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TESTING FOR A CHANGE-POINT IN LINEAR SYSTEMS

WITH INCOMPLETE OBSERVATION

Fabien CAMPI LLO

INRIA, Valbonne, France

Abstract

The aim of this work is to develop a test procedure for a change-point detection
problem in a partially observed linear Gaussian continuous time model. We study the
asymptotic behaviour of the test we propose. We also investigate the properties of
the maximum likelihood estimators of the associated parameters.



1. 1NTRODUCTION

The detection of changes in statistical models has inspired many works for years,
as proved by the numerous publications on the theme (cf. the survey papers [11 ,17J

and the survey included in [lJ). The special importance of these methods lies in
their ability to comply with sudden parametric model variations. Classical methods
were unable of that.

One of the most often used techniques is based on the maximum likelihood statis­
tic. This approach has been mainly developed by Willsky and Jones [18J, in the
failure detection problem in linear systems with incomplete observation. Their works
lead to a practicable algorithm for the implementation of the likelihood ratio test
procedure. However, the level of this test is not well defined. What is more, to
this day no result has been presented concerning the optimality of this method and
the convergence of the associated estimators.

An interesting approach to this problem is given by the asymptotical statistic
theory {cf. Lecam (13J, and also Ibragimov-Has'Minskii [10J), already applied to the
failure detection by Deshayes and Picard [5 ,9J. For statistical mode l with change­
point, they study the asymptotic behaviour of the likelihood method. With an invari­
ance theoremon the likelihood process, theirworks emphasize "edges-problems", then
they overcome these by using weighted likelihood ratio statistics.

Most works already published in this field concern the failure detection in
discrete time dynamical systems. Let us consider the continuous time linear system

dXt (AXt + a)dt + ~ dWt
( 1.1)

in which X represents the state of a non-observable physical system and y repre­
sents its observation. W and V are two indepenctent standard Wiener processes,
with values in IRn and IRd respectively; X and y take values in IRn and
IRd respecti vely.

This paper deals with the. test for sudden changes in parameter a. The problem
of detection of abrupt changes in parameter A is more difficult and in Campillo [3]
we investigate this situation.

Let us consider the state equation

dXt = {AXt + a + r(T.t)y}dt + B dWt '
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where r(T, t) = 0 if T < t, 1 otherwise; T denotes the unknown tine of failure
and y (* 0) the amplitude of the jump. We suppose that the coefficients A, a, B,
e, c and the initial condition Xo are known. 8 = [~) denotes the unknown param­
eter.

Given the observation {Yt ; t ~ 1} (to simplify the notations we will take
as final instant), we now have to decide whether there has been failure (i .e. T;;;;' 1),
or not (i.e. T < 1). In the fi rst case, we also want to estimate the fai 1ure param­
eter 8 .

In Section 2, we shall present the likelihood ratio test associated to this
situation; because of the edges-problems, we shall have to reformulate the test prob­
lem. Then we shall present an asymptotical study (Section 3) : We shall elaborate a
new test procedure and prove its asymptotical optimality in the local sense (Section
3.2). We shall also investigate the asymptotic properties of the maximum likelihood
estimator of the failure parameter 8 (Section 3.3).

2. THE LIKELIHOOO RATIO TEST (LRT)

In this section, we present the LRT of the "no failure" hypothesis against the
"failure" hypothesis. The derivation of the likelihood ratio that we propose is
closely related to that of Willsky and Jones in the discrete time case. At the end
of this section difficulties will cone up, that are related with the implementation
of the likelihood ratio test (LRT) procedure.

Let us consider the system:

dXt = {AXt + a + f(T,t)y}dt + B dWt • Xo = Xo } •

dY t (CXt + c)dt + dVt • Yo = 0
(2.1)

Let Ho and H1(8) be respectively the hypotheses of "no fai lure" and "failure
of parameter 8". l~e define

(E
O

denotes the expectation with respect to Ho and M* the transpose of M).
Xt and R(t) are given by the following Kalman "Ho-filter" (cf. [15J) :
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dXt = (AXt +a)dt + R(t)C'" {dY t - {cX t +c)dt} 1
R{t) = AR{t) + R(t)A'" + BB'" - R(t)C*CR(t) f

with X
o

= X
o

and R(O) = O. The innovation v of this fil ter is defined by

t
vt = Yt - J (CX +C)ds .

o s

It is well known that (cf. U5]) :

Under Ho: v is a standard Wiener process.

We now want to compute the law of the process v under H1(S). To thisend, we

introduce S(S,.) - the s-failure signature - :

(2.2)

(2.3)

(2.4)

t
S{S,t) := s~ y := C f ~(t,s) r{T,s)ds y

o

where ~(t,s) is the fundamental matrix

d'l'(:t' = {A - R(t)C*C} ~(t,s), 'l'{S,s) = In xn

(2.S)

( 2.6)

S(S,.) provides us with an explicit description of how various failures propa­

gate through the system and the fi lter, in the sens that :

t
{vt - J

u
S(S,U)dU} is a standard Wiener process (2.7)

which follows from the fact

v~S) := vt - r: S{s,u)du

is the innovation of the Kalman filter based on the H1(S) hypothesis.

(2.8)

Let Q=C(LO,l];IR
d

) and ~=Borel fieldover Q. Wedefine Po (resp.

Ps) the measure induced by v on (Q,E) under the hypothesis Ho (resp. H1(S».

In fact Po is the Wiener ~asure on (Q,E). Using Girsanov's theorem, it follows

from (2.4) and (2.7) that Po~Ps and:

dP
S

= L{S,> dP
o

where L(S) = L(T,y) = exp J; {S(S,t)* dVt - ~ IS{S,t)1
2
}

The likelihood ratio for "no failure" against "failure" is :
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L := max {L(T,Y) 0 ~ T < 1, y * o} .
Let

= l(y~lWe can easily check that the maximum likelihood estimator ê _
parameter ~:

L(ê) = max {L(T,Y) 0 ~ T < 1, y* o}

i s gi ven by :

T E Arg max {M(T)* (M(T) -1 M(T)} , Y= (M(T) ) -1 M(i) .
O~T<l

The LRT for failure detection is

of the

L""cr

L > cr :

"no failure" }

"failure"

(2.9)

for some decision threshold cr to be chosen.

We now come up against two difficulties :

- Though the distribution of the, statistic L(T,y) under Ho is known, the one of

max {L(T,y) ; 0 ~ T < 1, y * O} is not, because the dependence of L(T,y) with

respect to (T,y) is too complicated. So the level of the test (2.9) is not

de fi ned.

- The LRT consists in testing al1 the fai lure hypotheses from 0 to 1. In order to

test the failure hypothesis at time T, the only useful information is given by

{Yt ; T "" t < 1} . When T is too close to l, there is a lack of information

and the test procedure might fail. These "edges"problems" have been pointed out

from both a numerical (cf. [2 ,18J) and theoretical (cf. [5 ,9J) viewpoints.

In ot'der to overcome these difficulties we shall reformulate the initial test

problem : Instead of "T = 1" vs "T < 1", we consider the new test problem :

HO : "no failure occurs before

against

Hl : "a failure occurs before

TO {T;' TO}" l
T

O
(T <T

O
)" J

229

(2.10)



where T
O

< 1 .

This method is related to the weighted likelihood ratio statistics introduced by

Deshayes and Picard. We shall derive a test procedure for Ho vs Hl and pr.ove its

optimality in a local sense for a well suited mode of convergence.

3. ASYMPTOTICAL STUDY

Several asymptotics can be considered for this problem, e.g. "amplitude of the

jump -+00", "noises intensity -+ a", "period of observation -+00". In this last case

we have not yet obtained significant results. On the other hand, one can prove that

the first two asymptotics are equivalent (cf. Campillo [3J).

We are now dealing with the first asymptotic. Let us consider the following

system:

dXt = {AXt + a + i f(T,t)y}dt + B dWt , Xo = xo 1
dY t = (CX

t
+ c)dt + dV

t
Y
o

a j , (3.1)

E E ]0,1]. We suppose that the hypotheses of the previous sections are fulfilled.

Consider v the innovation process (2.2) -(2.3). As in the preceding section:

Under Ho "{v
t

} is a standard Wiener process" (3.2)

(3.4)

Under H1(8) "{Vt - i J~ S(8,U)dU} is a standard Wiener process", (3.3)

where S(8,·) is defined by (2.5) -(2.6).

Let Po (resp. p~E)) be the law of the process v on (n,E) when Ho

(resp. H1(8)) holds. (3.2) - (3.3) imply that Po is the Wiener measure on (n,E)
and :

dP~E) JI {1 l 2}
~ = exp a € S(8,t)* dVt - ~ IS(8,t)1 dt

From now on, v will denote the canoni cal process on (n,E) (C( (0 ,1] , IRd) ,

Borel field) (i.e. vt(w) = w(t)) . From Girsanov's theorem it follows that the

process :

230



viE:,S) := V t - ~ J~ S(S,u) du (3.5)

is a standard Wiener process over (~'E,p~E:». Eo and E~E:) will denote the expec­
tation with respect to Po and p~E:) respectively.

In Section 3.1, we establish that the family {P~E:)} satisfies a condition of
local asymptotic normality (LAN) as E: ~ O. In Section 3.2, this property allows us
to de ri ve an asymptoti ca lly opti ma l tes t procedure for Ho vs Hl' The kind of test
we propose is quite new in the failure detection problem, and is related to Neyman's
C(a)-test (cf. [4, 16J).

In Section 3.3, we use Ibragimov-Has'Minskii's work [10J so as to investigate
the asymptotical properties of the maximum likelihood estimator of the failure
parameter.

Let us consider the following notations:

V'(!:l,t) is the mean square derivative of S(6,t) wlth respect to e.

1
Le. lim 161-2 J iS(8+6,t) - S(S,t) - V'(s,t)61 2 dt = 0

6 ~O 0

F(S) is the Fisher information matrix at point e

l
F(a) = l V'(S,t)* V'(a,t) dt ;

o

(3.6) 1

(3.6)"

(3.6)'"

ft is not difficult to prove that S(a,·)
in L2(0,1). In fact, we have

is differentiable with respect to a

where s~:= oS~ /OT •

THEOREM :3. 1. Let a E e = { C) ; 0 '" T <; 1 , y =1= O}. The farrrily {p~E:) ; a E e}
y

satisfies a property of LAN at point e as € ~ O. Namely~ for the fol101J)ing nor-

malized likelihood ratio :
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the representation :

is vaUd, where

(ii) for any bounded sequence {Us} (Us E Ds•e)

p(s) _ lim 0 lU) = 0
e s-+o s.e s

(i . e . Pe(s ) (1 0 e(U ) 1 > n) -+ 0 as s -+ O. V n > 0) •s. s

~~~~ : From (3.5) it follows that :

1
~ := f v(e.t)* dv(s.e)
s.e 0 t

Under p~s). v(s.e) is a standard Wiener process. thus ~s.e is Gaussian with mean
o and covariance matrix F(e). 50 (i), is proved.

~~e now de fi ne

This. together with (3.4), yields

Let {U} be a bounded sequence. From this last relation we deduce that
o e(U) is\ Gaussian variable N(~ .a2) under Pe(s). The definition of v(e.t)s, s 2 s s
implies that ~s -+ 0 and as -+ U as s -+ O. so the assertion (ii) of the theorem
is proved.
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Let 6 = (TO) E 0 such that F(6) > 0, in [3] one can find an example of suf-
o Yo 0 u~

ficient condition for the existence of such a point. We substitute variable U = (vJ

(6 - 6
0

) 1E and instead of "T;;' Ta" vs "T < T
O

" we examine the test problem :

Ho : "u;;> 0" vs Hl: "u < 0"

We remark that v is a nuisance parameter.

F(ao)' °,.6
0

(U) respectively; ',= [:~] loI1ere
e:

IR (resp. IRn). FurtherlOOre, we define

Let ~E' F, 0e:(U)

~1 (resp. ~2)
€ E

(3.7)

denote ~ 6'
E, 0

takes val ues in

D~ ,K = {U = (~) 60 + EUE 0 ,lU 1 .,;; K , u;;. O}

o~ ,K = {u = C) ; 6
0

+ EUE 0 ,lu l '" K , u < o} ,

Let <1>*: lR x Rn -+ {O,l} be the test function

where p(.) is chosen so that

(3.8)

(3.9)

(a is a given false alarm probability). It follows from Theorem 3.1 that

law (~ 1 ptE»~ = N(O,F), so we can easily prave that the relation (3.~) determines
E 0

without ambiguity the function p(.), namely :

LEMMA 3.2.

p(ô 2) =~ _ g~Ô2 , ô2 E IRn •
G1 1

where q (a) denotes the (l - a) -quanti le of the Gauss law N( 0,1), and
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G = (~l n nxng 1 G

2

(G1, g, G2 E IR, IR , IR ) denotes the inve1'se matrix of F .

This 1S the main nesult of the section:

o

THEOREM 3.3.", The test-sequence {41~} defined by

~ocally most powe1'fu~ unbiased of leve l ex •

In order to prove this nesult we need new notations and a lemma.

NOTATIONS 3.4.

Let tJ. =

We define :

be a N(O,F) variable defined on a probability space (=,~,Po) .

(i) N(do 1,do 2) the distribution of tJ. ;

[
Uv])Let Pu (u = be the probability over (=,~) such that

<fiYu = exp(U*tJ.) c(U) d'iYo

(c(U) is a factor 01' normalization).

On the space (=,,a,PU)' we define

(i) Nu(dol,do~) the distribution of tJ.

(ii) N~(dël 1 ô2) the conditional distribution of tJ.1 given tJ.2 = ô2

(iii) N~(dô2) the marginal distrtbution of tJ.2 .

We have the followin9 classical results (cf. Lehmann [14])

(i) NU(do 1,do2) = exp(U*o) c(U) N(dôl,do~) ;

(ii) N~(dôl 102) = exp(uo1) c 2(u) N\dô1 rô2)
o

(iii) N~(dô2) = exp(v*02) (c 2(U»-1 c(U) N2(do 2)
o
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where ,~[::j. u ~ [:1. c(u) and CiU) are nonnalizing coefficients. [,

l)articular, we note that NG(do l 1152) = N~(dô1 1 02) is independent of v .

LEM~ 3.5. Let ~E E Lm(n,~,p~E» be such that I~EI ~ L a.s. (V E). Then for

any given bounded sequence {U
E

} in IR x IR
n

:

E(E) 4> ~ l 1/J)1I 1 ,/'J.2),
UE E E-+0 UE c.

where 1/JE(Ô 1,02) := E~E) [4>E 1 /'J.~ = 01, ~~ = 02] , tu denotes the expectation with

respect to 15'U (AE E~O BE' i.e. 1AE - BE 1 -+ 0 as E -+ 0).

~~~~i : First we prove that

E(E) ~ exp (U*/'J. + 0 (u ») c(U~)o E E E E E c.
(3.10)

The absolute value of the difference of these two terms is bounded by

L E~E) exp(U~/'J.E) C(UE) Il - exp(OE{UE»1 .

Law (/'J. 1 peE»~ = N(O,F) so
E 0

E(E) exp(U*/'J. ) c(U ) = E(E) exp{U*/'J. - ~ U*FU) 1.o E E E 0 E E ,

Hence, we can define a probabi litY law p~E) by:

dP(E) = exp(U*/'J. - ~ U*FU ) dPO(E) .
o E E 'E E

Using p~E), (3.11) is equal to

L • Ë(E) Il - exp(o (U )) 1o E E

eXP(OE(UE») ~ 0, so a sufficient condition for (3.12) tending to 0, is

Ë(E) exp(o (u ») = 1 (V E) ,o E E •

p(E) _ lim exp(o (U ») = 1 .
o E -+0 E E

(3.11)

(J.12)

(3.13)

(3.14)

(3.13) follow,s from the definition of peE) and Z e (U) (cf. Theorem 3.1). As
o E, 0 E

p~E) _ p~E), the convergence (3.14) i5 equivalent ta :
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p(E:) _ 1im exp(o (U )) = 1 ,
o E: .... O E: E:

which follows from Theorem 3.1 : Thus (3.1O) is proved. Final1y, (3.1O) implies that

= E(E:} ~ eXP(U*6 + 0 (u )) c(UE:)o E: E: E: E: E:

(with notations 3.4)

o

1. {\Il;} is asymptotically locally (a.!.) unbiased of 1evel a, i.e.

2. For any test-sequence {<pE:} a.l. unbiased of level a, we have

(3.15)

(V K > 0) • (3.16 )

Let us first prove the second statement. Let {\Il} be an a.1. unbiased test­

sequence of level a. From the continuity of the pow~r function u .... E0E:) \l>E: and

(3.14), it is not difficult to prove that for any bounded sequence {v} in IRn ,E:

(E(E:) stands for E(E:) with U = (u)).
U,v U v

Hence, if ljI (81,8~) .- E(E:) [9E: 161 = 81 6 2 = ( 2) it fol1ows from Lemma 3.5E: 0 E:' E:. ,
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lim r 1/' (t,1,t,2) = ex ,
e: -+0 o,ve: e:

(ru,v stands for rU with U = (U). Thus for any bounded sequence {ve:} we

deduce that : v

lim J{t [1/' (t,1,Ô 2) 1 t,2 = ë2] - ex} exp(v*ô 2) N
2(dô 2) = 0

e: -+0 0 e: e:

We now consider a sequence {U}, U E or--K ' such that :e: e: e:,

From Lemma 3.5, we get :

(3.17)

~ inf t'u{cI>* - 1/' )(t,1,t,2)
1 e:

U€De:.K

So in order to establish (j.1b), it is enough to prove :

(v K > 0) (3.18)

Let u < 0 ,

(<I>*<Ô
I
'Ô

2
) -'l'e:<Ô

I
,ë

2») (exP(uô 1) - eXP(uPl Ô
2
») c 2l u) N1( dô 1

1 Ô2)
ô

= J (1 - l/'e:lë1,Ô2») (exPl uô
1

) - exp{ uo( Ô2)}) c 2( u) N1( dô 1
1 Ô2)

ô1~p{ô2) ô

+ J [0 - 1/'e:(Ô
1

,Ô
2

») (exP(uô
1

) - exp( up( ë2)}) c 2( u) N1( dÔ 1
1 ô

2
)

ô1>p(ô 2)
ô

~ 0 .

Ihis relation together with (3.9) implies that

( ( 2) () { .... [ ,1 ... 2) l ,2 = ... 2]} •= exp up ô) c 2 u ex - L
O

I/'e:(u ,u u u

Ô
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So, we have

inf EU{~* - ~ )(b1,b
2

)
1 E;

UEDE;,K

in/ Jt'u[(ef>* - ~E;)(b1,o2) 1 b
2

= 0
2

] N~{do2)
UEDE;,K

~ in/ J{o: - rO[~E;(b1,ô2) \b
2

=o2]} exp{uo(ô2)) c
o2

(U) N~(dÔ2)
UEDE;,K

i~f J{o: - ËO[~E;(b1'Ô2) 1 b
2

=ô
2
]} exp(UD(02) +v*ô2) c(U) N2(d02)

UEDE;,K

= J{o: - t'0['I'E;{b
1
,02) \ b

2
= Ô

2
]} eXP(uE;o(ô 2) + V~Ô2) C(UE;) NZ(do 2)

for sorne bounded sequence {UE;}'

Lenuna 3.2 implies that exp(ù' O{Ô 2) + v*ô 2) is of the form exp{a + b*ô 2),E; E; E; E;
where both {aE;} and {bE;} are bounded sequences. So we have the following

relations :

= 0 •

where the last equality follows from (3.17). Relation (3.18) (and (3.16) is thus

verified.

Using a similar argument, we can prove that {ef>~} is a.1. of level 0:, more

precisely

lim sup E(E;) ~* = 0: (v K > 0)
O U E;

E; ~ UEDo
E;,K

Taking CPE; = 0: a.e. in (3.16), implies that {CP:} is a.1. unbiased. 50 the

desired relations are proved.
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Having detected a failure, we want to estimate the parameter e. The problem is
related to the estimation of diffusion process parameters (cf. ua, 12J). We consider

the MLE (with the notations of the beginning of Section 3)

ês E Arg ma~ dP~s) / dPo '
eEe

where el = { (T) ; 0" T < T
O

' y =1= a}. We make the following assumptions
y

(Al) TI e, e' E el, e *e', IIS(e) - S(e')11 >0;

(A2) TI K c el compact, 3 UK, 8K > a s.t. uKI" F(e) " 8KI, TI e E K

1 l

where IIS(8)1I := (Jo \s(e,t)1 2 dtr and l is the unit matrix. An example of suf-

ficient condition for (Al), (A2) to hold can be found in Campillo [3J.

We can easily cheCK that ês = (~:) is well defined (s,e) -+dP~E)/dPo admits

a continuous version) and

T E Arg max (Jal (S~)*dVtr [Jal lS~)*S~dt) -1 fol lS~)* dVtE O~Tqo

1
The definition of F(e) together with (A2) imply that J lST)*ST dt

ott
regular matrix (0" T ~ T

O
)

is a

We conslder the following conditions: for any compact set K included in el .

(Cl) sup IF(el)-~ F(e2) F(e1)-~1 <œ ;
el ,e2EK

(C2) the function Sle,t) is continuously differentiable with respect to e in

LL(O,l) ;

(C3) n~(K) = sup sup IUI-211{V(e+sF(ef~u)-Vle)} Fl8f~U1I2 -+0 as E-+O
eEK IUI<E-~

U€D
E

, el K)
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2 1 1 1
(C4) llE(K) inf inf jF{tl)2r HS(e+EF(e)-2U) - S(e)ll >0

tle:K 1U1>E -!

Ue:DE,e(K)

where DE,e(K) = {U = ( U) j e + EF(e)-! , U€ K}. Then we have the following result
v

(cf. Ibragimov-Has'Minskii [10J, th. 5.1, p. 203) :

THEDREM 3.6. If the conditions (Cl) - (C4) are fulfiUed. then fol' any comoact set

K in el, the following assertions are valid :

(i) The MLE ê
E

is consistent ;

(ii) The MLE tl
E

is asymptotically n02"mal :

(iii) All the moments of the random variable (êE - e) 1 E converge as E ~ 0 to

the corresponding moments of the normal distribution N(O~F(e)-!)

o

Under the assumptions (Al), (A2), we now prove the conditions (Cl) - (C4). Let
K be a compact set in el

(C2) This condition fo110ws from the fact that there exists a constant Ck which
depends on1y on K such that the inequa1ity :

is va1id for any el, e2 E K. This resu1t can be proved without difficu1ty.

l1
l

(K) oe;;; sup sup lur2 IF(e)-!1 2 IUl 2 uv[e+EF(e)-~u) - v(e)u
2

E ee:K lUI<E-~

. Ue:DE,e(K)

sup
IUI<E-~

UEDE,e(K)

240



o .
E -+0

(C4) n~(K) ~ l:{~~ inf "s(a1
) - s(aZ

)J1

al ,a 2
E:K

1 2la -B I~El:{K

The function (a1,a2) -+ U::>(B I } _s(a2)" ;s cont;nuous on the compact set
1 Z 1 2 l 2Ha ,a ) E K x K ;Ia - a 1~ El3Kl. so we can find B (E,K) #= a (E,K) such

that :

and it follows from (Al) that this last term is strictly positive.

*

* *

o
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