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Abstract— We develop a particle filter approximation of the
optimal nonlinear filter in the context of the chemostat. We
propose a stochastic model of the chemostat together with an
observation model. One of the characteristics of applications
in bioprocesses is that the time between two observations is
relatively large. We account for this point in the development
of the particle filter by refining the prediction step of the particle
filter. We present numerical tests on simulated measurements.

I. INTRODUCTION

The control of bioprocesses are usually based on a state-

space model and prior to the control phase itself, it is

necessary to develop a procedure to identify the parameters

of the model and the state variables [4]. First, the very

structure of the state-space model is typically a drastic

simplification of reality. Then, these variables are either not

directly observed or observed but subject to measurement

noise; observations are usually heterogeneous, asynchronous,

acquired at low frequencies, but also partial (only some

components are observed) and subject to high intensity noise.

Finally, the initial conditions of the state process are also

subject to errors. Hence the identification procedure must be

robust with respect to all these aspects.

One can distinguish between deterministic and stochas-

tic approaches. The former mainly includes observers [5].

Classical observers usually require a precise knowledge of

the underlying system. Nevertheless ad hoc methods exist

in specific cases: for example the asymptotic observer [14]

for the chemostat remarkably does not require the knowl-

edge of the growth function. Still observer approaches lack

robustness in the presence of modeling approximations and

uncertainties. These deterministic approaches focus on the

reconstruction of unobserved components of the state vector

and do not account for any estimation error, they apprehend

the potential randomness of the model or of the observation

only in terms robustness.

Stochastic methods propose an estimate of both the state

vector and the error covariance, they are generally less

demanding in terms of system properties; for example they

do not require observability properties. In contrast with

observers they easily handle measurements in discrete time,
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asynchronous, noisy and at low frequency. The most classical

algorithm for nonlinear systems, is the extended Kalman

filter (EKF), this algorithm does not generally bring about

a substantial improvement compared to observers: it suffers

the same lack of robustness, it gives relevant results only

when the system is close to the linear/Gaussian case, possibly

with high noise intensities, or when the state and observation

noise intensities are low. Just like observers, it can also give

good results when we can separate the “well observed” state

variables, possibly “nonlinear”, from the “weakly observed”

but “highly linear” variables. The robustness issues have been

significantly improved by unscented Kalman filters (UKF)

and ensemble Kalman filters (EnKF): these approaches are

clearly more robust to nonlinearities and high noise intensi-

ties [25], [24]. But as the UKF/EnKF output is still Gaussian,

that is a mean estimate of the state variable coupled with an

error covariance, it may have difficulties in addressing the

full nonlinear/non-Gaussian case.

More recently particle filtering techniques (also called

SMC for sequential Monte Carlo), which have been devel-

oped and successfully applied in target tracking and robotics

[16], were also applied in the field of bioprocess [18], [27].

These techniques, and more generally numerical Bayesian

methods, are almost the only ones that can fully account

for the nonlinear/non-Gaussian issue. Another possibility is

to numerically solve the partial differential equation of the

nonlinear filtering, this approach is reliable only in small

state dimension [13].

Suppose we have measurements:

Yn = hn(θ, zn, vn) (1)

at times tn (0 = t0 < t1 < t2 · · · ), where hn is a known

function, vn is the measurement noise i.e. a sequence of inde-

pendent and identically distributed (i.i.d.) random variables

(non necessarily Gaussian), θ is an unknown parameter; zn
is the state of the system at the instant of observation tn. It

is assumed that the state process zn is a Markov chain with

transition kernel Qθ
n−1(z, z

′) that could possibly depend on

n and θ, i.e. z′ 7→ Qθ
n−1(zn−1, z

′) is the probability density

function (p.d.f) of zn, in other words zn is drawn accordingly

to Qθ
n−1(zn−1, · ) denoted as:

zn ∼ Qθ
n−1(zn−1, · ) . (2)

We also consider the initial state p.d.f.:

z0 ∼ pθ0( · ) . (3)

In many cases zn = Ztn where Zt is solution of a stochastic
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differential equation (SDE):

dZt = f(θ, Zt) dt+ σ(θ, Zt) dwt (4)

where wt is a standard Brownian motion (wt, vn and Z0 are

independent).

The problem of filtering and identification is to estimate

the state zn given the past observations {Yℓ; ℓ ≤ n}; certain

components of the parameter θ have to be estimated because

they have special meaning in the problem under consider-

ation, usually all components are estimated. The filtering

problem is essentially Bayesian: given prior information on

the state process in the form of a model (2) (3) which

gives the law of the state process for each given value of

the parameter θ, the observation model (1) allows us to

determine, at least theoretically, the law of the state process

given the observations for each given value of the parameter

θ, see Section III.

The parameter θ can be treated in a Bayesian way, by

prescribing a prior distribution, or in frequentist way by

a maximum likelihood approach. In the present study we

assume that the parameter θ is known, which is obviously

not realistic, and therefor we will focus on the filtering issue.

We will revisit this question and propose ways to address this

issue in Section VI.

In numerous studies, the initial model is deterministic:

Ż = f(Z) , Yn = hn(Ztn) (5)

and authors confine themselves to artificially adding noises

to the previous equation by considering:

dZt = f(Zt) dt+ dwt , (6a)

Yn = hn(Ztn) + vn . (6b)

This idea is good when the intensity of the state noise wt

and observation noise vn are small, but in this case most

methods (observers, EKF, UKF, particle filtering) give good

results.

The state noise intensity is not small when the real

system has a significant random component, this is the case

for population dynamics in relatively small population size

where the randomness is not eliminated by the law of large

numbers. This noise intensity is also large when the model

is a relatively crude approximation of reality, the noise can

include this modeling error. In both cases it is necessary to

develop a proper covariance structure, more elaborate than

σ( · ) ≡ 1. Also, suppose the state equation Ż = f(Z) is a

population dynamics that leaves all the components of the

state vector Z positive, then dZt = f(Zt) dt+dwt no longer

respects this property, but models like (4) may respect that

property. Therefore, the form of the function σ( · ) strongly

influences the behavior of the process and the stochastic part

of dynamics (4) must be developed with care.

Furthermore, in bioprocess applications the intensity of the

noise in the observation equation (6b) is large and again the

covariance structure should be carefully investigated. This

issue is based on the development of models for sensors

and equation (6b) is a rough approximation, but sometimes

sufficient enough, of reality in many cases. However, we

cannot assume that the intensity of the observation noise is

small.

The aim of this paper is to describe the modeling approach

and the derivation of the particle filter with a special focus

on the issue of low frequency observations. For the sake of

simplicity we will limit ourselves to the case of the simple

chemostat.

In Section II we present the state-space model relying on

a SDE model developed in [8] where we propose a more

appropriate covariance structure. In Section III we derive the

equations of the optimal filter. In Section IV we develop the

particle filter; numerical tests are presented in Section V.

II. THE SETUP

A. State equation

We consider the stochastic chemostat model introduced in

[8] in the form of a stochastic process Zt = (Xt, St) solu-

tion of the following two dimensional stochastic differential

equation (SDE):

dXt = (µ(St)−D)Xt dt+ c1
√

Xt dW 1
t , (7a)

dSt = −k µ(St)Xt dt+D (Sin − St) dt+ c2
√

St dW 2
t

(7b)

for t ∈ [0, T ]; Xt and St are the concentrations (g/l) of

biomass and substrate at time t; W 1
t and W 2

t are independent

scalar standard Brownian motions, also independent from Z0.

We suppose that the specific growth function is of Monod

type:

µ(s) =
µmax s

ks + s
.

The inputs are the dilution rate D (1/h) and the input

substrate concentration Sin (mg/l); the model parameters are

the noise intensities c1 and c2; the kinetics parameters are

the yield coefficient k, the maximum growth rate µmax (1/h)

and half-saturation ks (mg/l).

The initial distribution law of the initial condition Z0 =
(X0, S0) is denoted p0(z) = p0(x, s) = pZ0

(z) =
pX0,S0

(x, s). We suppose X0 ≥ 0, S0 ≥ 0, so that Xt ≥ 0,

St ≥ 0 for all t ≥ 0.

We will use the notations:

f1(x, s) = (µ(s)−D)x ,

f2(x, s) = −k µ(s)x+D (Sin − s) .

If the deterministic part (drift terms) of Equation (7), i.e.

the classical chemostat deterministic model, is well known

[29], some comments will be made later concerning the

stochastic part (diffusion terms).

The model (7) is derived in [8] as a diffusion approxima-

tion of a pure jump model described at microscopic scale.

This model accounts for the demographic randomness and,

as discussed in Section I, it induces a sharper prior on the

state process compared to the same model with constant

covariance terms. The solution of [8] is positive and features

interesting washout properties. A similar approach is adopted
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in [19], other covariance structures are possible [21], see

discussion in [8].

B. Observation equation

We suppose that we only observe the substrate concen-

tration Stn at equally spaced discrete measurement times

tn = n∆; we also suppose that the standard deviation of

the noise is proportional to the substrate concentration. The

measurement equation is:

Yn = Stn + σ Stn vn (8)

where vn
iid∼ N(0, 1) (i.i.d. independent and identically

distributed). The state noises W i
t , the observation noise vn

and the initial condition (X0, B0) are supposed mutually

independent. The observation parameter is the noise inten-

sity σ.

The observation model (8) may seem surprising since the

noise intensity decreases, and vanishes, with the substrate

concentration. But this model is more relevant than Yn =
Stn+σ vn as, in practice, the error in the measurement of the

substrate concentration becomes negligible (resp. increases)

when this concentration tends toward 0 (resp. increases). The

growth law (σ Stn)
2 of the variance is of course debatable,

but we want especially to emphasize the importance of

developing measurement models with covariance structures

that are not limited to the classical form Yn = Stn + σ vn
resulting from conventional linear/Gaussian approaches.

We define Ψ(y, z) as the likelihood function associated to

measurement Yn defined in (8):

Ψ(y, z)
def

= exp
(

− 1

2σ2 s2
|y − s|2

)

(9)

that is the conditional p.d.f. of Yn = y given that Zt = z =
(x, s).

III. THE OPTIMAL FILTER

At time tn, we have measurements y0, . . . , yn (denoted

y0:n) that are realizations of Y0, . . . , Yn (denoted Y0:n).

Based on these measurements, the nonlinear filtering prob-

lem is to give an estimation of the current unobserved com-

ponent Xtn of the state process together with an estimation

of the associated error variance; and also to improve the

estimation available of the component Stn . This could be

done explicitly with the help of a nonlinear filter.

In this preliminary work we suppose that all the model

inputs, the model parameters, the kinetics parameters and

the observation parameter are known. This hypothesis is

naturally unrealistic and will be commented upon later.

A. Definition

The problem is to compute the conditional p.d.f. πn(z) =
πn(x, s) of Ztn given that Y0:n = y0:n:

πn(z)
def

= pZtn
|Y0:n

(z|y0:n) . (10)

The conditional p.d.f. πn is also called the nonlinear filter. In

the following we will also need the predicted filter defined

as:

πn−(z)
def

= pZtn
|Y0:n−1

(z|y0:n−1) .

The filter πn and the predicted filter πn− gather all

information available on Ztn based on the observations

Y0:n−1 = y0:n and Y0:n = y0:n−1 respectively. Indeed, for

any bounded function f : R2
+ 7→ R, the estimation f̂(Ztn)

of f(Ztn) based on the observations y0:n is defined by:

f̂(Ztn)
def

= E[f(Ztn)|Y0:n = y0:n] =

∫

R
2
+

f(z)πn(z) dz

it is optimal according to the mean square error criterion,

that is:

E
[∣

∣f̂(Ztn)− f(Ztn)
∣

∣

2] ≤ E
[∣

∣φ(y0:n)− f(Ztn)
∣

∣

2]

for any function φ(y0:n) of y0:n.

For example, the optimal estimation of Ztn based on the

observations y0:n is the mean:

Ẑtn =

∫

R
2
+

z πn(z) dz

of the p.d.f. πn(z), and the associated conditional variance

is ∫

R
2
+

|z − Ẑtn |2 πn(z) dz .

B. The optimal filter

The computation of the optimal filter can be achieved

sequentially, the iteration πn−1 → πn is done in two classic

steps:

• Prediction step: We compute πn− :

πn−(z′) =

∫

R
2
+

Q∆(z, z
′)πn−1(z) dz (11)

where Q∆(z, z
′) is the transition kernel of the state

equation (7) defined by:

Q∆(z, z
′)

def

= pZt+∆|Zt
(z′|z) . (12)

that is the conditional p.d.f. of Zt+∆ given that Zt = z.

• Correction step: Using the new observation Yn = yn,

we compute πn:

πn(z) =
Ψ(yn, z)πn−(z)

∫

R
2
+

Ψ(yn, z′)πn−(z′) dz′
(13)

where Ψ(y, z) is the likelihood function (9).

The initialization at time t = 0 of the iterations is

π0−(z) = π0(z) , π0(z) =
Ψ(y0, z)π0−(z)

∫

R
2
+

Ψ(y0, z′)π0−(z′) dz′
.

In conclusion, the dynamics of the nonlinear filter relies

on the Markovian structure of the state equation (7) and

on the so-called “memoryless channel hypothesis” of the

observation equation (8); which can be represented by the

following diagram:

Ψ

Ztn−1
Ztn Ztn+1

YnYn−1 Yn+1

Q∆ Q∆

Ψ Ψ
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meaning that the evolution of the state process at step

n depends only on its value at step n − 1 and that the

observation Yn depends only on the state process at step

n.

The dynamics of the nonlinear filter can be represented by

the following diagram:

correction
πn−1 πn− πn+1

prediction

Yn

Q∆

Ψ

(14)

IV. THE PARTICLE FILTER

Except in the linear/Gaussian case and some very partic-

ular cases, this optimal filter (11) and (13) cannot be solved

explicitly [3]. This is why specific approximation techniques

have been developed. A first method is the Extended Kalman

Filter, another one is the particle filer. We present the latter

now.

We introduce the simplest implementation of the particle

filter, namely the sequential importance sampling with re-

sampling (SISR) also called bootstrap filter [16]. The idea is

to obtain an empirical approximation of πn of the form:

πn(z) ≃ πN
n (z)

def

=
1

N

N
∑

i=1

δξi
n
(z)

where ξ1n, . . . , ξ
N
n are the particles, δξ(z) is the Dirac mea-

sure centered on ξ. This “particle” representation of the filter

allows for simple computations of the integral terms of the

prediction and correction steps of the optimal filter.

The particle filter is a sequential Monte Carlo method

where πN
n is computed from πN

n−1 and the new observation

Yn = yn.

Starting from the particles (ξin−1)i=1···N , the new particles

(ξin)i=1···N are computed in two steps: the prediction (or

mutation step) and the correction (or selection step).

Prediction (mutation)

(x, s) given

δfilter ← ∆/Mfilter

for m = 1 : Mfilter do

w1 ∼ N(0, 1), w2 ∼ N(0, 1)
x′ ← max(0, x+ f1(x, s) δfilter + c1

√
x
√
δfilter w1)

s′ ← max(0, s+ f2(x, s) δfilter + c2
√
s
√
δfilter w2)

x← x′, s← s′

end for

Algorithm 1: Simulation of Equation (7) with an Euler-

Maruyama scheme leading to the approximation Q̃∆ of the

transition kernel Q∆ given by (12).

The kernel Q∆ and the prediction step (11) are complex

so we replace them by their empirical counterparts. First we

have to simulate predicted particles ξ̃in ∼ Q̃∆(ξ
i
n−1, ·), but

the transition kernel Q∆ is not explicit; we approximate it

using an Euler-Maruyama approximation of (7), that is:

X̃t̃m
=

[

X̃t̃m−1
+ f1(X̃t̃m−1

, S̃t̃m−1
) δfilter

+ c1

√

X̃t̃m−1

√

δfilter w
1
m

]

+
(15a)

S̃t̃m
=

[

S̃t̃m−1
+ f2(X̃t̃m−1

, S̃t̃m−1
) δfilter

+ c2

√

S̃t̃m−1

√

δfilter w
2
m

]

+
(15b)

where w1
m and w2

m are N(0, 1) independent random vari-

ables. Here we use a time step δfilter = ∆/Mfilter and t̃m =
mδfilter; indeed, for the filter time step δfilter we subdivide the

observation time step ∆:

simulation

∆

δfilter

δsimu

observations

filter

also for the simulation time step δsimu, which will be used in

Section V, we subdivide the filter time step δfilter.

The positive part operator [ · ]+ is used to ensure the

positivity of the solution.

Starting from (X̃0, S̃0) = ξin−1, we simulate Mfilter time

iterations of (15) to get the predicted particle:

ξ̃in = (X̃t̃Mfilter
, S̃t̃Mfilter

) = (X̃∆, S̃∆) .

We denote this step by:

ξ̃in ∼ Q̃∆(ξ
i
n−1, · ) .

corresponding to the Algorithm 1.

Correction (selection)

In a second step a likelihood weight ωi
n is associated with

each predicted particle ξ̃in. This weight:

ωi
n ∝ Ψ(yn, ξ̃

i
n) (16)

is proportional to the likelihood of the last observation and
∑N

i=1
ωi
n = 1. Then these particles are selected accordingly

to these weights, i.e. sampled from the empirical distribution
∑N

i=1
ωi δξ̃i

n

independently one from the other:

ξ1n, . . . , ξ
N
n

iid∼
N
∑

i=1

ωi
n δξ̃i

n

. (17)

See Algorithm 2 for a complete description of the particle

filter. The dynamics of the particle filter can be represented

by the following diagram:

selection

Yn

Ψ

π
N
n−1 π

N
n− π

N
n+1

Q̃∆

mutation

which is equivalent to the diagram of the nonlinear filter (14)
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{initialization}
ξ̃1, . . . , ξ̃N

iid∼ law(Z0)

ωi ← Ψ(y0, ξ̃
i) for i = 1 : N {likelihood weights}

ωi ← ωi/
∑N

i′=1
ωi′ for i = 1 : N {normalization}

ξ1, . . . , ξN
iid∼∑N

i=1
ωi δξi {selection}

save (0, (ξ1, . . . , ξN ))

{iterations}
for n = 1, 2, . . . do

ξ̃i ∼ Q̃∆(ξ
i, dz′) for i = 1 : N {mutation}

ωi ← Ψ(yn, ξ̃
i) for i = 1 : N {likelihood weights}

ωi ← ωi/
∑N

i′=1
ωi′ for i = 1 : N {normalization}

ξ1, . . . , ξN
iid∼∑N

i=1
ωi δξi {selection}

save (n∆, (ξ1, . . . , ξN ))
end for

Algorithm 2: Bootstrap particle filter: allows to compute

an approximation of πn− of the form 1

N

∑N

i=1
δξ̃i(dz) and

an approximation of πn(dz) of the form 1

N

∑N

i=1
δξi(dz).

In the mutation step, predicted particles ξ̃i are sampled

independently of one another.

Outputs of the filter

One of the advantages of the particle approximation

approach is that the estimation of the state process is

straightforward. Indeed, for any function f : R2
+ 7→ R

the optimal estimation E[f(Ztn)|Y0:n = y0:n] of f(Ztn) is

simply approximated by:

f̂(Ztn)
N

=

∫

R
2
+

f(z)πN
n (z) dz =

1

N

N
∑

i=1

f(ξNi ) .

For example, the estimation of Ztn is ẐN
tn

= 1

N

∑N

i=1
ξNi .

Also the probability for the state process Ztn to be in a given

subset D of R2
+ is simply the proportion of particles in the

domain D:

P[Ztn ∈ D|Y0:n = y0:n] ≃
1

N

N
∑

i=1

1D(ξin) .

About the resampling step (17)

In particle filtering, the resampling step (17) deserves

special attention; indeed it can be very time-consuming and

can also affect the output of the filter in terms of variance.

Several algorithms are available [15], for our simulations we

chose the residual resampling. The measurement frequency

is usually low in bioprocess applications, and the resampling

(17) is required only at the time of measurement.

Comments

Concerning the noise intensities c1, c2 and σ: first the

stochastic model (7) and more specifically the diffusion terms

c1
√
Xt and c2

√
St are derived from an analysis of the

demographic noise [8]. Some development and confrontation

to data remain to be done to clarify and confirm the structure

of these terms. In the context of particle filtering, these terms

are used in the prediction/mutation step: the structure of these

terms determine the way the particles explore the state space.

A uniform structure like “+ci dW i
t ” may be too vague and

lead the particles into irrelevant areas of the state space,

which can in turn lead to a loss of track (particles with zero

or almost zero likelihood). The role of the ci’s is then clear:

too small, the filter output variance will be small but the filter

capacity to follow the evolution of the real state process is

limited; too large, the latter capacity is more effective but the

filter output variance will be large; far too large, again the

filter will lose its ability to track the real state space vector.

In conclusion, the ci’s are less model parameters to estimate

than filter parameters to tune.

Concerning the noise intensity σ, it can be evaluated from

the nature and the analysis of the sensors; it also plays a

specific role in the particle filter algorithm. The observation

equation (8) derives from the fact that the standard deviation

of the noise is proportional to the substrate concentration.

The likelihood function, which is used to weight the particles,

is directly obtained from this observation equation, in partic-

ular its exponential form is due to the Gaussian hypothesis.

The parameter σ is used to sharpen the likelihood function,

and like for ci’s should be suitably tuned.

With respect to the nature of the noise: the state noises

W i
t are supposed to be independent Wiener processes (i.e.

the time derivative of W i
t is a white Gaussian noise), the

observation noise vn is supposed to be independent and

identically distributed N(0, 1) (again a discrete time white

Gaussian noise), moreover they are supposed to be mutually

independent and independent from the initial condition Z0.

These hypotheses lead to the simplest model, one could

propose other possibilities that will inevitably lead to the

addition of parameters to the model or components to the

state space vector.

V. NUMERICAL TESTS

We propose two numerical tests with observations sim-

ulated from (8) and with state process simulated from the

Euler-Maruyama scheme (15) with a time step δsimu =
∆/Msimu where Msimu is a multiple of Mfilter.

A. Test 1: high frequency observations

Final time is T = 1000 (h) and we use the same discretiza-

tion step for the observations, the simulation of the SDE and

the filter: ∆ = δsimu = δfilter = 0.5 (i.e. Msimu = Mfilter = 1).

The parameters of the filter (inputs and model parameters)

are: dilution rate D = 0.01 h−1; input substrate concentration

Sin = 100mg/l; stoichiometric coefficient k = 10; maximum

growth rate µmax = 0.3 h−1; half-saturation ks = 10mg/l.

The final time T = 1000 thus corresponds to 10 times the

retention time 1

D
.

The state noise intensities are c1 = c2 = 0.03 while the

observation noise intensity is σ = 0.2. The initial law is

π0(dx, ds) = N (0.2, 0.52)⊗N (1, 0.52).
The number of particles is N = 1000.
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Fig. 1. Test 1. The simulated process t → (Xt, St) (—), the observation

process tn → Yn (—), the estimates t → (X̂t, Ŝt) (—) and the
deterministic trajectory t → (x(t), s(t)) (—) obtained with c1 = c2 = 0.
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Fig. 2. Test 1. Same graphics as Fig. 1 but without the observation process

and with the grey “tubes” (�) around the estimates X̂t and Ŝt which are
the minimum and maximum values taken by the x and s components of
the particles.

B. Test 2: low frequency observations

This test is identical to Test 1 except that we do not use

the same time step for the simulation of the SDE, for the

observations and for the filter: ∆ = 10, δsimu = δfilter = 0.5
(i.e. Msimu = Mfilter = 20). It should be noted that in this test,

the particle filter is much faster than in Test 1, the respective

CPU times being 17.3945 (s) for Test 1 and 0.84054 (s) for

Test 2. This is due to the fact that the resampling step is time

consuming, as it cannot be vectorized, and as it is used for

each new measurement, it penalizes the Test 1.
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Fig. 3. Phase plot for Test 1 with the simulated process t → (Xt, St)
(—), the estimates t → (X̂t, Ŝt) (—) and the deterministic trajectory t →

(x(t), s(t)) (—) obtained with c1 = c2 = 0.
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Fig. 4. Test 2. The simulated process t → (Xt, St) (—), the observation

process tn → Yn (—), the estimates t → (X̂t, Ŝt) (—) and the
deterministic trajectory t → (x(t), s(t)) (—) obtained with c1 = c2 = 0.

VI. DISCUSSION AND PERSPECTIVES

We have developed a first implementation of a particle

filter on a chemostat model. One challenge is to manage

the fact that the frequency of observations is low, hence

it is necessary to simulate the state equation between two

observations. This prediction step can be done in an efficient

way as it is highly parallelizable.

There exists many extensions of this work, we now explore

some interesting leads.

Improved prediction step

In particle filter, the sum of the weights:

∑N

i=1
Ψ(yn, ξ̃

i
n)

used in the normalizing step (16) is a local likelihood:

the higher it is, the better the filter behaves i.e. the more

informative is πN
n (z). In most bioprocess applications, the
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Fig. 5. Test 2. Same graphics as Fig. 4 but without the observation process

and with the grey “tubes” (�) around the estimates X̂t and Ŝt that are the
minimum and maximum values taken by the x and s components of the
particles.
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Fig. 6. Phase plot for Test 2 with the simulated process t → (Xt, St)
(—), the estimates t → (X̂t, Ŝt) (—) and the deterministic trajectory t →

(x(t), s(t)) (—) obtained with c1 = c2 = 0.

elapsed time between two consecutive measurements is long

enough to significantly improve the prediction step. One

can indeed sample as many particles as required to get N
particles with large enough likelihood weights. It is also

possible to call on specific techniques like the progressive

correction proposed in [28].

Smoothing

If T = nmax ∆ is the final time of the experiment or of the

bioreactor exploitation, it could be pertinent to compute the

smoother [17], [6], that is:

π̄n(z)
def

= pZtn
|Y0:nmax

(z|y0:nmax
) ,

that is the distribution law of Ztn given that all the ob-

servations Y0:nmax
= y0:nmax

available during the complete

bioreactor experiment period. The smoother cannot be cal-

culated sequentially, but it may be tractable in bioprocess

applications where the elapsed time between two consecutive

measurements is long enough to allow for cumbersome

computations.

About the parameter estimation

In this work, the parameters are assumed to be known.

This is not realistic and there are several ways to simultane-

ously identify the parameters and the state process.

The most classical idea to extend filtering procedure to the

following augmented state:

z̃n =
( zn
θn

)

, (18a)

to consider the following artificial dynamics for the param-

eter:

θn+1 = θn + σ̃ w̃n (18b)

and to apply any filtering technique to the joint state dy-

namics (2) and (18b). This approach has been proposed

with the EKF [26] and the UKF [24]. The difficulty is that

with σ̃ small it fails at exploring the parameter space and

with σ̃ large the covariance error for the parameter is too

large. For too small σ̃, standard particle filters fail due to the

particle degeneracy phenomenon, this issue can be addressed

by specific sequential Monte Carlo procedures that use kernel

approximation techniques [12], [11].

The advantage of the augmented state techniques is that

that are sequential and can be achieved online in case of

real-time constraint. It should be noticed that it is a Bayesian

approach as a prior distribution on θ should be specified to

initiate the dynamics (18b).

Another possibility is to treat the parameter in a fre-

quentist way and to approximate the maximum likelihood

estimate with direct maximization or with the Expecta-

tion/Maximization (EM) procedure [9]. The EM method

coupled with the particle filter has been proposed in the

context of bioprocess in [20].

Bayesian numerics should have a great impact in biopro-

cess applications where the low frequency of measurements

allows for cumbersome numerical procedures, which is the

case of the Bayesian numerics. There already exits applica-

tions of standard Monte Carlo Markov chain (MCMC) in the

field of bioprocesses [22]. More elaborate procedures could

be applied [10], [7], see [23] for an overview of MCMC for

state-space models. Also particle Markov chain Monte Carlo

(pMCMC) algorithms, which combine MCMC and SMC,

proposed in [1] have already been applied in the field [19].

Other perspectives

The most interesting perspective is to test the robustness

of the filter in the case of model mismatch: use a filter with

a given growth function µ(s) as the observations correspond

to a different growth function µ̃(s). Another interesting

question is to determine which growth function, among a

given finite set of growth functions {µi(s); i = 1, . . . , I}, is

978-1-4673-2529-5/12/$31.00 ©2012 IEEE 370



underlying a given set of observations. Bayesian numerics,

SMC and MCMC, provide promising solutions to these

problems and may also extend to issues of change detection

or control [2].
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