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TESTING FOR A CHANGE-POINT IN LINEAR SYSTEMS
WITH INCOMPLETE OBSERVATION

Fabien CAMPILLO

INRIA, Valbonne, France

Abstract

The aim of this work is to develop a test procedure for a change-point detection
problem in a partially observed linear Gaussian continuous time model. We study the
asymptotic behaviour of the test we propose. We also investigate the properties of
the maximum likelihood estimators of the associated parameters.
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1. INTRODUCTION

The detection of changes in statistical models has inspired many works for years,
as proved by the numerous publications on the theme {cf. the survey papers [11,17]
and the survey included in [1]). The special importance of these methods lies in
their ability to comply with sudden parametric model variations. Classical methods
were unable of that.

One of the most often used techniques is based on the maximum 1likelihood statis-
tic. This approach has been mainly developed by Willsky and Jones [18], in the
failure detection problem in linear systems with incomplete observation. Their works
lead to a practicable algorithm for the implementation of the likelihood ratio test
procedure. However, the level of this test is not well defined. What is more, to
this day no result has been presented concerning the optimality of this method and
the convergence of the associated estimators.

An interesting approach to this problem is given by the asymptotical statistic
theory (cf. Lecam [13], and also Ibragimov-Has'Minskii [101), already applied to the
failure detection by Deshayes and Picard [5 ,91. For statistical model with change-
point, they study the asymptotic behaviour of the 1ikelihood method. With an invari-
ance theorem on the likelihood process; their works emphasize "edges-problems", then
they overcome these by using weighted likelihood ratio statistics. :

Most works already published in this field concern the failure detection in
discrete time dynamical systems. Let us consider the continuous time linear system :

dxt=(Axt+a)dt+Bdwt,xo=x0] o
(1.

0

dy, = (CXt + c)dt + dVt , Y

t 0

in which X represents the state of a non-observable physical system and Y repre-
sents its observation. W and V are two independent standard Wiener processes,
with values in IR" and IRd respectively; X and Y take values in R" and
IRd respectively.

This paper deals with the test for sudden changes in parameter a . The problem
of detection of abrupt changes in parameter A is more difficult and in Campillo [3]
we investigate this situation.

Let us consider the state equation :

dX, = {AXt +a+ I(t,t)y}dt + B dwt , (1.2)
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where TI'(t,t) =0 if 1<t , 1 otherwise; T denotes the unknown time of failure
and y (#0) the amplitude of the jump. We suppose that the coefficients A, a, B,
C, ¢ and the initial condition X, are known. 6 = { T ) denotes the unknown param-

eter,

Given the observation {Yt ; t <1} (to simplify the notations we will take 1
as final instant), we now have to decide whether there has been failure (i.e. T =>1),

or not (i.e. 1 <1). In the first case, we also want to estimate the failure param-
eter 6 .

In Section 2, we shall present the likelihood ratio test associated to this
situation; because of the edges-problems, we shall have to reformulate the test prob-
lem. Then we shall present an asymptotical study (Section 3) : We shall elaborate a
new test procedure and prove its asymptotical optimality in the local sense (Section
3.2). We shall also investigate the asymptotic properties of the maximum likelihood
estimator of the failure parameter 6 (Section 3.3).

2. THE LIKELIHOOD RATIO TEST (LRT)

In this section, we present the LRT of the "no failure" hypothesis against the
"failure" hypothesis. The derivation of the likelihood ratio that we propose is
closely related to that of Wilisky and Jones in the discrete time case. At the end
of this section difficulties will come up, that are related with the implementation
of the likelihood ratio test (LRT) procedure.

Let us consider the system :

"
>

dXt = {AXt +a + T(t,t)y}dt + B dwt . Xo

(2.1)
dy

(CXy + c)dt + dv, , Y =0

t o]

Let Hj and Hl(e) be respectively the hypotheses of "no failure" and "failure
of parameter 6". We define :

X, = EX |V 5s<t]
R(t) = EQL(X, - X) (X -X)*)

(E0 denotes the expectation with respect to Ho and M* the transpose of M).
Xt and R(t) are given by the following Kalman “H-filter" (cf. [15) :

227

“n



dk, = (AX, +a)dt + R(t)Cx {dv, -(cit +c)dt} ]

(2.2)
R(t) = AR(t) + R(t)A* + BB* - R(t)C*CR(t) J
with io = x, and R(0) =0 . The innovation v of this filter is defined by :
t
vy = Yt - JO (C)(S +C)ds . (2.3)
It is well known that (cf. [15]) :
Under Ho : v is a standard Wiener process. (2.4)

We now want to compute the law of the process v under Hl(e) . To this end, we
introduce S{6,-) - the ¢-failure signature - :
. t
S(o,t) := Sg Y = [ I ¥(t,s) T(t,s)ds v (2.5)
0

where Y¥(t,s) 1is the fundamental matrix :

RS = (a - R(L)CHC) ¥(tys) 4 ¥(s,s) = I, (2.6)

n '

S(6,+) provides us with an explicit description of how various failures propa-
gate through the system and the filter, in the sens that :

t
Under Hl(e) : {vt - J S(e,u)du} is a standard Wiener process , (2.7)
0
which follows from the fact
W ey - [ $(6,u)du (2.8)
0
is the innovation of the Kalman filter based on the Hl(e) hypothesis.
Let @ = C({0,1] ;IRd) and f = Borel field over Q. We define Po (resp.
Pe) the measure induced by v on (Q,F) under the hypothesis H0 (resp. Hl(e)).
In fact P0 is the Wiener measure on (Q,F) . Using Girsanov's theorem, it follows
from (2.4) and (2.7) that PO~Pe and :
P, = L(8) dP,
! . 1 2
where L(8) = L(t,y) = exp f {S(e,t) dvy - 5 [s(s,t)]} } .
0

The likelihood ratio for "no failure" against "failure" is :
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L:=max{L(r,y) y0<1<1, y*o}.
Let :

1 1
M o Jo (sH* v, M es Io (SD)* s dt .

(=
. T
We can easily check that the maximum likelihood estimator 6 = l‘] of the
parameter § : L
L(8) = max {L(r,y) y0<1t<1, y#O}
is given by :
T € Arg max {M(T)* ult)y -1 M(T)} RS N L I
Ost<1 .
The LRT for failure detection is :
L<o : *“no failure"
s (2.9)
L>0 : "failure"

for some decision threshold o to be chosen.
We now come up against two difficulties :

- Though the distribution of the.statistic L(t,y) under H0 is known, the one of
max {L(t,y) 3 0<t<1, y#0} is not, because the dependence of L(t,y) with
respect to (t,y) is too complicated. So the level of the test (2.9) is not
defined.

- The LRT consists in testing all the failure hypotheses from O to 1. In order to
test the failure hypothesis at time T, the only useful information is given by
{‘{t s T<t<1} . When Tt 1is too close to 1, there is a lack of information
and the test procedure might fail. These "edges"problems" have been pointed out
from both a numerical (cf. [2,18]) and theoretical (cf. [5,91) viewpoints.

In order to overcome these difficulties we shall reformulate the initial test
problem : Instead of "t = 1" vs "t <1", we consider the new test problem :

H, : "no failure occurs before 1, (T2 74) 1
against (2.10)

Hy ¢ "a failure occurs before T (r < ‘EO)" J
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where T <1.

This method is related to the weighted Tikelihood ratio statistics introduced by
Deshayes and Picard. We shall derive a test procedure for Ho Vs H1 and prove its
optimality in a local sense for a well suited mode of convergence.

3. ASYMPTOTICAL STuDY

Several asymptotics can be considered for this problem, e.a. "amplitude of the
jump » =", "noises intensity - 0", "period of observation » «". In this last case
we have not yet obtained significant results. On the other hand, one can prove that
the first two asymptotics are equivalent (cf. Campillo [31).

We are now dealing with the first asymptotic. Let us consider the following
system :
- 1 -
dx, = {Axt +a+ Er(r,t)y}dt +B Mg, X=X 1
(3.1)

H

dYy = (CX, + c)dt + dv, boYy =0 J

e € ]0,1]. We suppose that the hypotheses of the previous sections are fulfilled.
Consider v the innovation process (2.2) -(2.3). As in the preceding section :
Under H0 : "{vt} is a standard Wiener process" (3.2)
n 1 1
Under Hl(e) : {Vt -z J S(e,u)du} is a standard Wiener process", (3.3)
0
where S(6,-) is defined by (2.5) -(2.6).
Let P0 (resp. Pge)) be the law of the process v on (Q,F) when Ho

(resp. Hl(e)) holds. (3.2) -(3.3) imply that P0 is the Wiener measure on (Q,F)
and :

aple) 1,
8 _ 1 * o1 2
“a-Fo— = exp JO {E S(S,t) d\)t ;;2' |S(e,t)| dt} . (3.4)

From now on, v will denote the canonical process on (&2,F) = (C([0,1] ,IRd),
Borel field) (i.e. vt(w)'= w(t)) . From Girsanov's theorem it follows that the
process : ‘
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1
1
We0) ey o1 Jo S(8,u) du (3.5)

is a standard Wiener process over (Q,E,P((f’). Eo and Eée) will denote the expec-

tation with respect to P0 and Pée) respectively.

In Section 3.1, we establish that the family {Pge)} satisfies a condition of
Tocal asymptotic normality (LAN) as e - 0. In Section 3.2, this property allows us
to derive an asymptotically optimal test procedure for H0 vs Hl' The kind of test
we propose is quite new in the failure detection problem, and is related to Neyman's
C{a)-test (cf. [4,16]).

In Section 3.3, we use Ibragimov-Has'Minskii's work [10] so as to investigate
the asymptotical properties of the maximum likelihood estimator of the failure
parameter.

3.1. Local Asymptotic Normality (LAN) of {Pée))

Let us consider the following notations :

v(8,t) is the mean square derivative of S(6,t) with respect to o,

1 (3.6)'
i.e. lim |5|‘2 ] |S(e+s,t) - S(6,t) - v(e,t)s12 dt =0 ;
§ -0 0
F(8) is the Fisher information matrix at point 6 :
1 (3.6)"
F(6) = J V(8,t)* (6,t) at ;
0
1 1 w
A(_:'e = JO V(o,t)* {dvt -z S(e,t) dt} . (3.6)

It is not difficult to prove that S(6,-) 1is differentiable with respect to 6
in L2(0,1). In fact, we have :

v(6,t) = [é{ Y| s{) where _é; i= 35y /3T .

T
THEOREM 3.1. Let eee={[ );o<r<1,y¢o}. The family {Pge);eee}

satisfies a property of LAN at point 6 as € - 0. Namely, for the following nor-
malized likelihood ratio :

(e) (€) 4 1+n
Ze’e(U) = dPe+€U/ dPe s, UE De,e i= {U = (v] € R ;8 +elE€ e} >
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the representation :
1
ZC,S(U) = exp {U“ Ac’e -y U F(e) U+ Oe’e(U)}
18 valid, where

@) Ia (ag o | PE)) = NOLF()) 5

(i2)  for any bownded sequence {Ue} (U€ € De 9) :
(&)~ timo_ u) =0
6 € -0 €,0' e

(e PLE) (10, (U >n) =0 as =0, vn>0).
Proof : From (3.5) it follows that :

1
. (e,6)
By g i Jo (8,t)* duy .

Under Pge), v(e,e) is a standard Wiener process, thus A is Gaussian with mean

€,0
0 and covariance matrix F(6). So (i) is proved.

We now define :
- _u* 1
0 e(U) = log (ZE’G(U)] u Ae,e + Q»U*F(G)U

€ - (€) _ 1
log [dPéH_iU/dPo] log [dPe /dPO] Ua o + 7 UF(O)U .

This, together with (3.4), yields

1
0, 4U) = % Jo [S(G+eU,t) - 5(8,t) - V(O,t)eU]* dvge,e)

>

1
1 2 )
o2 U,t) - . - ) '
2 ]0 [|s<e+e t) - $(6,t)|2 - |v(8.t)el] ] at

Let {Ue} be a bounded sequence. From this last relation we deduce that
0e e(Ue) is a Gaussian variable N(ue,og) under Pée)' The definition of V{(8,t)
’
implies that Mo 0 and oz -0 as e -0, so the assertion (ii) of the theorem

is proved.

232



T
Let 8y = [Y°} € © such that F(eo) >0, in [3] one can find an example of suf-
o uy
ficient condition for the existence of such a point. We substitute variable U = [ J
v

= (6 - eo) /e and instead of "1 = ro" vs Y1 < ‘to" we examine the test problem :
Hy * "uz 0" vs Hy:'u<0". (3.7)

We remark that v is a nuisance parameter. LlLet AE, F, OE(U) denote AE 6 °
s
3}

1
A
F(eo), Oe 6 (U) respectively; AL = t;] whe re Al (resp. Ag) takes values in
] A

€

IR (resp. lR"). Furthermore, we define :

(e) _ ple) (e) _ gle)
PU7" = Py veu s By’ = Bg e o
0 o
0 U
D ={U={];e +sU€®,|U|<K,u>0},
€,K v (]
1 U
D ={u=[);e +euee,|u|<K,u<0},
€,K v [¢]
b ,=0°, vt

e,K e,K v e,K *°
tet & : R x R" » {0,1} be the test function :
1 if &f <p(89)

2
,87) &= . . 3.8
) 0 if 8! >p(s) -2

ox (s}

where p(-+) 1is chosen so that

E(E) ox(al,6%) | 2 = 671 = o, 6%-ace. (3.9)

(o is a given false alarm probability). It follows from Theorem 3.1 that
law (A€ | Pés)) = N(O,F), so we can easily prove that the relation (3.Y) determines
without ambiguity the function . p(-), namely :

LEMMA 3.2.
2
ole?) = UM - g8 2 RN,
S

where q(a) denotes the (1 -a)-quantile of the Gauss law N(0,1), and
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Gl 9o n
G = (6> 9 6, € R, R, R
9 Gz

xn . .
B ) denotes the inverse matrix of F .

This is the main result of the section :

THEOREM 3.3., The test-sequence {<I>::‘} defined by ¢z = ¢*(A2,A§), 18 asymptotically
locally most powerful unbiased of level o .

In order to prove this result we need new notations and a lemma.

NOTATIONS 3.4.

1
Let A = [AZJ be a N(O,F) variable defined on a probability space (5,5,’!3'0) .
We define : :
(i) N(dsl,ds?) tne distribution of A ;
(ii) Nl(dél ]62) the conditional distribution of Al given Y H
(iii) Né(ds?) the marginal distribution of A% .

u
Let 'P'u (U= ) be the probability over (=,A) such that :
v
d'ﬁ'u = exp(U*a) c(V) d'P'o

(c{U) is a factor of normalization).
On the space (z,_é,'ﬁu) , we define :

(i) N, (ds',ds%) the distribution of A ;
]

2 2 2

(11) nl(ds! |s%) the conditional distribution of al given % =82 ;

(i) Was) the marginal distribution of a° .

We have the following cl&ssical results (cf. Lehmann [14]) :

(1) Nydst,ds?) = exp(uss) c(u) N(ds',ds?) ;

(i1) Nj(dsl [62)

exp(us’) ¢ (u) N(ds! 16?) ;
s

(i) Nds?) = exp(ves?) (caz(u))'l c(u) N(ds?) ;
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1

$ u

where & = [ 2] , U= ‘ ] . c(u) and ¢ 2(u) are normalizing coefficients. In
8 v §

varticular, we note that Ni(ds!|s%) = Nl(ds!|6%) is independent of v .

LEMMA 3.5. Let ¢_ € L“(n,g,P((f’) be such that o | <L a.s. (V). Then for
any given bounded sequence {U } in IR x R"

(e) - 1,2
£y o, £, v (20,09,

€ -0 "¢

where _(61,6%) = €{€) (o | al = 61, a2 = 621, By denotes the eapectation with

respect to $U (AE 30 Be’ Z.e. 1A€ - B€| -+0 as e -0).
Proof : First we prove that
(€) ~ gle)
E0 . exp UZAE + oe(ue) c(UE) <o Eo b exp(UgAE) c(UE) . (3.10)
The absolute value of the difference of these two terms is bounded by :
(€)
LES™" exp(uga,) c(u)) i1 - exp(Oe(UE))l . (3.11)
(e)y -
Law . | PO ) = N(O,F) so
() - gle) 21 -
EO exp(U;Aa) c(UE) = Eo exp(UgAs 7 U*FY) =
Hence, we can define a probability law ﬁge) by :

7 UFU) ap((f) .

ple) _ -
dP0 = exp(U;Ae
Using ﬁge), (3.11) is equal to
Cgle) g o
L -k |1 - exp Oe(Ue) | . (3.12)
exp[OE(UE)} 20, so a sufficient condition for (3.12) tending to 0, is :
E(e) exp{oe(ue)] =1 (ve), (3.13)

ple) - Jin exp(os(ue)] -1, (3.18)

(3.13) follows from the definition of P(e) and Z €., (U ) (cf. Theorem 3.1). As

P(e) P(E) the convergence (3.14) is equivalent to :
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(e) _ 5 ' -
POE) gll% exp[Oe(Us)) =1,

which follows from Theorem 3.1 : Thus (3.10) is proved. Finally, (3.10) implies that

El(Je) % = E(()E) % exp[U:Ae * OE(UE)] c(uy)

€

50 Ege) o exp(Ura.) c(U))

1

(e) gle) 1,2
Ey ' Ey 7 Lo | 85,000 exp(Uxa ) c(uy)

- 6§y alady em(uzs) ()

"

E'Owe(Al,Az) exp(U:A) c(UE) (with notations 3.4)

~ 1 .2
=, v (a0 .
€
0
Proof of Theorem 3.3. : We want to prove that
1. {@;} is asymptotically locally (a.l.) unbiased of level «a, i.e.
e £ > N
T sup E{%) or<a< lin inf E(F) o (v >0). (3.15)
€20 yep? €30 yepl
£,K €,K
2. For any test-sequence {@e) a.l. unbiased ot level o, we have :
lin inf E(F) (er-0)>0  (vK>0). (3.16)
€ -0 1
UeDE K

Let us first prove the second statement. Let {@e} be an a.l. unbiased test-
sequence of level a. From the continuity of the power function U - El(JE) ® and
(3.14), it 1s not difficult to prove that for any bounded sequence {ve} in IR",

tim £08) ¢ =a ..
e -0 O,VE. £

(E(E) stands for E() with U = (u]).
U,v i) v

hence, 1 ¥_(6%,69) := E{%) [o_ | al = 61,87 = 671, it follows from Lemma 3.5 ;
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. 1.2
Tim € ¥ (A",0°) =a,
ep OV, €

] u

(fu v stands for ﬁh with U= [

iy v
deduce that :

e ~0

We now consider a sequence {Us} R UE € Dé K such that :

El(}z) (@3 - 0.) = inf (£() (o2 - o) s ue€nl

From Lemma 3.5, we get :

£ =

> inf EU(¢* - We)(Al,Az) .
UED1
€,K

So in order to establish (3.16), it is enough to prove :

lin inf By - Wa)(Al,Az) >0  (VK>0).
e -0 U D1
Ye K
let u<0,

| [o*(s‘,62> - we(a‘,62>) [exp(uél) - exp(uo(éz))) ¢ pu) N(as? |69
. S

= [1 - We(él,éz)] [exp(u&l) - exp(uo(éz))] CGZ(U) Nl(dé1 |62)

sl<p(6%)

+ I . ) [0 - W€(61,62)] [exp(uél) - exp(up(dz))) c6z(u) Nl(dG

§7>p(87)

=0 .

This relation together with (3.9) implies that

. o[(e* - We)(AI.GZ) | a2 - 62

U ]

> exp(up(s%)) FORACE v (6% | a2 = 6f

= exp(up(&2)) cdz(u) {u - towe(Al,az) | a2 - 62]} .
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lim j {E;[?C(Al,ﬁz) | L u} exv(vg62) Nz(déz) =0.

o -

]

(3.17)

(3.18)



So, we have

inf B 0% - ¥ )(ah0%)

UeDE’K

= inf f?uf(v - v )(alss

2 2

) | 8% = 671 Nia?)
€,K

> inf J{a - ¥ty (o169 (a2 =62]} expluo(62)) ¢ 5() )

1
UEDE,K

- ine I{u - Bty (al,6%) [A2=52]} exp(un(6%) +v*82)) c(U) N2(ds?)
UeD
€,K

- Ha - ¥ 1y (al,6%) | a? - 521} exp(U_o(6%) + V26?) o(T) N¥(ds?)
for some bounded sequence {U;}.

Lemma 3.2 implies that exp(U;o(Gz) + 7262) is of the form exp(a_ + b;éz),
where both {ae} and {DE} are bounded sequences. So we have the following
relations :

. . : 1.2
lim inf Eh(¢* - ¥ )(a,8%)

€ =
UEDE,K

. 1.2, ,2_ .2 2, 22, .2
>slles exp(a_) Ha -EOWE(A,,G ) | a¢ =38 1} exp(b*6®) N°(d6°)

=0,

where the last equality follows from (3.17). Relation (3.18) (and (3.16)) is thus
verified.

Using a similar argument, we can prove that {¢;} is a.l. of level a, more
precisely

lin sp Efet-a  (vk>0) .

e=0, 0 €
UeD

€,K

Taking ¢ = o a.e. in (3.16), implies that (¢;} is a.l. unbiased. So the
desired relations are proved.
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3.3. Properties _of the Maximum Likelihood Estimator (MLE)

Having detected a failure, we want to estimate the parameter ©. The problem is
related to the estimation of diffusion process parameters (cf. [10,12]). We consider
the MLE (with the notations of the beginning of Section 3) :

8 ()
6. € Arg max1 dP6 / dP0 ,
0e0

T
where 01 = { [ ] 3 0< 1 <‘[o s Y *0} . We make the following assumptions :
Y

(A1) Ve, o €6, o=6', IS(6)-S(e') >0;

(A2) vkeol compact, 3u B >0 s.t. ol <F(8) <gI, veEK;
1 ) }

where |S(8)l := U [S(e,t)] dt) and I is the unit matrix. An example of suf-
0

ficient condition for (Al), (A2) to hold can be found in Campillo [31.

. T
We can easily check that ee = [~€) is well defined [(e,e) -»dPgE)/dP0 admits
€
a continuous version] and :

*

1 1 -1 1
€ Arg max U (S:)*dvt] U (S;)*Szdt) j (SP* dv,
0 0 0

Ost<
TTO

st it e
=T
€

1
The definition of F(8) together with (A2) imply that j (s{)*s: dt dis a
regular matrix (0 <t < 10) . ¢

We consider the following conditions : for any compact set K included in 01 .
-1 -1
(c1) sup  [F(6Y)72 F(e%) F(e})F] < ;
1.2
07,07 €K

(C2) the function S(6,t) 1is continuously differentiable with respect to 6 in

t%0,1) ;
1, _ -2 -1 -3 2 .
(€3) ng(K) = sup  sup (U] 11{v(6 +eF(8) 2U) - v(6)} F(B) 2UlI“ -0 as e-0 ;
8eK -3
|Ul<e
UeDe’e(K)
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(ca) nE(K) =inf inf |F(0)217V Hs(e +eF(0) ) - (o)l >0 ;
BeK |U|>e—%

UeD, o(K)

u -t
where DE e(K) = {U =( ] 3 8 + eF(8) 3 , UE K} . Then we have the following result

v
(cf. Ibragimov-Has'Minskii (101, th. 5.1, p. 203) :

THEOREM 3.6. If the conditions (Ll) - (C8) are fulfilled, then for any compact set

K in 07, the following assertions are valid :
() The MLE ée 18 consistent ;
(22) The MLE és is asymptotically normal :

1.3 (g) -3
law [—(e. -8) | P ] - N[O,F(e) 21
€€ ] e -0
(727) ALl the moments of the raqndom variable (és -08) / e converge as € » 0 to
-1
the corresponding moments of the normal distribution N(O,F(O) 2) .
[m]
Under the assumptions (A1), (A2), we now prove the conditions (Cl) - (C4). Let

K be a compact set in el

€ IFeh)E R Feh)EH < [R(eD) ] - Feh) TP
< BK / GK .

(C2) This condition follows from the fact that there exists a constant €, which
depends only on K such that the inequality :

iv(ely - v(e?y? <ck[|e1 - 02+ ol - ezlz]

is valid for any 01, 62 € K . This result can be proved without difficulty.
N - -1 -
€ n <sw o swp (U 1@ F2 ul? aefoser(e)Pu] - von?
1
GEK |Ul<€-§
UeD_ o (K)
- =1
< Ci aKI sup sup  |eF(8) 2U|
-1
66 |U|<E 3
Uebg o (K)
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<c2 ot sup  sup (e/q, )% -~ 0.
KK gek -1 K 0
|Uj<e 2
UsDe.e(K)
2 -1 . 1 4
(c4) nE(K) > By inf Hs(e™) - S{o")
0!, 6%«
lel—ezlzesK

The function (61,92) - us(el) —5(92)H is continuous on the compact set

((6%,6%) € k x k5 |0} - 67| > ¢B,}, 50 we can find 6l(c,K) * 6%(c,K) such

that :

inf us(ely - s(ed) = I|S[61(e,l()] - S{GZ(E,K)) I,
Sl,ezeK
lo1-6%|2c8,
and it follows from (Al) that this last term is strictly positive.
o
*
* *
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