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Abstract We study a class of ergodic stochastic c o n t d  
problems for difision processes. We present a numerical a p  
prozimation to the optimal feedback control based on the dis- 
cretization of the infinitesimal generator using finite diflerence 
schemes. Finally, we apply these techniques to the control of 
semi-actice suspensw~ for road vehicle. 

This paper deals with a numerical procedure for optimal 
stochastic control problems and ita application to a non trivial 
example. This procedure consists in approximating the non 
linear Hamilton-Jacobi-Bellman partial differential equation 
which is formally satisfied by the minimal cost function. We 
use finite difference techniques and with a suitable choice of 
the schemes, the resulting discrete equation can be viewed 
as the dynamic programming equation for the minimal cost 
function for the optimal control of a certain Markov process 
with finite state apace [14]. 

In section 1, we introduce a particular class - denoted 
by C - of ergodic control problems. Some characteristics of 
this problem are non classical (the diffusion is degenerate, the 
coefficients are non linear and discontinuous) and there is no 
available result concerning the HJB equation. This class of 
problems derives from I particnlar application in control of 
suspension sys tem [3]. 

In section 2, the approximation procedure is detailed in a 
more genera context than the class C. For the special case of 
the cl- C we have already stated two types of results [3]: ex- 
istence and uniqueness property for the discrete HJB equation 
(with convergence of the algorithm used for solving it) and a 
convergence property of the approximation as the discretiza- 
tion step tends to 0. Finally, we apply these techniques to the 
suspension problem [3,2] and perform some numerical tests; 
related suboptimal and adaptive techniques may be found in 
121- 

1 A Class of Ergodic Stochastic 
Control Problems 

1.1 The problem 
Let us consider the following stochastic system 

dXt = b ( u ( X t ) , X t ) d t +  ( ) dWt (1) 

where X is a process which taken values in El2, W is a scalar 
standard Wiener process and U > 0. b maps IR x El* in El2 
and is defined by 

where 71, 72 are strictly positive constants. In (l), U is a 
feedback control which belongs to the class U of admissible 
controls defined by (fix E, P such that 0 < 

U : El2 -+ LP] and there exists ii finite number 
U E 2.4 * of submanifolds of IR2 with dimension less than 

or equal to  1 outside of which U is continuous. 
We are concerned with an ergodic type control problem, 
whose cost functional is 

< P < 00) 

where the instantaneous cost fnnction f is defined by 

f(u, z) fi (u 2 2  + 71 2 1  + n sign(zz))' - (3) 

We denote b'(z) 9 b(u(z), z), fu(z) fi f(u(z), 2). 

The Hamilton-Jacobi-Bellman equation for the ergodic 
control problem (1,2) can be formally written as (d [4,15,16]) 

where U : lR2 + IR is defined up to  an additive constant, p 
is a constant and Cu is the infinitesimal generator assodated 
with (1) 

w e  present a da~e of models which derive from a Control Prob- 
lem for semi-active suspension systems. In these models - 
like h most redistic models - difficulties of the following 
type are met: the coefficients of the diffusion which we want 
to control are discontinuous and strongly nonlinear. In sec- 

we present the original semi-active suspensions problem. 
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Remark 1.1 The techniques presented in this paper may be 
applied to a wider dm of problems. Indeed, we can consider 
a system of the form 

d (  g)=(  b l ( X t )  ) d t + (  : ) d W t ,  

where Xf takes values in IR"i (i = 1,2) and W is a standard 
Rn2-valued Wiener process. The main hypotheses are 

tion 1.1 we introduce the class C of problems. In section 1.2, bz(u, Xt) 
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(i) the discontinuous terms appear only in the "noisy part" 
of the system, that is b l ( z )  is smooth and u d  > 0, 

(ii) the system satisfies a stability property (e.g. EIXtI' 5 

Point (i) permits us to use a Girsanov transformation to re- 
move the discontinuous terms. 

Remark 1.2 In this case the choice of the value of the func- 
tion "sign" at point 0 is not important. Indeed, in (1) the 
noise is added to the second component, so we can prove 
that P(X: = 0) = 0, Vt .  This property implies that, if we 
change the value of sign(O), the (weak) solution of (1) will not 
be changed. If i t  waa false, we should use differential inclu- 
sion techniques to give a meaning to the stochastic differential 
equation (1). 

Remark 1.3 The cost function (2) can be rewritten as 
J(u) = (f" , /A,,), where pu is the invariant probability mea- 
sure associated with system (1). In [9] we established an exis- 
tence and uniqueness property for pu which gives a meaning 
to  expression (2). 

c, w 2 0). 

1.2 An example: a semi-active suspen- 
sion system 

In this section we present a damping control method for a 
nonlinear suspension of road vehicle (comprising a spring, a 
shock absorber, a mass, and taking into account the dry fric- 
tion, d. figure 1). The aim is to  improve the ride comfort. 

Among alternatives to classical suspension systems (pas- 
sive systems) we distinguish between active and semi-active 
techniques. An active suspension system consists in force el- 
ements in addition to a spring and a damper assembly. Force 
elements continuously vary the force according to some con- 
trol law. In general, an active eystem is expensive, compii- 
cated, and requires an external power source [12]. In contrast, 
a semi-active system requires no hydraulic power supply, and 
its hardware implementation is simpler and cheaper than a 
fully active system. A semi-active suspension system acts 
only on damping or spring laws, 80 i t  can only dissipate or 
store energy. 

Here we consider a system with control on the damping 
law, the forces in the damper are generated by modulating its 
orifice for fluid flow [1,17]. We use the simplest model which 
consists in a one degree-of-freedom model (this model can be 
represented M a problem of the class C). 

The equation of motion for a one degree-of-freedom model 
is (cf. figure 1 for the exact definition of the terms) 

m j i + c y + k . y + F , s i g n ( i ) =  -m? : .  (5) 

c" denotes the input acceleration. The restoring force 
k, + F, sign@), has a linear part k, y, and a nonlinear part 
F, sign( b) which describes the dry friction force (Coulomb 
friction force) [6,7]. The damping force is c i  where c > 0 is 
the instantaneous damping coefficient (the control is acting 
on this term). 

The problem is to compute a feedback law c = c(y, C )  such 
that the solution of the system (5) minimizes a criterion - 
related to the vibration comfort 

e" is supposed to be a white Gaussian noise process, e = 
- u d W / d t  where W is a standard Wiener process. 

control 

l 
a absolute displacement of mass m 
y absolute displacement (y = a - e) 
e stochastic input (surface road acceleration) 

c shock-absorber damping constant (controlled) 
m sprung mass 

k, spring constant 
F, dry friction constant 

Figure 1: One degree-of-freedom model. 

Using U = c/m, 71 = k,/m, 72 = F./m and X = 
equation (5) can be rewritten as (l), with 

2 Numerical Approximation 
We use the following procedure: we do not discretize directly 
the HJB equation but we transform the original ergodic con- 
trol problem to a control problem for a Markov process in 
continuous time and finite state space (section 2.1). Then, 
for the discrete case, we can write a dynamic programming 
equation (section 2.2); this equation is solved numerically via 
an iterative algorithm (section 2.3). 

We describe the approximation procedure in the case of a 
diffusion process defined by 

dXr = b(u(Xr), X t )  dt + ~ ( x t )  dWt 

l T  

(6) 

and with the following cost function 

J(u) = liminf - E f ( u ( X t ) ,  X t )  dt . (7) 

X takes values in IR" and W in IRd. U belongs to a given 
class U of applications from IR" to U c I R ~ .  We suppose 
that, for any U E U, the solution X t  of (6) admits a unique 
invariant probability measure, so the cost function (7) is well 
defined. 

T-oa T 1 

The infinitesimal generator associated with (6) is 

A where U(.) = u ( z ) u * ( z ) ,  b y ( % )  = b , ( u , z )  and f"(z) = 
f (U, XI. 



2.1 The finite state space problem 
In a first step we approximate the solution Xt  of (6) by a con- 
trolled Markov process X," in continuous time and discrete 
(but infinite) state space. In a second step, Xt  is approx- 
imated by a controlled Markov process Xf'" in continuous 
time and finite state space. 

First step: discrete state space Let h,  (resp. e,)  
denote the finite difference interval (resp. the unit vector) in 
the ith coordinate direction and h = ( h l ,  . . . , hn). We define 
El:, the h-grid on El", by 

El; {Z  E R " ;  zi = n i h i  + h i / 2 ,  i=  1, ...,n, ni E Z) 

The infinitesimal generator (8) is approximated using finite 
difference schemes given in table 1. The reason for the choices 
in the schemes will be explained below. 
L' is approximated by an infinite dimensional matrix CK 

given as follows 

L"+(.) Li+(z) fi Li(z,y)dJ(y) 7 VZ E m: 
v m ;  

the terms Li(z,g) of this matrix are given in table 2. 

Suppose that 
The matrix Li satisfies : EVER; L i ( z , y )  = 0, Vz E IRE. 

ai,(.) - l a i j ( z ) l ~  0 ,  ~z E E:, i = 1,. . . ,n , (9) 
j ; M i  

then L i ( z , v )  1 0 ,  Vz, Y E El;, z # Y. 

Remark 2.1 The choice of the finite difference schemes we 
use (cf. table 1) depends on the sign of the drift coefficients 
of the diffusion process. The reason for this choice is the 
following: if (9) is true then {Ci(z,y);  z, y E Et;} can be 
viewed as the infinitesimal generator of a controlled Markov 
process X:  in continuous-time and discrete state space IR; 
[11,14]. We will see later why this is important. 

We get a stochastic control problem for a Markov process 
X :  with infinitesimal generator L;, and the following cost 
function 

Jh(U) = A 2imw E + lT f"(x:) dt , 

A and U E Uh = {U : application from El; to U}. 

Second step: finite state space X:  has a discrete but 
infinite state space; if we want to perform computations i t  
is necessary to  work on a finite state space. We consider a 
bounded domain D of IR". We define a new state space 

A l R g , ~  = IRK n D = {zl,.. . , z N ) ,  N e Card (IRE,D) . (10) 

Because we are working on a bounded domain, we must 
specify boundary conditions. In practice, D will be chosen 
large enough so that the process will rarely reach the border. 
Hence, the choice of the boundary conditions is of little im- 
portance, provided that all the states communicate. Example 
of such conditions (usually reflecting conditions) will be given 
later for the suspension problem. 

So we get an approximation &i,D to LE 

L i , D  +(2) = L i , D ( z ,  y) dJ(y) 9 

V W . D  

& i , D  is a N x N-matrix. 

Remark 2.2 The choice in the finite difference schemes (cf. 
table 1) imply that "E%D L ; , , ( z ,Y )  = 0 (VZ E R;,D), 
moreover, hypothesis (9) implies that L ~ , D ( z , Y )  I 0, VZ, y E 
RE,", z # Y .  

Hence L:," can be interpreted as the infinitesimal genera- 
tor of a controlled Markov process X:'" in continuous time 
and finite state space (see [8,11] for more details). 

With remark 2.2, the discretized problem can be viewed as 
a control problem for a Markov process X:'" in continuous 
time, finite state space, and infinitesimal generator L ~ , D .  The 
cost function is 

A and U E U),," = { u : application from R;,, to U}. 

Remark 2.3 Let /&" be the invariant measure of the pro- 
cess Xf,D.  Using p:.", the cost function (11) can be rewritten 
as 

Jh,D(u) = fU(Z)pkvD(z) * 

=E=;,, 

The measure p:lD is solution of the following linear system 

2.2 The "discrete" 
Hamil t on-Jaco bi-Bellman equation 

Associated with the control problem defined in the last section 
we have the following dynamic programming equation 

r 1 

(12) 
where p is a strictly positive constant and U : lR;,D -.* IR (i.e. 
v E E l N )  is defined up to an additive constant. 

If ( v , p )  is a solution to (12) then 

r 1 

is an optimal feedback control law, and p is the minimal cost : 

Equation (12) gives the solution to the ergodic control prob- 
lem for the Markov process X:*D.  It can also be viewed as 
an approximation to the HJB equation (4). 

P = J h , D ( a )  = minuEU,,,D J h , D ( u ) .  

2.3 The policy iteration algorithm 
In order to solve (12), we use the policy iteration algorithm 
[10,13]: suppose that uo E &,D - the initial policy - is 
given. Starting with U' we generate a sequence { u J ; ~  2 1). 
The iteration U' - ujtl proceeds in two steps (cf. table 3). 
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i ,  j = 1,. . . , n , i # j, ei unit vector in the ith coordinate direction 

Table 1: Finite difference schemes. 

Table 2: The discrete infinitesimal generator. 

Remark 2.4 The first step of this algorithm leads to a linear 
system of dimension N. Let = (2’ ; i = 1,. . . , N}, then 
the unknown parameters are u(z2), u(z3), ,. . , u(xN) ,  p and 
we take U(.’) = 0. 

Remark 2.6 For the second step, the optimization problems 
are nonlinear and they are solved by means of iterative algo- 
rithms. The nonlinearity comes from the discretization tech- 
nique we use. Indeed, the choice of finite difference approx- 
imation (cf. table 1) depends on U. Instead of the schemes 
of the table 1 ,  we can use centered difference approximation 
(so that  it does not depend on U), in which case the second 
step becomes explicit because the functions to be optimized 
are now quadratic in U. On the other hand, with this kind of 
difference approximation, a certain condition on the param- 
eter h has to be fulfilled (h must be small enough) for the 
matrix C:lD to be the generator of a Markov process. See 
(141 p.175-179 for further considerations. 

2.4 
2.4.1 The approximation 

In this example, the discretized state space are Et; and 
where h = ( h l , h z )  and D is of the form D = [-Z~,ZI] x 
[-22,5], so that  

Application to the class of problem C 

The matrix a(.) = ( ,“2 ) is degenerate. Condition 

For this example we give explicit boundary conditions. Let 
( 9 )  is fulfilled. 

r h , D  the set of points on the border. We choose very simple 
reflecting conditions and we obtain the matrix f& described 
table 4. 

2.4.2 The convergence results 

We present two kinds of results. Firstly, considering the dis- 
crete HJB equation ( 1 2 ) ,  we can prove that it admits a unique 
solution and that the policy iteration algorithm converges to 
this unique solution. Secondly, we can also prove a conver- 
gence result for the approximation as the discretization step 
h tends to 0. These results are presented for the class C. 

Existence and uniqueness of a solution to the dis- 
crete HJB equation 

Theorem 2.0 The H J B  equation (12) (with v ( z ’ )  = 0) ad- 
mits a unique solution ( v ,  p) E ” x Et+. 

For the existence part of theorem (2.6), we use the following 

Lemma 2.7 The policy iteration algorithm converge to an 
optimal feedback control. 
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compute ( t9,p’)  

Table 3: The  policy iteration algorithm, iteration uj +. uj+l. 

we compute ( w J , p J )  E EtN x IR+ the solution of the linear system 

LXJD(z,  y) v J ( y )  f”’ (I) = P3 1 E m:,D 
YE%J 

Table 4: Discrete infinitesimal generator L:,, (class C). 

Theme rerultm are proved in [3], but one can find the same kind 
of results in a more general setup in [SI. 

Approximation: a convergence result We present 
a convergence result concerning the approximation, when the 
discretization parameter h tends to 0 and when the domain 
D tends to IR’ (for a complete proof of this result cf. [9]). 

Theorem 2.8 Consider two strictly increasing sequences 
{T:; h > 0) and {Zt; h > 0) such that &‘ > 0 and Zc -+ 00 

as h -+ 0. Define Dh = [-$,e] X [-Z:,$]. Suppose that 
A limh,oh6h = 0 ,  where 6h = radiUS(Dh). Then, for any 

U E ut Jh,Dh(U) * J(U) 0s  h -+ 0. 

Remark 2.9 Theorem 2.6 proves the existence of an opti- 
mal feedback control law for the discretized problem. With 
such a control, we can associate a feedback control law fLh 

for the continuous state space problem, where Gh is piecewise 
constant. Using theorem 2.8 we can easily conclude that 

lim sup 
h-0 

We would like to prove the stronger result that the sequence 
{Oh;  h > 0) is a minimizing sequence for the functional J, i.e. 
J(&h) + infu,=u J ( u ) ,  when h -+ 0. 

2.4.3 A numerical example 

Parameters As an example, we use values which roughly 
correspond to  a suspension system for the seat of a truck 
driver : m = 60(kg), k, = 3500(N/m), F, = 40(N). These 
values have already been used in [3]. We also set U = 0.5. 

We use the following discretization parameters F1 = 
l m a =  = -ymin = 0.1 (m), nl = 30, = &,,a, = -y min . - - 
1 (m/s), no = 30. 

Figure 2: The  optimal feedback control. 

Optimal feedback control[3] The approximated opti- 
mal feedback control (13) (plotted on figure 2) ie computed 
using the policy iteration algorithm. The value of the minimal 
cost is given below. 

Suboptimal feedback control #1 One possibility is 
to find a feedback control which minimizes the instantaneous 
cost function (3). We obtain %(z) = (-k,z~sign(zs) - 
F.)/lzzI. To take into account the constraint < U 5 Ti, 
we use the following control law : U(.) = (%(z) Vu) ATi (cf. 
figure 3) (we take = 0 and ii large). 

Suboptimal feedback control #2 The previous re- 
sults lead us to the class of suboptimal feedback controls - 
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Figure 3: The suboptimal feedback control #l. 

Figure 4: The suboptimal feedback control #2. 

parametrized by 0 IRz - of the following form 

A 
w(z)  = [(el + e2 z1 sign(r2)) vg) ~‘ii , 

0 = (el ,&) E IR’. The techniques presented above can also 
be applied to compute the suboptimal feedback control “6 
such that Jh ,Dh(U&)  = minece Jh,D,(Ue), where 0 = {e E 
Elz; ue E U}. We get 41 = 137.2, 42 = -12130. 

The control law ub(z) is plotted on figure 4. A feedback 
control where the sign of the product 21 2 2  (i.e. y #) appears 
has already been proposed in [17]. 

Comparison of the feedback controls Now we com- 
pare the three feedback controls presented above to the con- 
stant control u(X) = UO. The optimal constant uo (i.e. the 
constant which minimizes the cost) is 188. The different val- 
ues of the cost are given in the following table 

cons tan t control 

oDtimal control 
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