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A b s t r a c t  Stochastic ergodic c o n t ~ d  is used to 
compute feedback laws for  semi-active ,vehicle su..s- 

pensions. W e  present an overview of ri study 
supported by  R E N A U L T ~ .  For the practical imple- 
mentation we can numerically solve the IIunziltoti,- 
Jaco bi- Bel 1 man equation, which gives (1.1 1 apyron:i- 
mation of the optimal law. A n  other possibility is 
to seek for the best feedback in a given class of a 
parametrized feedbacks via a stochastic grudient nl- 
gorithm. 

1 Introduction 

In many applications we need to  control the Lon!/- 
time behavior of a dynamical system in  the wnse 
that  we want to minimize a cost functioii of the 
form 

t rT 

where X t  is solution of the following stochastic sys- 
tem 

( 2 )  

and U(.) is a feedback control. 
The problem addressed here is to  compute a 1111- 

merical approximation of the optimal feedback i l (  s). 
i.e. a feedback which minimizes the cost function 

First, we present, the semi-active vehicle sub- 
pension problem. Then we propose two ap- 
proaches : the first one, called here “optimal”. con- 
sists in solving numerically the Hamilton-Jacobj- 
Bellman equation (cf. Campillo [4]), the sec- 
ond, called here ‘Lsub-optimal”, consists in look- 

dXt = b ( ~ ( X t ) ,  X t )  d t  + U dWt 

Jb). 
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ing for the best feedback control in a given class of 
parametrized controls ( cf. Campillo [7]). 

The first approach, tractable only in small state 
space dimension. results in a. parallel algorithm 
(and so, could be treated on a parallel computer), 
the second one is essentia.1l-j sequential. 

2 Semi-active vehicle 
suspension 

In this section we present a damping control me- 
thod for a nonlinear suspension of road vehicle. 
The aim is to improve the ride comfort (or a trade- 
off between ride comfort and road holding). 

Active suspension system is an alternative to 
classical suspension systems (passive systems). It 
consists in force elements in addition to  a spring 
and a damper assembly. Force elements continu- 
ously vary the force according to some control law. 
In general, an active system is expensive, compli- 
cated, and requires an external power source (cf. 
Gooddall [9]). To overcome theses difficulties, the 
semi-active suspension system was developed. It 
requires no hydraulic power supply, and its hard- 
ware implementation is simpler and cheaper than a 
fully active system. A semi-active suspension sys- 
tem acts only on damping or spring laws, so it can 
only dissipate or store energy. 

Here we consider a system with control on the 
damping law. The forces in the damper are gen- 
erated by modulating its orifice for fluid flow (cf. 
Alanoly [l]). 

2.1 One degree of freedom model 
(1-DOF) 

We use the simplest model which consists in a 
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Figure 1: 1-DOF model 

one degree-of-freedom model cornprising a spring, 
a shock absorber, a mass, and taking into accoiint 
the dry friction (cf. Figure 1). 

The equation of motion for a one degree-of- 
freedom model is 

The restoring force I< 2 + F sign( i ) ,  has a linear 
part K 2, and a nonlinear part F s i g n ( i )  which dc- 
scribes the dry friction force. The damping foi.w 
is Cj. where C > 0 is the instantaneous daiiiping 
coefficient (the control is acting on this term). 

The problem is to  compute a feedbacli law C' = 
C(x,j .)  such that the solutioii ot the system ( 3 )  
minimizes a criterion related to the vibration 
comfort 

e is supposed to  be a white Gaussian noise pro- 
cess, e = -0 d W / d t  where VV is a standard \Viener 
process. 

Using the state vector is X t  = [.z. , i ] - ,  we can 
see that this problem is of the form (1) and ( 2 ) .  

2.2 Two degree of freedoiii iiiodels 
(2-DOF) 

2-DOF in parallel 

The equations of motion for the two degreeof- 
freedom model described in figure 2 are 

mi = -cl ( 2  - i le  - kl)  - I<l ( 2  - 118 - e l )  
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Figure 2: 2-DOF model (in parallel) 

For the ride comfort we choose the following 
cost function which takes into account. not only the 
absolute vertical acceleration. but also the angular 
acceleration : 

where p1 and p 2  a w  weighting constants. 
Let .L', he the relative displacement of the sus- 

pension i .  It is given by 2 1  = : - 116 - e l  and 
2 2  = : + 126 - c 2 .  \{'e suppose that 6; and 6i 
are independent standard Ciaussian white noises 

The state variable is X = [XI, i l ,  z2, i 2 ] * .  Here 
Gt = -adl . I : /dt .  

again the problem is of the form (1) and (2).  
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0 for the comfort : the passenger compartment 
acceleration ji1, 

0 for the road holding : the tire deflection 312-e, 

and also, as a technical constraint, 

0 the suspension rattle space y1 - y2. 

ml 
m2 
K1 suspension stiffness 
Fl dry friction. coefficient 
C1 viscous damping term. (variable) 
Kz tire stiffness 

quarter of the body mass 
mass of the  wheel with a semi-axle 

Figure 3: 2-DOF model (in series) 

2-DOF in series 

In the two previous models, only a comfort cri- 
terion was taken into account. With this last es- 
ample the cost function is a trade-off between ride 
comfort and road holding. The model presented i n  
Figure 3 is a quarter car model. 

The equation of motion gives 

The cost function takes into a.ccount the follow- 

We can choose 

+P2 +2(Y1 - Y2)l dt  

for example : $1(y) = y2 and +2(y) = 0 for IyI 5 R, 
and + , ~ ( y )  = Iy-RI for Iyl > R, where R i s  bounded 
by the maximum suspension rattle space. p1 and p2 
are weighting constants which permit to  give more 
or less importance to  the comfort or to the road 
holding. 

We suppose that E is a standard Gaussian white 
noise e = -adTV/dt. The state variable is X = 
[XI ,  i1,x2,j.2I8. Again, the problem is of the form 
(1) and (2).  

3 Ergodic stochastic control 
problems 

We consider the system ( 2 )  where X takes values 
in IR", IV is a. &dimensional standard Wiener pro- 
cess, b : I R P  x lR" - EL9', and U E E t R f r x d .  .(.) is a 
feedback control U : IR" - U C Etp which belongs 
to a given class of admissible controls, say U. 

To each admissible control U E U, we associate 
the ergodic type cost (1) where f : IRP x R" + IR 
is a given instantaneous cost function. 

The problem is t o  find an optimal feedback con- 
trol Q E U, i.e. 

Q E Argmin J ( u )  . 
U ELI 

The solution of this problem is given by the 
Ha.miltoa-Jacobi-Bellman equation : we want to 
find w : I R " l  i IR and p E lR such that 

mill [Lu w(x) + f(u, x)] = p , Vs E IR", (4) 

(U is defined up to  an a.dditive constant) where Lu 
is the infinitesima.1 generator associated with (2) 

LIEU 

ing terms 
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Given a solution (v, p )  of (4) 

G(z) E Argmin [C" v ( z )  + f ( u , x ) ]  , Vx E 11'' 
U E U  

is an optimal feedback control, a.nd 

p = min J ( u )  
uEU 

is the optimal cost. For a general presenta.t,ioii of 
this theory we refer to  Bensoussan [2] and Borkar [3]. 

4 Numerical approximation 

4.1 Optimal approach 

Let h, > 0 (resp. e , )  denote the finite diflerence 
interval (resp. the unit vector) in the i th coordinate 
direction and h = ( h l ,  . . . , hn). 

We define the h-grid on R", by R'," = 

The infinitesimal generator (5 )  is approximated 
{ (k ,h ,+h ; /2 ,  i = l ,  ..., n);(kl, ..., k n ) € Z I L } .  

using the following finite difference schenie 

a2$W $(x + ei h i )  - 2 @(x) + $(x - ei h i )  
- N  ax; - h: 

(for notational convenience we suppose here tlia.t, 
[aa*];j = 0 for i # j ) .  

Thus Lu is approximated by an infinite dimen- 
sional matrix LK given as follows 

L"4(z)  LK4(z) = L;t(z, !/I & 2 / )  
VEIR;: 

for all x E E;. 
C;l can be interpret,ed as t,he infiiiit,esiinal geu- 

erator of a controlled Ma.rkov process Xp in WJI-  

tinuous time and discrete hu infinite state space. 
Xp has a discrete but infinite state space. ]"or 

actual computations it is necessary to work on a li- 
nite state space. So we consider a bounded cloiria.in 
D of RVL. We define a. new stat,e s p a , c ~  lltj;,,l = 
.IRK n D = {zl, z 2 , .  . ..xN}. IV = Card[IitX.n]. At 
this level we must. specif'v boundary conditions. M'c 
usually take reflecting conditioiis. 

Thus we get an approximation G;t,D to L;I 

LK,D 6(z) = l K , D ( x >  Y) '#(y) > 

YEIRE,, 

.CK,D is a N x N-matrix. LK,D can be interpreted as 
the infinitesimal generator of a controlled Markov 
process in continuous time and finite state 
space. 

Therefore the discretized problem can be 
viewed as a control problem for a Markov process 
X:'D in continuous time, finite state space, and in- 
finitesimal generator E:.,. The cost function is 

Associated with this control problem we have 
the following dyna,mic programming equation 

for all z E where p is a strictly positive con- 
stant and : IRKsD - IR is defined up to  an additive 
constant. 

Equatioit ( 6 )  can be viewed as an approxima- 
tion to the IIJB equation (4). For more details we 
can consult Campillo [5]. 

Numericul inzplenientution 

In order to solve numerically equation (6)  we can 
use, as presented in [4], the policy iteration algo- 
rithm. But a better parallel implementation on a 
massively parallel architecture can be achieved us- 
ing the value iteration nlgorithni : 

J ' + ' ) ( x )  = J k ) ( z )  + 5 x min H ( U ,  v(')) (7) u E l J  

where 

Let 

We say t h a t  the algorithm has converged when 
IA!% - ~!t'~l 5 E. -211 approximation of the op- 
timal cost is given by ( + A!1:;)n)/2. Details are 
exposed in [ 6 ] .  
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Figure 4: ( 2 1 , ~ )  --f fi(z1,x2,x8,x4) for (x3.x4) 
fixed (23 = -0.1 + 3 h3, 2 4  = -1 + 4 h4) 

Application 

We apply this discretization method to  the 
In figure 4 we plot 2-DOF model in parallel. 

( q , q )  -+ ii(x1,22,x3,24) for ( 2 3 , ~ )  fixed. 
For the discretization we take 

D = [-0.1,0.1] x [-1,1] x [-0.1,0.1] x [-1,1] , 

U = [1000,10000]2, and a 16 x 16 x 8 x 8 points 
grid. The parameters are : nz = 550, I = 26.5, 
Ir'i = 15000, Fi = 40, li = 0.7, ai = 1.8, = 1 

We have performed numerical tests on a Con- 
nection Machine CM2 (16K processors) from TMC, 
using the C* programming language. Each point of 
the grid is associated with a (virtual) processor. 

The minimization step in (7) is 2-dimensional. 
On each processor it is performed using Powell's 
method of successive line minimizations (with the 
1-dimensional golden section search algorithm ). 

(i = 1,2),  6 = 0.00001. 

4.2 Sub-optimal approach 

We are given a parametrized feedback law I I  : 
0 x IR" -+ U .  The space of parameters 0 is fi-  
nite dimensional : 0 C E t d .  The problem is to fiiitl 

8 such that 

From now on J ( 8 )  will denote J( U( 8, a ) ) .  

use a gradient algorithni 
In order to  get an approxima.tion of 6 we ( 'an 

@@+U = 8(k+l) - bk G(@") , 

where G(8) = VJ(8)  is the gradient of the cost 
function w.r.t. 8. The problem is to  compute G(8). 
Let 

m,4 = f(4872Lz) 3 

@42> = b ( q W 7 4  7 

and Xf be the solution of (2). 

Regular case 

Suppose that in (1) and (2)  the coefficients b,  f, 
and U are regular. Then, from ( 1) 

where 

The term G ( d )  is not explicit so we must use 
an a.pproximation of it. The final algorithm is a 
stochastic gradient algorithm : 

where 

and A > 0 is given, Tk = k A. x:, and 6' are 
numerical approximations of X t  and Yt solutions of 
(2 )  and (9) for a given 19. 

The estimator of 8 at step k is given by 

For the convergence of the algorithm we can consult 
Polyak [lo]. 

Non regular C ~ E  

In the exa.niples presented in section 2 we can sup- 
pose that the feedback U is regular, but the func- 
tions f and b a.re not regular in 2. Indeed, consider 
the simplest case of section 2.1. We have 



Therefore equations (8) and (9) are not valid in this 
case. Let L! denote the local time of the process 
X,"'e at point 0. The gradient of the cost function 
is 

J 

and Y! satisfies 

dyte = 9(e, x!, yte) d t  + B &e . ( 11) 

The stochastic gradient algorithm 1ia.s the  same 
form (10) but with 

instead, where and Ke are numerical approsi- 
mations of (2) and (11) respectively, aiid L! is an  
approximation of the process Lf (cf. Campillo [8] 
for more details). 
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