = -C_1 \left(\dot{z} - l_1 \dot{\theta} - \dot{e_1} \right) - K_1 \left(z - l_1 \theta - e_1 \right)$$

- z absolute vertical displacement of mass m
 - θ angular displacement of the mass

m mass

I inertial tensor w.r.t. the gravity center suspension i:

K_i stiffness

- $F_i = dry$ friction constant
- C_i viscous damping constant (variable)
- li distance to the center of gravity

e_i stochastic input

Figure 2: 2-DOF model (in parallel)

$$-F_{1} \operatorname{sign}(\dot{z} - l_{1}\dot{\theta} - \dot{e_{1}}) -C_{2} (\dot{z} + l_{2}\dot{\theta} - \dot{e_{2}}) - K_{2} (z + l_{2}\theta - e^{2}) -F_{2} \operatorname{sign}(\dot{z} + l_{2}\dot{\theta} - \dot{e_{2}})$$

and

$$\begin{aligned} I\ddot{\theta} &= -l_1 [-C_1 \left(\dot{z} - l_1 \dot{\theta} - \dot{e_1} \right) - K_1 \left(z - l_1 \theta - e_1 \right) \\ d - F_1 \operatorname{sign} \left(\dot{z} - l_1 \dot{\theta} - \dot{e_1} \right)] \\ + l_2 [-C_2 \left(\dot{z} + l_2 \dot{\theta} - \dot{e_2} \right) - K_2 \left(z + l_2 \theta - e_2 \right) \\ - F_2 \operatorname{sign} \left(\dot{z} + l_2 \dot{\theta} - \dot{e_2} \right)] \end{aligned}$$

For the ride comfort we choose the following cost function which takes into account. not only the absolute vertical acceleration, but also the angular acceleration :

$$J = \lim_{T \to \infty} \frac{1}{T} E \int_0^T [\rho_1 \, |\ddot{z}|^2 + \rho_2 \, |\ddot{\theta}|^2] \, dt$$

where ρ_1 and ρ_2 are weighting constants.

Let x_i be the relative displacement of the suspension *i*. It is given by $x_1 = z - l_1\theta - e_1$ and $x_2 = z + l_2\theta - e_2$. We suppose that $\ddot{e_1}$ and $\ddot{e_1}$ are independent standard Gaussian white noises $\ddot{e_i} = -\sigma \, dW_i/dt$.

The state variable is $X = [x_1, \dot{x}_1, x_2, \dot{x}_2]^*$. Here again the problem is of the form (1) and (2).

- C₁ viscous damping term (variable)
- K_2 tire stiffness

Figure 3: 2-DOF model (in series)

2-DOF in series

In the two previous models, only a comfort criterion was taken into account. With this last example the cost function is a trade-off between ride comfort and road holding. The model presented in Figure 3 is a quarter car model.

The equation of motion gives

$$m_1 \ddot{y}_1 = -C_1 (\dot{y}_1 - \dot{y}_2) - K_1 (y_1 - y_2) -F_1 \operatorname{sign}(\dot{y}_1 - \dot{y}_2) ,$$

$$m_2 \ddot{y}_2 = +C_1 (\dot{y}_1 - \dot{y}_2) + K_1 (y_1 - y_2) +F_1 \operatorname{sign}(\dot{y}_1 - \dot{y}_2) - K_2 (y_2 - \epsilon) .$$

Let $x_1 = y_1 - y_2$ and $x_2 = y_2 - e$, we get

$$\begin{aligned} \ddot{x}_1 &= -\left(\frac{1}{m_1} + \frac{1}{m_2}\right) \left[C_1 \, \dot{x}_1 + K_1 \, x_1 + F_1 \operatorname{sign}(\dot{x}_1)\right] \\ &+ \frac{K_2}{m_2} \, x_2 \, , \\ \ddot{x}_2 &= + \frac{1}{m_2} \left[C_1 \, \dot{x}_1 + K_1 \, x_1 + F_1 \operatorname{sign}(\dot{x}_1)\right] \\ &- \frac{K_2}{m_2} \, x_2 - \ddot{e} \, . \end{aligned}$$

The cost function takes into account the following terms

- for the comfort : the passenger compartment acceleration \ddot{y}_1 ,
- for the road holding : the tire deflection $y_2 e$,

and also, as a technical constraint,

• the suspension rattle space $y_1 - y_2$.

We can choose

$$J = \lim_{T \to \infty} \frac{1}{T} E \int_0^T [|\ddot{y}_1|^2 + \rho_1 \psi_1(y_2 - e) + \rho_2 \psi_2(y_1 - y_2)] dt$$

for example : $\psi_1(y) = y^2$ and $\psi_2(y) = 0$ for $|y| \leq R$, and $\psi_2(y) = |y-R|$ for |y| > R, where R is bounded by the maximum suspension rattle space. ρ_1 and ρ_2 are weighting constants which permit to give more or less importance to the comfort or to the road holding.

We suppose that \ddot{e} is a standard Gaussian white noise $\ddot{e} = -\sigma dW/dt$. The state variable is $X = [x_1, \dot{x}_1, x_2, \dot{x}_2]^*$. Again, the problem is of the form (1) and (2).

3 Ergodic stochastic control problems

We consider the system (2) where X takes values in \mathbb{R}^n , W is a *d*-dimensional standard Wiener process, $b: \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^n$, and $\sigma \in \mathbb{R}^{n \times d}$. $u(\cdot)$ is a feedback control $u: \mathbb{R}^n \to U \subset \mathbb{R}^p$ which belongs to a given class of admissible controls, say \mathcal{U} .

To each admissible control $u \in \mathcal{U}$, we associate the ergodic type cost (1) where $f : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}$ is a given instantaneous cost function.

The problem is to find an optimal feedback control $\hat{u} \in \mathcal{U}$, i.e.

$$\hat{u} \in \operatorname{Arg\,min}_{u \in \mathcal{U}} J(u)$$
.

The solution of this problem is given by the Hamilton-Jacobi-Bellman equation : we want to find $v : \mathbb{R}^n \to \mathbb{R}$ and $\rho \in \mathbb{R}$ such that

$$\min_{u \in U} \left[\mathcal{L}^u v(x) + f(u, x) \right] = \rho , \quad \forall x \in \mathbb{R}^n, \quad (4)$$

(v is defined up to an additive constant) where \mathcal{L}^{u} is the infinitesimal generator associated with (2)

$$\mathcal{L}^{u} \phi = b_{i}(u, \cdot) \frac{\partial \phi}{\partial x_{i}} + [\sigma \sigma^{*}]_{ij} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} .$$
 (5)

Given a solution (v, ρ) of (4)

$$\hat{u}(x) \in \operatorname{Arg\,min}_{u \in U} \left[\mathcal{L}^u v(x) + f(u, x) \right] , \quad \forall x \in \mathbb{R}^n$$

is an optimal feedback control, and

$$\rho = \min_{u \in \mathcal{U}} J(u)$$

is the optimal cost. For a general presentation of this theory we refer to Bensoussan [2] and Borkar [3].

4 Numerical approximation

4.1 Optimal approach

Let $h_i > 0$ (resp. e_i) denote the finite difference interval (resp. the unit vector) in the *i*th coordinate direction and $h = (h_1, \ldots, h_n)$.

We define the *h*-grid on \mathbb{R}^n , by $\mathbb{R}^n_h = \{(k_i h_i + h_i/2, i = 1, ..., n); (k_1, ..., k_n) \in \mathbb{Z}^n\}$. The infinitesimal generator (5) is approximated

using the following finite difference scheme

$$\frac{\partial \phi(x)}{\partial x_i} \simeq \begin{cases} \frac{\phi(x+e_i h_i) - \phi(x)}{h_i} & \text{if } b_i(u,x) > 0\\ \frac{\phi(x) - \phi(x-e_i h_i)}{h_i} & \text{if } b_i(u,x) < 0 \end{cases}$$

$$\frac{\partial^2 \phi(x)}{\partial x_i^2} \simeq \frac{\phi(x+e_i h_i) - 2 \phi(x) + \phi(x-e_i h_i)}{h_i^2}$$

(for notational convenience we suppose here that $[\sigma\sigma^*]_{ij} = 0$ for $i \neq j$).

Thus \mathcal{L}^u is approximated by an infinite dimensional matrix \mathcal{L}_h^u given as follows

$$\mathcal{L}^u \phi(x) \simeq \mathcal{L}^u_h \phi(x) = \sum_{y \in \mathbb{R}^n_h} \mathcal{L}^u_h(x, y) \phi(y)$$

for all $x \in \mathbb{R}_h^n$.

 \mathcal{L}_h^u can be interpreted as the infinitesimal generator of a controlled Markov process X_t^h in continuous time and discrete bu infinite state space.

 X_t^h has a discrete but infinite state space. For actual computations it is necessary to work on a finite state space. So we consider a bounded domain D of \mathbb{R}^n . We define a new state space $\mathbb{R}_{h,D}^n =$ $\mathbb{R}_h^n \cap D = \{x^1, x^2, \dots, x^N\}$. $N = \text{Card}[\mathbb{R}_{h,D}^n]$. At this level we must specify boundary conditions. We usually take reflecting conditions,

Thus we get an approximation $\mathcal{L}_{h,D}^{u}$ to \mathcal{L}_{h}^{v}

$$\mathcal{L}^u_{h,D}\,\phi(x) = \sum_{y\in\mathbb{R}^n_{h,D}} \mathcal{L}^u_{h,D}(x,y)\,\phi(y)\;,$$

 $\mathcal{L}_{h,D}^{u}$ is a $N \times N$ -matrix. $\mathcal{L}_{h,D}^{u}$ can be interpreted as the infinitesimal generator of a controlled Markov process $X_{t}^{h,D}$ in continuous time and finite state space.

Therefore the discretized problem can be viewed as a control problem for a Markov process $X_t^{h,D}$ in continuous time, finite state space, and infinitesimal generator $\mathcal{L}_{h,D}^u$. The cost function is

$$J_{h,D}(u) = \lim_{T \to \infty} E \frac{1}{T} \int_0^T f(u(X_t^{h,D}), X_t^{h,D}) dt \, .$$

Associated with this control problem we have the following dynamic programming equation

$$\min_{u \in U} \left[\sum_{y \in \mathbb{R}^n_{h,D}} \mathcal{L}^u_{h,D}(x,y) \, v(y) + f(u,x) \right] = \rho \qquad (6)$$

for all $x \in \mathbb{R}^{n}_{h,D}$, where ρ is a strictly positive constant and $v : \mathbb{R}^{n}_{h,D} \to \mathbb{R}$ is defined up to an additive constant.

Equation (6) can be viewed as an approximation to the HJB equation (4). For more details we can consult Campillo [5].

Numerical implementation

In order to solve numerically equation (6) we can use, as presented in [4], the *policy iteration* algorithm. But a better parallel implementation on a massively parallel architecture can be achieved using the *value iteration algorithm*:

$$v^{(k+1)}(x) = v^{(k)}(x) + \delta \times \min_{u \in U} H(u, v^{(k)})$$
(7)

where

$$H(u, v^{(k)}) = \sum_{y \in \mathbb{R}^n_{h,D}} \mathcal{L}^u_{h,D}(x, y) \, v^{(k)}(y) + f(u, x) \; .$$

Let

$$\lambda_{\min}^{(k)} = \min_{x \in \mathbb{R}_{h,D}^{n}} \frac{v^{(k+1)}(x) - v^{(k)}(x)}{\delta} ,$$

$$\lambda_{\max}^{(k)} = \max_{x \in \mathbb{R}_{h,D}^{n}} \frac{v^{(k+1)}(x) - v^{(k)}(x)}{\delta} .$$

We say that the algorithm has converged when $|\lambda_{\max}^{(k)} - \lambda_{\min}^{(k)}| \leq \varepsilon$. An approximation of the optimal cost is given by $(\lambda_{\max}^{(k)} + \lambda_{\min}^{(k)})/2$. Details are exposed in [6].

Figure 4: $(x_1, x_2) \rightarrow \hat{u}(x_1, x_2, x_3, x_4)$ for (x_3, x_4) fixed $(x_3 = -0.1 + 3h_3, x_4 = -1 + 4h_4)$

Application

We apply this discretization method to the 2-DOF model in parallel. In figure 4 we plot $(x_1, x_2) \rightarrow \hat{u}(x_1, x_2, x_3, x_4)$ for (x_3, x_4) fixed.

For the discretization we take

$$D = [-0.1, 0.1] \times [-1, 1] \times [-0.1, 0.1] \times [-1, 1]$$

 $U = [1000, 10000]^2$, and a $16 \times 16 \times 8 \times 8$ points grid. The parameters are : m = 550, I = 265, $K_i = 15000$, $F_i = 40$, $l_i = 0.7$, $\sigma_i = 1.8$, $\pi_i = 1$ (i = 1, 2), $\delta = 0.00001$.

We have performed numerical tests on a Connection Machine CM2 (16K processors) from TMC, using the C^* programming language. Each point of the grid is associated with a (virtual) processor.

The minimization step in (7) is 2-dimensional. On each processor it is performed using Powell's method of successive line minimizations (with the 1-dimensional golden section search algorithm).

4.2 Sub-optimal approach

We are given a parametrized feedback law $u : \Theta \times \mathbb{R}^n \to U$. The space of parameters Θ is finite dimensional : $\Theta \subset \mathbb{R}^d$. The problem is to find $\hat{\theta}$ such that

$$J(u(\hat{\theta}, \cdot)) = \min_{\theta \in \Theta} J(u(\theta, \cdot))$$

From now on $J(\theta)$ will denote $J(u(\hat{\theta}, \cdot))$.

In order to get an approximation of $\hat{\theta}$ we can use a gradient algorithm

$$\theta^{(k+1)} = \theta^{(k+1)} - \delta_k G(\theta^{(k)}) .$$

where $G(\theta) = \nabla J(\theta)$ is the gradient of the cost function w.r.t. θ . The problem is to compute $G(\theta)$. Let

$$\tilde{f}(\theta, x) = f(u(\theta, x), x),$$

 $\tilde{b}(\theta, x) = b(u(\theta, x), x),$

and X_t^{θ} be the solution of (2).

Regular case

Suppose that in (1) and (2) the coefficients b, f, and u are regular. Then, from (1)

$$G(\theta) = \lim_{T \to \infty} \frac{1}{T} \int_0^T g(\theta, X_t^{\theta}, Y_t^{\theta}) dt \qquad (8)$$

where

$$g(heta, x, y) = \tilde{f}'_{ heta}(heta, x) + \tilde{f}'_x(heta, x) y$$

and Y_t^{θ} is the gradient of X_t^{θ} w.r.t. θ :

$$\dot{Y}_t^{\theta} = g(\theta, X_t^{\theta}, Y_t^{\theta}) .$$
(9)

The term $G(\theta)$ is not explicit so we must use an approximation of it. The final algorithm is a stochastic gradient algorithm :

$$\theta^{(k+1)} = \theta^{(k+1)} - \delta_k \,\bar{G}_k(\theta^{(k)}) \tag{10}$$

where

$$\bar{G}_{k}(\theta) = \frac{1}{\Delta} \int_{T_{k}}^{T_{k+1}} g(\theta, \bar{X}_{t}^{\theta}, \bar{Y}_{t}^{\theta}) dt$$

and $\Delta > 0$ is given, $T_k = k \Delta$. \bar{X}_t^{θ} , and \bar{Y}_t^{θ} are numerical approximations of X_t and Y_t solutions of (2) and (9) for a given θ .

The estimator of $\hat{\theta}$ at step k is given by

$$\bar{\theta}^{(k)} = \frac{1}{k} \sum_{l=1}^{k} \theta^{(l)}$$

For the convergence of the algorithm we can consult Polyak [10].

Non regular case

In the examples presented in section 2 we can suppose that the feedback u is regular, but the functions f and b are not regular in x. Indeed, consider the simplest case of section 2.1. We have

$$b(u, x) = \begin{pmatrix} x_2 \\ -\alpha_1 x_1 - u x_2 - \alpha_2 \operatorname{sign}(x_2) \end{pmatrix}$$

$$f(u, x) = (\alpha_1 x_1 + u x_2 + \alpha_2 \operatorname{sign}(x_2))^2.$$

2060

Therefore equations (8) and (9) are not valid in this case. Let L_t^{θ} denote the local time of the process $X_t^{2,\theta}$ at point 0. The gradient of the cost function is

$$G(\theta) = \lim_{T \to \infty} \frac{1}{T} \left[\int_0^T g(\theta, X_t^{\theta}, Y_t^{\theta}) dt + \int_0^T 4 \alpha_1 \alpha_2 X_t^{1,\theta} Y_t^{2,\theta} dL_t^{\theta} \right]$$

and Y_t^{θ} satisfies

$$dY_t^{\theta} = g(\theta, X_t^{\theta}, Y_t^{\theta}) dt + B Y_t^{\theta} dL_t^{\theta} .$$
(11)

The stochastic gradient algorithm has the same form (10) but with

$$\bar{G}_{k}(\theta) = \frac{1}{\Delta} \left[\int_{T_{k}}^{T_{k+1}} g(\theta, \bar{X}_{t}^{\theta}, \bar{Y}_{t}^{\theta}) dt + \int_{T_{k}}^{T_{k+1}} 4 \alpha_{1} \alpha_{2} \bar{X}_{t}^{1,\theta} \bar{Y}_{t}^{2,\theta} d\bar{L}_{t}^{\theta} \right]$$

instead, where \bar{X}_t^{θ} and \bar{Y}_t^{θ} are numerical approximations of (2) and (11) respectively, and \bar{L}_t^{θ} is an approximation of the process L_t^{θ} (cf. Campillo [8] for more details).

References

- J. ALANOLY and S. SANKAR. Semi-active force generators for shock isolation. Journal of Sound and Vibration, 126(1):145-156, 1988.
- [2] A. BENSOUSSAN. Perturbation Methods in Optimal Control. John Wiley & Sons, New York, 1988.
- [3] V.S. BORKAR. Optimal Control of Diffusion Processes, volume 203 of Research Notes in Mathematics. Pitman, 1989.
- [4] F. CAMPILLO. Optimal ergodic control for a class of nonlinear stochastic systems. In *Proceedings of* the 28th Conference on Decision and Control, pages 1190-1195, Tampa, December 1989. IEEE.
- [5] F. CAMPILLO. Optimal ergodic control of nonlinear stochastic systems. Rapport de Recherche 1257, INRIA, June 1990.
- [6] F. CAMPILLO and F. CEROU. Implémentation parallèle de la méthode des différences finies pour le filtrage non linéaire et le contrôle stochastique. Rapport technique, INRIA. (to appear).
- [7] F. CAMPILLO, J. NEKKACHI, and E. PAR-DOUX. Numerical methods in ergodic stochastic control, application to semi-active vehicle suspensions. In 29th Conference on Decision and Control, Honolulu, pages 2350-2353. IEEE, December 1990.

- [8] F. CAMPILLO and E. PARDOUX. Numerical methods in ergodic optimal stochastic control and application. In I. Karatzas and D. Ocone, editors, Applied Stochastic Analysis, Proceedings of a US-French Workshop, Rutgers University, New Brunswick, NJ, April 29 - May 2, 1991, volume 177 of Lecture Notes in Control and Information Sciences, pages 59-73, Berlin, 1992. Springer Verlag.
- [9] R.M. GOODDALL and W. KORTUM. Active controls in ground transportation — A review of the state-of-the-art and future potential. Vehicle Dystems Dynamics, 12:225-257, 1983.
- [10] B.T. POLYAK and A.B. JUDITSKY. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838-854, July 1992.

BEST COPY AVAILABLE