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A b s t r a c t  

We study a degenerate non linear optimal stochastic control problem of ergodic type. We 
first prove that  for each feedback control law, there exists a unique invariant measure which is 
equivalent to Lebesgue measure. This is proved using an accessibility property of the stochastic 
differential equation, after the discontinuous part of the drift has been removed via a change 
of probability measure. We then approximate the problem by ergodic control problems for 
finite state, continuous time Markov chains. We finally prove that  the cost fanctionals of the 
approximate problems converge pointwise towards that of the continuous problem. 

All the study is done for a particular problem introduced in [1], which is motivated by the 
optimal control of the shock-absorber of a road vehicle. The numerical results can be found 
in [i]. 

1 I n t r o d u c t i o n  

The aim of this paper is the s tudy and the approximation of a class of ergodic con- 
trol problems. For clarity we will work on a particular problem already introduced 
in [1], which comes from a problem of optimization of controlled shock-absober. 
This involves three difficulties - -  which are met in most applied problems - -  : 
the diffusion we want to control is degenerate, some coefficients are discontinuous 
and the problem is strongly nonlinear. 

Let us consider the following stochastic system 

d X ( t )  = + 

where X is a process which takes values in IR 2, W is a real s tandard Wiener 



380 

process and a > 0. b maps IFt x IR 2 in ]R 2 and is defined by 

= b2(u,x) = - u x 2 - / 3 x x - T s i g n ( x 2 )  ' 
X ~-- 

X2 

where/3, 7 are strictly positive constants. In (11, u is a feedback control which 
belongs to the class U of admissible controls defined by (fix u, ~ such that  0 < 
u < ~z <: oo) 

u : ]R 2 ---* [u, ~] and there exists a finite 
number of submanifolds of ]R 2 with di- 
mension less than or equal to 1 outside 
of which u is continuous. 

We are concerned with an ergodic type control problem, whose cost functional is 

J(u) a lira 1 for = T _ o o ~ E  f ( u ( X ( t ) ) , X ( t ) ) d t ,  V u E b l ,  (2) 

where the instantaneous cost function f is defined by 

f (u ,  x) ~ (u x2 +/3 xl + 7 sign(x2)) ~ • (3) 

From now on, we denote 

b~(=) ~= b(u(x),x) , f"(=) ~=/(u(x) ,x)  , V,, • U .  

The physical interpretation of this problem is the following: y = Xl( t )  is a 
solution of the equation 

m 9 + v 9 + I f  y + F sign(9) - m ~ .  (4) 

(m, K, F > 0) which describes a one-degree-of-freedom shock-absober system 
with dry friction, y is the relative displacement, v is the shock-absorber damping 
constant (the controlled parameter) .  K y + F sign(9) represents the restoring 
force (including the dry friction term). ~ is the random input of the system (i.e. 
the road surface displacement) which is supposed to be a white noise. Taking 
u = v /m ,  ~ = K / m ,  7 = F / m ,  (4) can be rewrit ten as (1). The problem is to 
improve vehicle riding comfort by the choice of an adequate feedback u, i.e. to 
minimize 

J(u)  zx lira T E  f0 T = f ( u ,  y ,  ~)) dt (5) 
T"~oo 

where the instantaneous cost function f (u ,  y, ij) is the absolute acceleration squa- 
red, that  is 

F f (u ,  y, ~) zx 1512 : 19 -- el 2 = (v 9 -I- K y q- sign(Y)) 

In [1], we present a numerical approach based on finite difference techniques 
[7,10]. For the discretized problem, we use the policy iteration algorithm for which 
we state a convergence property. In the present paper we give some results on the 
following properties 
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• existence and uniqueness of the invariant measure # .  associated with 
(1), 

• convergence result of the approximation when the discretizing pa- 
rameter  goes to 0. 

The Hamil ton-Jacobi -Bel lman equation related to the ergodic control problem 
(1,2) can be formally stated as 

min (17.uv(.)+f(u,.))=p o n I R  2, (6) 
ue ,h,~] 

where v : IR 2 --. IR is defined up to an additive constant,  p is a constant and ~u 
is the infinitesimal generator of (1) 

= + + 2 (7) 

Numerical approximation of the Hamil ton-Jacobi -Bel lman equation, in the 
nonergodic case, may bc found in [4,13], as well as the s tudy of the convergence 
of the approximation. Here, we are not studying directly the Hami l ton-Jacobi -  
Bellman equation for which there seems to be no result proved in the present 
context. We want to s tudy - -  using probabilistic techniques - -  the convergence 
of the approximation. 

The ergodic control problem has been studied in [5] for discrete s tate space 
Markov processes, and in [2,3,9,11,15,16] for diffusion processes. Most of these 
last works are based on a strong ellipticity assumption, or establish a recurrence 
property with a different set of hypotheses than ours. 

The bound *A > 0 is important  both for mathematical  and physical reasons in 
order to ensure the stabili ty of the system (cf. the proof of lemma 2.1). 

Because the system (1) is degenerate (the noise appears only in the second 
component) ,  the uniqueness of the invariant measure is related to a controllability 
type property, but,  due to the nonregularity of the coefficients, the standard 
techniques fail in proving this last property. However, this can be done via a 
change of probabil i ty law. 

In section 2 we establish an existence and uniqueness result for the invariant 
measure corresponding to system (1), for any u in L/. In 3 we present the approx- 
imation of the problem using finite difference techniques. The convergence of the 
approximate cost functionals to the original cost functional is studied in section 
4. 

2 The Invariant Probability Measure 

The cost function (2) can be  rewritten as 

J ( u ) = ( / " , # u ) ,  V u ~ U ,  (8) 
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where # ,  is the invariant probability measure associated with system (1). In this 
section we establish an existence and uniqueness property for #u. 

2.1 E x i s t e n c e  

L e m m a  2.1 There exists a constant C such that 

E IX(t)l ~ < c ,  vt > 0, vu e u. (9) 

Proof We define 

] ; ( x ) ~ f l x ~ + c x l x 2 + x 2 2 ,  and Y( t )~=El ) (X( t ) ) .  

There exists e0 > 0 such that  for any e0 > c > 0 

1 
v(x) > : (8 4 + 4) 

Hence, it is sufficient to show that  V(t) <_ Cte for any t > 0. From (1), 

d y ( t )  = E [2flXl(t) X2(t) + :X~( t )  - : f lX2(t )  - cu(X(t))  Xl(t) X2(t) 

-:'y X,(t)  sign(X2(t)) - 2 fl X,( t)  X:(t) - 2 u(X(t)  ) X,~(t) 
- ~  ~ x~(t)] + o~.  

Using u _< u(x) < ~ and the following inequalities 

we get 

- c  u(x) ~: z~ < 

- ¢ 7 z l  sign(x2) < 

C~2 2 

c7  
2 2 5 '  

(V5 > O), 

so there exists strictly positive constants E and 5 such that  

d c 
:Tv(t)  < - c ( : ,  6) v(t)  + : :  + ~ ,  

where C(z, 5) > 0. Applying GronwaU's lemma to this last inequality yields the 
conclusion. [] 

L e m m a  2.2 The process X(t)  solution of (1) has the Feller property, i.e. for any 
u G U, t > 0 and ¢ E Cb(]R2), the function 

IR 2 B x ~ E ¢  (XX(t) )  (10) 

is continuous. XX(t) denotes the solution of (I) starting from x at time t = O. 
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Proof In (1), the drift coefficient can be wri t ten as 

b ( u , x ) = ~ x - t -  _ u x 2 _ . r s i g n ( x 2  ) = 13 0 x2 - u x 2 - ~ / s i g n ( x 2 )  " 

Let 

= Jo t W(t )  .x W ( t ) +  ¢ ( X = ( s ) ) d s ,  

¢(x)  zx __1 (u(x)x2+Tsign(x=))  , 
O" 

Z ' ( t )  ~= exp t ¢ ( X = ( s ) ) d W ( s )  - ~ ¢(X=(s))  2ds . 

We define a new probabili ty law 

X satisfies 

d]~ I A 
dP j:, -- (Z=(t))-x 

(11) 

X~"(t) ,._.~ X=(t) ~ - a . s . ,  (14) 

Z~"(t) ~ Z=(t) in P-probabi l i ty .  (15) 

Assume for a m o m e n t  tha t  (14) and (15) hold. Then,  ~,ZZ"(t) = ~,ZZ(t) -- 1 and 
(15) imply tha t  Z="(t) ---. Z~(t) in LI (P) ,  so 

[~(¢(x~.( t ) )  z ' . ( t )  - C(x'( t ) )  z*(t))[ <_ ] g ( l ¢ ( X ' - ( t ) ) - ¢ ( x ' ( t ) ) l  z ' ( , ) )  

+ O ~ l Z ' - ( t )  - z ' ( t ) l  , 

the second term tends to 0, the first one also by domina ted  convergence. 
We now prove (14) and (15). Under  the probabili ty law P ,  X( t )  is the solution 

of a linear stochastic differential system, so (14) is obvious. For (15), we show 
that  

- ]0' E [u(X="(s ) )X~"(s ) -u (X=(s ) )X~(s ) ]  2 ds .__;~ 0 ,  (16) 

fo t [sign(X~"(s)) - s ign (X~(s ) ) ]  2 ds .--:--~ O. (17) 

0) aW(t) (12) ~x(t) = ~x(~)~t + o 

where - -  from Girsanov's theorem - -  ~r ( t )  is a real s tandard  Wiener process 
under  the probabili ty law P .  

For any sequence x,, ---* x, we want  to prove that  

E¢(X~"(t) )  = ~ [ ¢ ( X ' " ( t ) ) Z ~ " ( t ) ]  ~ E¢(X=(t))  = ~[¢ (X~( t ) )Z=( t ) ]  , (13) 

where ~ denotes the  expectat ion with respect to ~ .  So, it is sufficient to check 
that  
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For any s E [0, t] and ~ > 0 

]~[sign(X~"(s)) - sign(X~(s))] 2 ---- 

SO 

4p[x? (~)  x~(,) < o] 
_< 4 ~ [ I x y ( s ) l  < el + 4 ~ [ I x y - ( s )  - X¢(s ) l  >_ el 
--~ 4]~[]X~(s) l  < e ] ,  as n --, oo (using (14)), 

~[sign(X~"(s))  - sign(X~(s))] 2 n--.~ O. 

For (16), using (14) and the dominated convergence theorem, it is sufficient to 
state the following convergence in probability 

? ( l u (X~" ( s ) )  - u(X~(s))[ > e) ~ 0 Ve > 0 W e [0, t] . (18) 

As u E U, for any 6 > 0 there exists a closed subset D6 C IR 2 and for any p > 0 
there exists Cp(6) E [0, 1] such that  

(i) -P(XX(s) e D~nB(0,p)) _< Cp(6), Vp, 6 > 0 ,  
(ii) Cp(5) , O, as Cf ~ O , Vp > O , 

(iii) u is continuous on Ds, V5 > 0 , 

where B(O,p) ~ ix; Ix[ < p}. We have the following inequality 

~(l~(XX-(~)) - u(x~(~))l > ~) (~9) 
< 7" (x~(~) ~ B(0, p)c) 

+ : P ( l u ( X ~ " ( s ) ) -  u(X~(s))I > e ; X~(s) E D6 N B(O,p)) 

+ ~ ( X ~ ( s )  e D~ n B(O,p)) . 

Hence from (14) and because u(x) is uniformly continuous on D6 M B(0, p), we get 

lizn ~ ~ (lu( X ' " (  s) ) - u( X ' (  s) )] > e) 

<_-fi(X'(s) e B(O,p) ~) + - P ( Z ' ( s )  E D~ nB(O,p) )  . 

Let 6 --* 0 first and then p --, oo, so we get (18), which proves the lemma. [] 
By means of usual techniques (e.g. [6] th. 9.3 ch. 4), lemmas 2.1, 2.2 yield 

P r o p o s i t i o n  2.3 For any u E lg, the diffusion process (1) admits an invariant 
probability measure p, .  

2.2 U n i q u e n e s s  

In this section # denotes a fixed invariant probability measure associated with 
system (1), and X( t )  is the solution of this system with # as initial law (i.e. X(0) 
has law #). We also define Z(t)  by (11) where X ~ is replaced by Z .  

L e m m a  2.4 Under-fi, /or any t > O, the law of X ( t )  has a density ~(t, x) such 
that 

p ( t , x )  > o , Vx  . 
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Proof  From now on we are working under ~ .  Consider the system (12) where 
d W  is replaced by v dt (v e L2(]R+)), we get 

(0) 
~ _~ + o v ,  x ( 0 ) = z .  (20) 

Let xZ,V(t) denote the solution of this last equation. We define the set of teacha- 
bility 

x( t ,x )  ~ {~,°(t) ; w :  ~+ -~ ~ ,  ~ • L~(~+)} . 

(20) can be rewrit ten as ~ = A x  + B v  and the matr ix [BLAB ] has full rank. 
Hence this system is controllable. So 

V t > 0 ,  V x • I R  2 ,  A ( t , x ) - - I R  2.  (21) 

Using [12], we prove that  - -  under ]~ - -  the law of X ( t )  is absolutely continuous 
with respect to Lebesgue measure and that  its density ~(t, x) is strictly positive 
for any t > 0 and x. o 

L e m m a  2.5 Let # be an invariant measure for X ( t )  under P.  Then # has a 
density p(x) with respect to Lebesgue measure, and p(x) > 0 for any x a.e. . 

Proof For any ¢ E Cb(IR ~) 

(~, ¢) = ~[¢(x( t ) )  z ( t ) ] ,  

= ~ , [ ¢ ( x ( t ) ) n [ z ( t ) l x ( t ) l ] ,  

/~2 ¢(x) ~ [z ( t ) Ix ( t )  = xl ~(t, x) d x .  

Since ~[Z(t)]X(t )]  > 0 ]~-a.s. and under ]~ the law of X ( t )  is equivalent to 
Lebesgue measure, we get 7S[Z(t)]X(t) = x] > 0 Vx-a .e . .  Using lemma 2.4 and 
the last inequality, we prove that  # has a density 

q(~) ~= - ~ [ z ( t ) l x ( t )  = ~] ~( t ,~)  , 

and that  this density is strictly positive for all x E IR 2 a .e . .  0 
This lemma implies the following result: if there exists two invariant measures, 

they are equivalent. So there exits at most one extremal invariant measure. We 
can therefore state 

P r o p o s i t i o n  2.6 For any u E ZX, the diffusion process (1) admits a unique in- 
variant measure Pu. 
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3 N u m e r i c a l  A p p r o x i m a t i o n  

3.1 A p p r o x i m a t i o n  o f  t h e  C o n t r o l  P r o b l e m  

In a first step, the solution X(t )  of (1) is approximated  by a controlled Markov 
process in continuous t ime and discrete (but infinite) s tate space. In a second 
step, it is approximated by a controlled Markov process in continuous t ime and 
finite s tate space. 

a - first step 

Let hi be the finite difference interval to be used to approximate  the derivative 
w.r.t, the spatial direction i (i = 1, 2). We define the grid 

IR~ ~ {x • IR2; x = (nl hl + h l /2 ,  n2h2 + h2/2), nh  n2 • Z} , h zx (h i ,  h2).  

b~(=) 0¢(z )  ~ ~7(x) ¢(= + e , h , )  - ¢(x) if b~(x) > 0, 
hi ' (i = 1,2) (22) 

Oxi - -  bU(x ) ¢(x) - ¢(x - ei hi) if b~(x) < O, 
hi 

o~ 0~¢(~) ~ o_~ ¢(= + ~2 h~) - 2 ¢(x) + ¢(= - ~ h2) (23) 
2 Oz~ - 2 1,5 ' 

where ei denotes the uni t  vector in the i th coordinate direction of IR 2 (the special 
choice for the finite difference approximat ion will be mot ivated in rcmark 3.2). 

So £u is approximated by a matr ix  £~ E IR ~ x IR ~ 

C u ¢ ( x ) ~ _ C ~ ¢ ( x ) ~  Z L ~ ( x , y ) ¢ ( y ) ,  W e ~ .  
yElt[~ 

Because of the finite difference approximations (22,23) we use, Lh can be regarded 
as the infinitesimal generator of a Markov process in continuous t ime and discrete 
state space IR 2 [7,10]. Using cl~sical  definition, a Markov chain { ~ ;  k e IN} is 
associated with xh( t )  [6]. 

We then have an ergodic stochastic control problem for a Markov process with 
infinitesimal generator £h. The cost function is 

Jh(u) ,x l im E 1 f0T =T-~oo T f ( X h ( t ) ) d t "  (24) 

u is an element of the class/~h defined by 

u e/~h -: '.- u is an application from IR 2, to [u,~]. 

We will use the finite difference approximat ion 
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b - second step 

Xh(t) has a discrete but infinite state space, and for numerical calculations we 

need to restrict ourselves to a finite state space. Let us then consider the following 
rectangular subset of IR ~ 

D ~ [-~,, ~,1 x [ -~ ,  ~21, ~, > 0 (i = 1 ,2) ,  (25) 

from which we define the following new state space 

2 A ~,,0 = ~ n D ,  N ~- Card ( ~ . 0 ) .  (26) 

Now we have to specify the boundary conditions. In practice, D is chosen to 
be large enough so that  the process will rarely reach the border. Hence, the 
choice of the boundary conditions is not crucial. Nevertheless, they have to insure 
that all the states communicate. Example of such conditions (usually reflecting 
conditions) will be given later. 

So we obtain £~,D an approximation of L: h. Chu 'D is a N x N matrix,  it can be 
interpreted as the generator of a controlled Maxkov process xh'D(t) in continuous 
time and finite state space; {~h,D; k E IN} denotes the corresponding Markov 
chaitL 

The cost function is of tile form 

Ja.o(u) ~= T-.colim E T fo T f~(xh'O(t))'lt = ~_~ fu(x) t,h.'D(x) , (27) 
XEIIt~,D 

where t~n" h,O is the invariant measure 1 of the process Xh'D(t) (more details can be 
found in [1]). This measure is a solution of the following linear system 

IE zh,'~(,J,x) ~,~'°(u) = 0 ,  Vx e m~.o,  Z: ~."'~(~) = 1.  (2s) 

where u e/~h.D, the class of policies which is defined by 

u E/~h,D < :- u is a mapping from IR~, o into [u,E I. 

A Hamil ton-Jacobi-Bel lman equation can be stated for this ergodic control prob- 
lem 

min (yem~h~ £~'D(x,y) v (y )+fU(x ) )=p ,  VxEIR2,D, (29) 
ueh,E 

,D 

where p is a positive constant and v : IR~, D --* IR (i.e. v E IR N) is defined up to 
an additive constant. In the first term of this equation, u has to be considered as 
an element of [u,~] (f~(x) = f(u,x)). Equation (29) has been studied in [1], for 

tin tile discrete case we also use the notation ~, p(x)IJ~ '° (x) = (In, p~,D). 
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fixed h and D. In particular, the existence and uniqueness property for a solution 
(v, p) • ]p~r × ]R + is established. 

Equation (29) appears as an approximation for the Hamil ton-Jacobi-Bel lman 
equation (6), and leads to the solution of the ergodic control problem ~socia ted  
with the Markov process  xh'D(t) in continuous time, finite state space, and in- 
finitesimal generator ~h.D 

3.2 T h e  P o l i c y  I t e r a t i o n  A l g o r i t h m  

In order to solve (29), we use the policy iteration algorithm [5,8]: suppose that 
u ° E Lth,D - -  the initial policy - -  is given. Start ing with u ° we generate a sequence 
{uJ;j > 1}. The iteration uJ --+ u j+l proceeds in two steps 

compute (vJ ,~ )  we compute (vJ, p j) • IR ~v × IR + the solution of the 
linear system 

, , h , D  r ", 
E = p ,  w • 

yEIR2h,D 

compute u j+l we solve the N following optimization problems: for 
any x E ]R~, D 

uJ+l(x) E Arg mJn ( yem~.o £hu'D(x'Y) vJ(y) T f"(x))  

The convergence of this algorithm is stated in [1] (where numerical results can be 
also found). 

R e m a r k  3.1 The first step of this algorithm leads to a linear system of dimension 
N. Let IR 2 h,D = {xi; i = 1 , . . .  ,N} ,  then the unknown parameters  are 

,(x2), v(x3),..., v(xN), p, 

and we take v(x 1) -- O. 

R e m a r k  3.2 For the second step, the optimization problems are nonlinear and 
they are solved by means of iterative routines. The nonlinearity comes from the 
discretization technique we use. Indeed, the choice of finite difference approxima- 
tion (22) depends on u. Instead of (22), we can use central difference approxi- 
mation (so that  it does not depend on u), in which case the second step becomes 
explicit because the functions to be optimized are now quadratic in u. On the 
other hand,  with this kind of difference approximation, a certain condition on the 
parameter  h has to be fulfilled (h must  be small enough) for the matr ix  £h,D to be 
the generator of a Markov process. See [10] p.175-179 for further considerations. 
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4 C o n v e r g e n c e  o f  t h e  C o s t  F u n c t i o n s  

We suppose that  hi = h2 and we denote it by h. In this section, we prove the 
convergence result 

Jh,o(~') "-' J(u) , W, e U 

as the discretization parameter  h tends to 0 and the set D tends to 1R ~. Let us fix 
u E H. All the results of this section - -  up to corollary 4.7 - -  are adapted from 
[7], 

a -  a sequence of discretization sets 

We consider two strictly increasing sequences { ~ ;  h > 0} and { ~ ;  h > 0}, such 
that z h > 0 and ~r h --, ~ as h ~ 0. We define 

h --h --h h 
D h -" [ - ~ l , X l ]  X [ - x 2 , ~ 2 1  . 

We suppose that  

h--+01im h 5h = 0 , where 5h =z~ radius(Dh) . (30) 

Let Fh be the boundm'y of Dh, we define ~h, the discretization of Fh as follows 

x E r h .~---~. I 

X E F h C I ] R ~  , 

o r  

x E Oh N ]R2h, and 3y E Vh(x) such that  y 9~ Dh N IR~ , 

where Vh(x) =~ {y e IRIS; Ix - Yl < is the set of points adjacent to x. We 
define 

/Th ~ Oh Iq IR~. 

/Th is the state space for the discretized problem and ~h is the set of boundary 
points. We use the same se t -up  as in section 3 and we define 

-xh(t) xh,D (t) , 
"xz 'h(t  ) ~ xh 'D~( t )  , 

with initial law v h , 

with initial condition = X ,  

b -  the process :Z^(t)  

We can describe the process -xh(t) in the following way. We introduce 

• a sequence {Ath; n >_ 0}, where Ath~ represents the elapsed 
time between the n-th and the (n + 1)- th  jump. 
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• a Markov chain {~a~;n > O} with values in ~h, where ~h 
represents the state of the process between the n- th  and the 
(n + 1)-th jump. 

We consider 

~(~,~) =~ ( ~ . ( ~ ) ) - ' ; ~ ( ~ , v ) ,  w , v  e v " , x # u ,  

(with 0/0 = 0). We have the following properties 
h --h --h • the pair (Atn+l,~n+a) depends only on ~n, 

• under the conditional law P( .  ](h ___ x), the random variables 
h --h At,+l and ~.+1 are independent. 

• under the conditional law P(  I(~ x), h • = Atn+ 1 is exponen- 
tially distributed with parameter ()~h(x)) -~ , 

• rob(x, y) is the transition probability of the chain {~h ; n _> 0}, 

Now we give a representation for the process ~'h(t). For this purpose we must 
specify the boundary conditions. These are of Neumann type (reflected) in order 
to simplify the proof of the convergence result (lemma 4.8). 

We define 

a = (0 o) = ah(~) = a + h 
a 0 a 2 ' 0 Ibm(x)[  ' 

and the stopping time 

T h ~= "it _> 0; xh(t) e rh " inf 

It is easely seen that for any x E ~h \ ~h 

E Zhn(x,Y)(V - x )  = b"(x), 

Z ~ ( ~ ,  Y) (Y - X) ~ (Y - x) = ah(x) , 
ve~ h 

which yield the 

P ropos i t i on  4.1 The process {Xh(t) ; t > 0} admits the following representation 2 

= xh(0) + ) M (t) (31) 

h h 0 0 
+ ( 0 )  N° - ( t ) -  ( 0 )  N ° + ( t ) + ( h ) N - ( t ) -  ( h ) N+(t) ' 

2lla denotes the indicator function of the event A. 
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N°-(t)  ~ Y~. lI{xd,-)=_,~} II{x,(,-)=h/2} , 
8<t 

NO+(t) ~= ~ ]Iixt(,-)=~} lI{x,(,-l=-h/2} , 
s<t 

" 

-- y~, II{x,(s-)=-e~} , 
s<t 

N+(t) ~ Y'~.lllx,(,_)=el) , 
s<t 

and Mh(t) is a square-integrable martingale, with increasing process 

(M h , Mh)t = fot ah(7~h(s)) ds . 

c - a priori estimations 

P r o p o s i t i o n  4.2 

E suplMh(s)] < 4 K ( h ) t .  (32) 
\ ,_<t 

Since Ib (x)l < C(1  + Ixl), we deduce that  for any x in ZI h \ I  ~h Proof 

lah(x)l = trace(ah(x)) < K(h) with K(h) A a 2 + h v / ~ C ( l + ~ h )  ---, a2 
- -  ' ~ -  h ~ O  " 

And proposition 4.1 yields to 

= fo' trace(ah(~h(s)) ds < K(h)  t .  t race{M h , Mh)t 

From which (32) follows, using the Burkholder-Gungy inequality. [] 

R e m a r k  4.3 The jumps of M h and ~ h  coincide, and those of :~.h are of amplitude 
less than h, so 

s u p l A M i h ( t ) l < h ,  i = 1 , 2 .  
t>0 

P r o p o s i t i o n  4.4 

( )' E.supI-X~'h(s)[ < 3 (Ixl' + (Ct ) '  + 4 K ( h ) t )  exp(2Ct  ) . (33) 
k ,<_t 
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Proof F rom (31) 

[Xh(t)] _< eh( t )  + C f0 t IXh(s)] ds ,  where  ~h(t) =~ ]Xh(0)l + C t + IMh(t)l  • 

Using Gronwall ' s  l emma,  we get 

[~;(h(t)[ < e h ( t ) + C  fo'¢h(s ) e xp (C( t - s ) )d s<_  (su<_p¢h(s)) exp(Ct) . 

Hence  ] \ 

%p_ I~rh(,)l < (pr~(0)l + c t + sup._~, IM~(s)l)j exp(C t ) .  

And  (32) leads to (33). [] 

R e m a r k  4 .5  I t  follows f rom (33) tha t  the  sequence {r h ; h > 0} of r a n d o m  times 
tends  to infinity in probabi l i ty  as h --* 0. 

d - convergence of invariant measures 

On the space D 2 = {~ : IR + --~ IR 2 ; right cont inuous  aud  wi th  a left l imit} with 
the Borel  a - f ie ld  B(D2), we define the following probabi l i ty  laws 

]Pvhh ---- law of process  ¢-~h with :~h(0) ~ v h , 
IPv = law of process  X with X(0 )  ,.- v , 

IP h = law of process  ~ h  s tar t ing f rom x , 
IP,  = law of process  X s tar t ing  f rom x .  

P r o p o s i t i o n  4 .6  Suppose that v h '.. v, then 
h~O 

~ ~ ~ on ( D ~, B( D b  ) • 

Proof  Fix x in IR 2 and {Xh ; h > 0} a sequence in IR 2 such tha t  

h 
Vh > O , xh •-Dh a n d [ x h - X I < _ - ~ v ~ ,  

(in par t icu la r  xh --* x as h ---* 0). Using the  represen ta t ion  (31) in te rms  of serni- 
mar t inga le  for the  process  ~ h ,  the  a priori es t imat ion  (33), the  remark  4.3, and 
results  f rom [14] (th. 5.8, ch. 2) we prove tha t  

lPh h h=~0 IP~ on (D  2, B ( D  2) ) .  

Fur thermore ,  the  convergence is uniform with respect  to x on any  compac t  subset  
of ]R 2, the  p roof  of the  proposi t ion  follows. [] 
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Coro l l a ry  4.7 Let 72an ~ lz~ ,Dh be the invariant measure of the process ~ h  (Vh > 
0). I f  # ,  is a weak limit of some subsequence of {ph}, then # ,  is an invariant 
measure of  the process X .  

We consider #~ the invariant measure of X, 

L a m i n a  4.8 

~ h  
/~ h=~0 /~ , V u E L / .  

Proof In view of corollary 4.7, it is enough to prove that 

the sequence {TZ~; h > 0} is tight, (34) 

and a sufficient condition for (34) is that there exists a constant C independant 
of both t and h, such that 

E]Xh'Dh(t)] 2 < C . (35 / 

For notational convenience, we denote X = X h'nh, Xi  = X h'Dh, b~(. ) = bi(. ). 
Starting from the representation (31/, the proof is identical to that of lemma 2.1. 
We are concerned with the behavior of the function 

V(t) ~ E (fl X,~(t) + z X,(t) X~(t) + X~(t)) . 

Since X is a pure jump process 

V ( t ) -  V(O) = E E [ f l (X l ( s - )  + AXl(s)) 2 -  f l X ~ ( s - )  
s < t  
-+c (x , (s - )  + ax , (8 ) ) (x2 ( s - )  + ax2(s))  
-~x,(~-)x2(s-) 
+(x~(~-) + a x e ( s ) ?  - x~(s-)] 

= E E [2~x~(~-) ax~(~) + ~ a x , ( ~ )  2 + cx~(~-) ax~(~) 
- + ~ x d ~ - )  AXe(s) + 2 Xd~-) AX~(~) + a X d s )  21 . 

This last equation and the representation (31), give 

v(t) - v(0) = 2 ~ E/0' X,(s) X~(~) ~(Ix,(,)l<~,') & 

+p({x~(~-)  = 7} n {x,(~-)  = ~'}) 
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h2 [ 
+~T ~ P({x:(,-)=-5)n{x,(r)=-~}) 

] +P({X2(s-) = ~} A {X, ( s - )  = ~lh}) 

+ ~ h  E j :  lbffX(s))l ds + e E fotXz(s) b2(X(s)) ds + e E / :  X2(s) bz(X(s)) ds 

+~ h E fo=Xz(s -) dN-(s) - ¢ h E fot X,(s-)dN+(s) 

+ 2 E  fotx2(8)h2(X(s))ds + h E fot [b2(X(s))[ds q- a2t 

+2 h E Y~ X2(s-) [lI{x2(~_)=_~} - lI{x,(~_)=~}] 
s<_t 

+ h  2 E E [lI{z,(,-)=-~} - lIix=(,-)=~}] • 
s~t 

the sum of terms 2, 3 and 4 is negative for h and ¢ small enough. The sum of the 
last two terms is negative as soon as h < 2 ~2 a. 

We chose a law for X(0) which is symmetrical  with respect to 0, and the two 
axes. Then  we get, using the symmetrical /dissymmetrical  nature  of the problem 

E / :  X I ( s - ) H N - ( s  ) ~_ 0 , E fotXl(8-)dd'~+(8) > 0 . 

So 

v( t )  - v(o)  _< 2 ~ E/0' X,(s) X:(s) ~,x.(.)j<~:} d, + ~ E Jo' X,(.) b2(X(~))d, 

+ ,  E ./o' x~(,)b~(x(,)) d, + 2 E J0' X2(,) b~(X(,)) d, + Cr2t 

+h fl E fot [bl(X(s))[ds + hE fo' ]b2(X(s))Ids ' 

which is the same expression as in lemma 2.1, except for the last two terms. But 
these terms are of linear growth with respect to X1, X2, with a multiplicative 
coefficient which tends to 0 as h --+ 0. The first term is also different, but  

2 fl S fotXl(s) X~(s) II{Ix,(s)l<w,a } ds = 2 fl S fotXI(S) X=(s) ds 

- 2  g E Jot x , ( s )  x~(s) ~jx.(.)j=-~) d, . 

and this last te rm is negative. This shows (35). [] 
Since Pu has a density, the tools used for the proof of lemma 2.2 lead to 

( f~ ,  7/hu) ----+ <f~, Pu} , 
h-+0 

which proves the 

T h e o r e m  4.1 

Jh ~(~) --~ J(~) w e u .  
' h . . ~ O  
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R e m a r k  4.9 In [1], we proved the existence of an optimal feedback control law for 
the discretized problem. With such a control, we can associate a feedback control 
law ~h for the continuous state space problem, where fih is piecewise constant. 
Using theorem 4.1 we can easely conclude that  

lim sup Jh,Dh (fib) < inf J ( u )  . 
h---,O - -  uC/4 

We would like to prove the stronger result that  the sequence {uh; h > 0} is a 
minimizing sequence for the functional J ,  i.e. 

J(Sh) --~ inf J(u) quand h ---, 0 uE/g ' 
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