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Abstract Stochastic ergodic control is used to
compute feedback laws for semi-active vehicle sus-
pensions. We present an overview of a study
supported by RENAULT!, For the practical imple-
mentation we can numerically solve the Hamilton-
Jacobi-Bellman equation, which gives an approxi-
mation of the optimal law. An other possibility is
to seek for the best feedback in a given class of a
parametrized feedbacks via a stochastic gradient al-
gorithm.

1 Introduction

In many applications we need to control the long-
time behavior of a dynamical system in the sense
that we want to minimize a cost function of the
form

1 T
Jw = Jim 2B [ fucx). Xod (1)

where X, is solution of the following stochastic sys-
tem

dX; = b(u(Xy), X¢) dt + o dW, (2)

and u(-) is a feedback control.

The problem addressed here is to compute a nu-
merical approximation of the optimal feedback #(-).
i.e. a feedback which minimizes the cost function
J(u).

First, we present the semi-active vehicle sus-
pension problem. Then we propose two ap-
proaches : the first one, called here “optimal”. con-
sists in solving numerically the Hamilton-Jacobi-
Bellman equation (cf. Campillo [4]), the sec-
ond, called here “sub—optimal”, consists in look-
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ing for the best feedback control in a given class of
parametrized controls (cf. Campillo [7]).

The first approach, tractable only in small state
space dimension. results in a parallel algorithm
(and so, could be treated on a parallel computer),
the second one is essentially sequential.

2 Semi-active vehicle
suspension

In this section we present a damping control me-
thod for a nonlinear suspension of road vehicle.
The aim is to improve the ride comfort (or a trade-
off between ride comfort and road holding).

Active suspension system is an alternative to
classical suspension systems (passive systems). It
consists in force elements in addition to a spring
and a damper assembly. Force elements continu-
ously vary the force according to some control law.
In general, an active system is expensive, compli-
cated, and requires an external power source (cf.
Gooddall [9]). To overcome theses difficulties, the
semi—active suspension system was developed. It
requires no hydraulic power supply, and its hard-
ware implementation is simpler and cheaper than a
fully active system. A semi—active suspension sys-
tem acts only on damping or spring laws, so it can
only dissipate or store energy.

Here we consider a system with control on the
damping law. The forces in the damper are gen-
erated by modulating its orifice for fluid flow (cf.
Alanoly [1]).

2.1 One degree of freedom model

(1-DOF)

We use the simplest model which consists in a
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Figure 1: 1-DOF model

one degree—of-freedom model comprising a spring,
a shock absorber, a mass, and taking into account
the dry friction (cf. Figure 1).

The equation of motion for a one degree-of--
freedom model is

my=-Ci—-Ka— Fsign(z). (3)

The restoring force K z + Fsign(z), has a linear
part K z, and a nonlinear part F'sign(&) which de-
scribes the dry friction force. The damping force
is C'¢ where C' > 0 is the instantaneous damping
coefficient (the control is acting on this term).

The problem is to compute a feedback law C' =
C(z,2) such that the solution of the system (3)
minimizes a criterion - related to the vibration
comfort

T
=g e [

é is supposed to be a white Gaussian noise pro-

cess, € = —o dW /dt where W is a standard Wiener

process.

Using the state vector is X; = [z,%]", we can
see that this problem is of the form (1) and (2).

2.2 Two degree of freedom models
(2-DOF)

2-DOF in parallel

The equations of motion for the two degree-of-
freedom model described in figure 2 are

-C4 (2—‘110— €1) — Ix"l(z— 110—61)

mi =
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2 absolute vertical displacement of mass m
# angular displacement of the mass

m  mass

I inertial tensor w.r.t. the gravity center

suspension ¢ :
K; stiffness
F;  dry friction constant
C; wiscous damping constant (variable)
I; distance to the center of gravily
e; stochastic imput

Figure 2: 2-DOF model (in parallel)

*F] Sigll(.;‘:' - [16 - 6.1)
—Ca (24 120 —e)— Ky(z+ 120 - 62)

—F2 Slgn(:,' + [29 - 6.2)
and

é

—11[—(,'1 (: - l10 - 6‘1 ) d 1{1 (Z - llg - 61)
d — Fysign(3 — 1,0 — é1)]

+12[—C'2 (z+ 126 —e3)— Ko(z+ 1,0 — €2)
—Fysign(z + I8 — €, )]

For the ride comfort we choose the following
cost function which takes into account. not only the
absolute vertical acceleration, but also the angular
acceleration :

where p; and py are weighting constants.

Let x; be the relative displacement of the sus-
pension . It is given by z; = z — [;0 — ¢; and
29 = 2 + 1,0 — ¢3. We suppose that €1 and €]
are independent standard Gaussian white noises
& = —odW;/dt.

The state variable is X = [y, 31, 22, 22]*. Here
again the problem is of the form (1) and (2).



my  quarter of the body mass

my mass of the wheel with a semi-azle
K, suspension stiffness

Fy  dry friction coefficient

Cy  viscous damping term (variable)
Ky  tire stiffness

Figure 3: 2-DOF model (in series)

2-DOF in series

In the two previous models, only a comfort cri-
terion was taken into account. With this last ex-
ample the cost function is a trade—off between ride
comfort and road holding. The model presented in
Figure 3 is a quarter car model.

The equation of motion gives

mir = —Ci1(h - 92) - K1 (41 — 32)
—Fysign(ih — 92) »

+C1 (%1 ~ ¥2) + K1 (y1 — y2)
+Fysign(gn — g2) — Ko (y2 — ¢€) .

I

ma iz

Let 2y = y1 — y2 and z2 = y, — €, we get

¥ = —(;)—1—1- + RI;) [C1 &1 + K1y + Fysign(dy )]
.. 1 . , .
Fp = +-m—[C'1 21 + Ky o1 + F sign(2y)]

2

The cost function takes into account the follow-
ing terms

¢ for the comfort : the passenger compartment
acceleration f,

¢ for the road holding : the tire deflection y;—e,
and also, as a technical constraint,
¢ the suspension rattle space y; — ¥s.

We can choose

L1 T
J = gim LE /0 Ni1l? + o1 ¥a(v2 — )
+p2 P2y — y2)] dt

for example : ¥, (y) = y* and v2(y) = Ofor |y| < R,
and ¢o(y) = |y—R| for jy| > R, where R is bounded
by the maximum suspension rattle space. p; and p;
are weighting constants which permit to give more
or less importance to the comfort or to the road

holding.
We suppose that € is a standard Gaussian white
noise € = —odW /dt. The state variable is X =

[z1, %1, 22, Z2]*. Again, the problem is of the form
(1) and (2).

3 Ergodic stochastic control
problems

We consider the system (2) where X takes values
in R™, W is a d-dimensional standard Wiener pro-
cess, b: R” x R® — IR", and o € R™*%. u(.)isa
feedback control u : R™ — U C IR? which belongs
to a given class of admissible controls, say U.

To each admissible control u € U, we associate
the ergodic type cost (1) where f: RP x R® - R
is a given instantaneous cost function.

The problem is to find an optimal feedback con-
trol & € U, i.e.

€A i .
U € I'glJIEILl'{l J(u)
The solution of this problem is given by the

Hamilton-Jacobi-Bellman equation : we want to
find v : R* — IR and p € IR such that

miz (£*v(z) + f(u,z)]=p, YzeR" (4)

(v is defined up to an additive constant) where £¥
is the infinitesimal generator associated with (2)

¢

9
L9 =bilu )50 + 100l 5ot (5)
t i J



Given a solution (v, p) of (4)

a(z) € Argmei{} [£*v(z)+ f(u,x)], YzelR”
is an optimal feedback control, and

p= L‘é‘i}"(“)

is the optimal cost. For a general presentation of
this theory we refer to Bensoussan [2] and Borkar [3].

4 Numerical approximation

4.1 Optimal approach

Let h; > 0 (resp. e;) denote the finite difference
interval (resp. the unit vector)in the ith coordinate
direction and h = (hy,...,h,).
We define the h-grid on IR™, by R} =
{(kihi + hi/2,i=1,...,n); (k1,....,kn) € z"}.
The infinitesimal generator (5) is approximated
using the following finite difference scheme

oz + e hi) — ¢(z)

if bj(u,z) >0

o(z) hi
oz; ¢(z) — ¢(z — ei hi) if b;(w, ) < 0
h_i ) 3

B¢(z) _ dlteihi)—20(z)+d(x—eihi)
Oz? - h?

(for notational convenience we suppose here that
[co*]i; = 0 for i # 7).

Thus L£* is approximated by an infinite dimen-
sional matrix L} given as follows

Liplz) ~ Lid(z) = D> Li(z,y)dy)

yER,

for all z € RT.
¥ can be interpreted as the infinitesiinal gen-

erator of a controlled Markov process X/ in con-
tinuous time and discrete bu infinite state space.

X} has a discrete but infinite state space. lor
actual computations it is necessary to work on a fi-
nite state space. So we consider a bounded domain
D of R™. We define a new state space IRy ) =
REND = {2122 ..., 2N} N = Card[IR} p]. At
this level we must specify houndary conditions. We
usually take reflecting conditions.

Thus we get an approximation L} ; to L}

Lip#(x)= ) Liplz,y)ey),

yeR] p
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L} pisa N xN-matrix. £} p can be interpreted as
the infinitesimal generator of a controlled Markov
process Xth'D in continuous time and finite state
space.

Therefore the discretized problem can be
viewed as a control problem for a Markov process
Yh'D in continuous time, finite state space, and in-
finitesimal generator L} . The cost function is

Jop(u) = Jim ET/ Fu(XMP), XMy gy .

Associated with this control problem we have
the following dynamic programming equation

min| Z Lyiplz,y)v(y)+ flu,z))=p (6)
uel
yeR} 5,

for all z € R}, p, where p is a strictly positive con-
stantand v : R}, p — R is defined up to an additive
constant.

Equation (6) can be viewed as an approxima-
tion to the HJB equation (4). For more details we
can consult Campillo [5].

Numerical implementation

In order to solve numerically equation (6) we can
use, as presented in [4], the policy iteration algo-
rithm. But a better parallel implementation on a
massively parallel architecture can be achieved us-
ing the value iteration algorithm :

o * ) () = o) () + 6 x min H(u,v™)  (7)
where
H(u,v* Z Lhplz.y)v Bw) + fw,2) -
Let
. Ak+1) 0y (K)o
AB gy @) )
reR; p b
k . plk
Af,ﬂ‘i\ = max o (z) ~ vW(a) .
IE]R;;'D o

We say that the algorithm has converged when
k o

bl - /\flfm] < e. An approximation of the op-

timal cost is given by (/\i,’f;x + ’\le:l)n )/2. Details are

exposed in [6].



Figure 4: (IBI,CC')) — ﬁ($],$2,w3,$4) for (.’1:3,.'1:4)
fixed (z3 = —0.1 + 3 h3, 24 = -1+ 4 hy)

Application

We apply this discretization method to the
2-DOF model in parallel. In figure 4 we plot
(z1,22) — @(z1, Z2, 23, 24) for (23, 24) fixed.

For the discretization we take

D =1{-0.1,0.1] x [-1,1] x [-0.1,0.1] x [-1,1],

U = [1000,10000)?, and a 16 x 16 x 8 x 8 points
grid. The parameters are : m = 550, I = 265,
K; = 15000, F; = 40, ; = 0.7, 0;, = 1.8, m; = 1
(i=1,2), 6 = 0.00001.

We have performed numerical tests on a Con-
nection Machine CM2 (16K processors) from TMC,
using the C"* programming language. Each point of
the grid is associated with a (virtual) processor.

The minimization step in (7) is 2-dimensional.
On each processor it is performed using Powell’s
method of successive line minimizations (with the
1-dimensional golden section search algorithm).

4.2 Sub-optimal approach

We are given a parametrized feedback law « :
© x R" — U. The space of parameters O is fi-
nite dimensional : © ¢ R%. The problem is to find
6 such that

J(u(d,-)) = gggJ(u(&')) .
From now on J(#) will denote J(u(6, }).

In order to get an approximation of 6 we can
use a gradient algorithm

0(k+1) — 0(k+1) — & G(e(k)) i

where G(6) = V.J(8) is the gradient of the cost
function w.r.t. . The problem is to compute G(9).
Let

f(8,z) f(u(8,z),2),
b8, z) b(u(f,z),z) ,

and X! be the solution of (2).

Il

Regular case
Suppose that in (1) and (2) the coefficients b, f,
and u are regular. Then, from (1)
G(8) = lim l/Tg(o,Xf,Yf)dt (8)

Tooo T Jo

where
9(6,2,9) = f3(8,z) + f1(6,2)y

and YY is the gradient of X! w.r.t. 4 :

Y/ = g(6,X{,Y7) . ()

The term ((8) is not explicit so we must use
an approximation of it. The final algorithm is a
stochastic gradient algorithm :

g+ = gl _ 5 G (80) (10)

Whel‘e
_ ( ) ] /1k+1 S0 oo t
Gk6 - A . g(é"ztsit)d

and A > 0 is given, Tx = kA. Xf, and Y? are
numerical approximations of X; and Y; solutions of
(2) and (9) for a given 6.

The estimator of § at step k is given by

1 k
g = 1560
k =1

For the convergence of the algorithm we can consult
Polyak [10].
Non regular case

In the examples presented in section 2 we can sup-
pose that the feedback u is regular, but the func-
tions f and b are not regular in z. Indeed, consider
the simplest case of section 2.1. We have

Y T2
blu,2) = ( —ap ¥ — v Ty — agsign(zz) ) ’

flu,2) = (a1 21 +uze+ azsign(zg))? .



Therefore equations (8) and (9) are not valid in this
case. Let L! denote the local time of the process
Xt2 “ at point 0. The gradient of the cost function
is

. 1 T
G(8) = Thinw—T-[/() 906, X2, vy dt

T
+ /0 doya XMPY2P 4Ll

and Y;? satisfies

dYg = g(6, X8, Y )dt + BYS dL? . (11)

The stochastic gradient algorithm has the same
form (10) but with

_ 1 Tr41 . -
Guo) = % [ J RS R A
k

Trt1 _ _ _
+ / day oy XM TR0 T8
Tx

instead, where X¢ and Y, are numerical approxi-
mations of (2) and (11) respectively, and L¢ is an
approximation of the process L (cf. Campillo [8]
for more details).
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