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This article proposes a nonlinear complementary filter for the special linear Lie-group SL(3) that fuses low-
frequency state measurements with partial velocity measurements and adaptive estimation of unmeasured slowly
changing velocity components. The obtained results have direct application on the problem of filtering a sequence
of image homographies acquired from low-quality video data. The considered application motivates us to derive
results that provide adaptive estimation of the full group velocity or part of the group velocity that cannot be
measured from sensors attached to the camera. We demonstrate the performance of the proposed filters on real
world homography data.

Keywords: nonlinear observer; complementary filter; special linear group SL(3)

1. Introduction

A classical problem in computer vision and robotics is
the computation of the homography mapping relating
images of a planar scene viewed from two different
locations. There are several well-known algorithms to
numerically compute a homography estimate between
two images (e.g. Hartley and Zisserman 2000; Ma,
Soatto, Kosecka, and Sastry 2003). For these ‘classical’
algorithms there is no difference whether the two
images considered are separately obtained or drawn
from a video sequence. Zhang, Li, and Wu (2007) used
image flow computed from a pair of images to
compute the homographies, however, their algorithm
still considers isolated pairs of images, even though
these pairs of images must now be closely related, such
as images drawn from a video sequence, in order to
compute the flow field. It is of interest to ask if the
homography estimation associated with a whole
sequence of video images can be improved by more
explicitly considering the temporal relationship
between images, essentially by using an image motion
model. This question is related to the problem of visual
odometry, or estimation of the pose of a moving
camera, using planar texture features (Dellaert,
Thorpe, and Thrun 1998) or homography transforma-
tions (Wang, Yuan, Zou, and Zhou 2005; Mufti,
Mahony, and Kim 2007; Scaramuzza and Siegwart
2008). Indeed, it is possible to explicitly reconstruct the

relative rigid body pose of two cameras from a pair of

images of a planar scene (Faugeras and Lustman 1988;

Malis and Vargas 2007). However, the mapping

between relative rigid-body pose of the camera and

an associated image homography is highly nonlinear

and has ambiguities that may lead to singularities.

There are a number of important applications emer-

ging where it is the homography itself that is required

and the estimation of the camera pose is unnecessary.

Problems in image registration and removal of ‘shake’

from video sequences obtained from hand-held video

cameras are one of the motivating examples for this

article (Irani, Rousso, and Peleg 1994; Buehler, Bosse,

and McMillan 2001; Cho, Kim, and Hong 2007).

There are also algorithms in navigation of robotic

vehicles (Fang, Dixon, Dawson, and Chawda 2005;

Fraundorfer, Engels, and Nister 2007) and particularly

unmanned aerial vehicles (Caballero, Merino, Ferruz,

and Ollero 2007; Mondragóon, Campoy, Martı́nez,

and Olivares-Méndez 2010) that works directly with

homography sequences. We also mention some of the

classical results in the image-based visual servo control

that works directly with homographies (Malis,

Chaumette, and Boudet 1999; Deguchi 1998).

Defining a filter directly on the set of homographies

overcomes the limitations associated with representing

the filter state as a rigid-body pose. The special linear

group structure of the homographies (Benhimane and
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Malis 2007) provides a geometric state-space repre-
sentation that suggests the applicability of recent tools
in the nonlinear observer design (Mahony, Hamel, and
Pflimlin 2008; Bonnabel, Martin, and Rouchon 2008a;
Lageman, Trumpf, and Mahony 2010). Prior work,
however, has been focused on the special orthogonal
and special Euclidean groups, with applications in
attitude and pose estimation for mobile vehicles
(Tayebi and McGilvray 2006; Martin and Salaün
2008; Vasconcelos, Cunha, Silvestre, and Oliveira
2010). The authors know of no prior work, except
some preliminary work of their own (Malis, Hamel,
Mahony, and Morin 2009, 2010) that considers non-
linear filter design on the special linear group.

In this article, we provide a nonlinear complemen-
tary filter for a kinematic system on the special linear
SL(3) Lie-group. As a first study, we consider abstract
kinematics with respect to the natural geometry of
SL(3). The filter obtained has a natural complemen-
tary filtering interpretation, preserving the low-fre-
quency component of the state measurement and
fusing this with the high-frequency content of the
integrated velocity measurement. We build a filter for
the case where the group velocity is known and then
extend this to estimate a constant but unknown group
velocity, an effective solution even when the unknown
velocity is slowly time varying, that is when the filter
response is sufficiently fast compared to the group
velocity variation. We prove almost global stability
and local exponential stability around the desired
equilibrium point of this filter. We consider the specific
application of filtering a sequence of homographies
where the state measurement is provided by any of a
range of classical computer vision algorithm. We apply
the algorithm proposed in this article to a sequence of
real-world data, using the adaptive state to provide an
estimate of the unknown group velocity. The results
obtained demonstrate the robust performance of the
proposed filter. We go on to consider the case where
the homography sequence is generated by motion of a
camera over a static scene. In this case we derive the
mapping between rigid-body velocity and group
velocity of the induced homography sequence and
use this to develop a filter that uses body-fixed frame
measurements of a rigid-body velocity. We extend this
result to consider the case where the angular velocity is
measured (for instance, by embedded MEMS gyro-
scope sensors mounted on the camera), but the linear
translational velocity must be estimated. This case is
related to the growing literature on inertial vision
systems (Dias, Vinzce, Corke, and Lobo 2007). In this
section we assume that both the vision and inertial
system have been calibrated. We note that the
calibration problem for inertial vision itself has been
the topic of significant recent research (Lobo and Dias

2007; Hol, Schn, and Gustafsson 2010; Martinelli

2012) and we believe that the general approach taken
in this article may have application to calibration

problem, however, such an investigation is beyond the
scope of this article. We consider two cases; first, when

the linear velocity of the camera is constant in the
inertial frame, and second, when the linear velocity is

constant in the body-fixed frame. In both cases an
adaptive term in the filter is used to estimate the

component of the unknown group velocity associated
with the linear velocity term and the unmeasured

structure parameter while utilising the angular velocity
measurement.

This article is organised into five sections followed

by a short conclusion. After the introduction, Section 2
proposes the complementary filter on SL(3), provides a

preliminary stability analysis and briefly discusses the
properties of the filtered estimate. Section 3 contains

the main result of this article, providing the full
stability analysis of the complementary filter with an

adaptive estimation of unknown group velocity.
Section 4 considers the application to smoothing a

sequence of noisy homographies and provides experi-
mental verification of the algorithm proposed in

Section 3. Section 5 considers the question of filtering
a sequence of homographies in more detail, in

particular, taking into account the possibility that the
rigid-body motion of the camera is modelled. Initially,

we assume the full rigid-body velocity of the camera is
available, and then later go on to consider two cases of

interest, where the angular velocity of the camera is
known and the linear velocity is assumed constant in

either the inertial frame or the body-fixed frame. A
short conclusion is also provided.

2. Nonlinear filter on SL(3) with known group

velocity

In this section, we consider the abstract question of
design of a filter on the special linear group. The

system kinematics are modelled as left-invariant
dynamics on the Lie group SL(3) with group velocity

A2 slð3Þ. The resulting filter has the natural structure
of a complementary filter.

The matrix representation of the special linear
group

SLð3Þ ¼ fH2R
3�3
j detðSÞ ¼ 1g

is the set of non-singular, 3� 3 matrices with unit
determinant. It is an eight-dimensional embedded

Lie-subgroup of GL(3) in the natural manner. The
Lie-algebra slð3Þ for SL(3) is the set of matrices with

trace equal to zero, slð3Þ ¼ fX2R
3�3
j trðX Þ ¼ 0g.

2 R. Mahony et al.
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The adjoint operator is a mapping Ad : SLð3Þ�

slð3Þ ! slð3Þ defined by

AdHX ¼ HXH�1, H2SLð3Þ, X2 slð3Þ:

For any two matrices A,B2R
3�3 the Euclidean matrix

inner product and Frobenius norm are defined as

A,Bh ih i ¼ trðA>BÞ, kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A,Ah ih i

p
:

Let P denote the unique orthogonal projection of

R
3�3 onto slð3Þ with respect to the inner product

hh�, � ii. It is easily verified that

PðHÞ :¼ H�
trðHÞ

3
I

� �
2 slð3Þ: ð1Þ

For any matrices G2SL(3) and B2 slð3Þ then

hhB,Gii¼ hhB,P(G)ii and hence

trðB>GÞ ¼ trðB>PðGÞÞ: ð2Þ

Consider the standard left invariant kinematics defined

on SL(3)

_H ¼ HA ð3Þ

where H2SL(3) and A2 slð3Þ (Bonnabel et al. 2008a;

Lageman, Mahony, and Trumpf 2008).
Consider an estimate ĤðtÞ 2SLð3Þ of the true

homography H(t). Define a group error

~H ¼ Ĥ�1H: ð4Þ

The group error provides a natural measure to evaluate

performance of the filter response. The error ~H

converges to the identity element of the group I if

and only if the observation Ĥ! H converges to the

system state.

Lemma 2.1: Consider the group kinematics (3) and

assume that the group velocity A2 slð3Þ is measured. Let

_̂
H ¼ ĤAd ~H A� kP ~H>ðI� ~H Þ

� �� �
ð5Þ

where k4 0. Then I is a locally exponentially stable

equilibrium of the error ~H.

Proof: The error dynamics are obtained by differ-

entiating ~H

_~H ¼ �Ĥ�1
_̂
HĤ�1Hþ Ĥ�1 _H

¼ �Ad ~H A� kP ~H>ðI� ~H Þ
� �� �

~Hþ ~HA

¼ k ~HP ~H>ðI� ~H Þ
� �

: ð6Þ

Consider the Lyapunov function

L ¼
1

2
k ~H� Ik2 ¼

1

2
tr ð ~H� I Þ>ð ~H� I Þ
� �

: ð7Þ

The derivative of L along the solutions of (6) is

_L ¼ tr ð ~H� I Þ>
_~H

� �
¼ ktr ð ~H� I Þ> ~HP ~H>ðI� ~H Þ

� �� �
¼ ktr ~H>ð ~H� I Þ

� �>
P ~H>ðI� ~H Þ
� �� �

:

Using the fact that P ~H>ðI� ~H Þ
� �

2 slð3Þ and recalling

property (2), it follows

_L ¼ ktr P ~H>ð ~H� I Þ
� �>

P ~H>ðI� ~H Þ
� �� �

¼ �k
		P ~H>ðI� ~H Þ
� �		2:

It is easily verified that ak ~H� Ik2 5
kP ~H>ðI� ~H Þ
� �

k2 5 bk ~H� Ik2 in the neighbourhood

of the identity matrix for some constants a and b and
the result follows from standard Lyapunov theory
(Khalil 1996). œ

Remark 1: Lemma 2.1 could be strengthened to
almost global asymptotic stability with an explicit
characterisation of the unstable equilibrium using the

results presented in Theorem 3.2 if required.

The filter (5) is of interest due to its complementary

filtering characteristics as well as the almost global
asymptotic stability properties proved in Lemma 2.1.
Complementary filters are filters that fuse different

measurements of a single signal together into an all
pass estimate based on frequency criteria on the input
signals (Mahony et al. 2008). In the standard scenario

considered, the state measurement is corrupted by zero
mean high-frequency noise. Thus, it is reliable and
unbiased at low-frequency but noisy at high-frequency.

In contrast, the forward integration of the group
velocity is reliable at high-frequency due to the natural
frequency roll-off associated with the integration

process. Thus, the goal is to combine low-frequency
information from the state measurement together with
high-frequency information from the velocity measure-

ment to obtain the estimate of the signal.
Since the proposed filter (5) is inherently nonlinear

the frequency response of the filter can only be shown
by analogy. Consider a first-order approximation

ĤðtÞ � HðtÞðIþ XðtÞÞ, XðtÞ 2 slð3Þ

of the filter Ĥ along a systems trajectory H(t). Note
that with this definition ~H � I� X and ~H�1 � Iþ X.

The linearisation of the error dynamics are
_~H �

d
dt ðI� X Þ ¼ � _X. One has

_X � �
_~H

¼ k ~HP ~H>ð ~H� I Þ
� �

� kðI� X ÞP ðIþ X Þ>ð�X Þ
� �

� �kX

International Journal of Control 3
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where second- and higher-order terms are discarded to

obtain the linearisation. It follows that the error

variation X(t) behaves like the output of a first-order

‘low-pass’ filter with roll-off frequency k rad s�1. This

is the component of the complementary filter that

implements the low-pass dependence on the state

measurements X � I� Ĥ�1H. The filter Equation (5)

can now be written as

_̂
H ¼ ĤAd ~H Aþ kP ~H>ð ~H� I Þ

� �� �
� ĤAd ~H A� kXð Þ

ignoring quadratic or higher order terms in X. The

term A is the direct measurement (hence containing the

high-frequency components) of group velocity while X

is a low-pass filtered version of state error. The

frequency tradeoff between the two signals can be

tuned by adjusting the gain k that determines the low-

frequency response of the error dynamics.
Although the above discussion is only an argument

by analogy, the filter (5) demonstrates a strong

frequency selectivity in practice, effectively combining

state and velocity measurements to reduce high-

frequency noise and avoid low-frequency time-varying

offsets in the resulting state estimate. The integration

of the velocity measurements is a crucial aspect of the

complementary filtering approach and makes this

approach distinct from, and significantly outperform,

simple low-pass filtering of the measurement.

3. A complementary filter on SL(3) that also
estimates group velocity

In practice, a measurement for the group velocity A

may not be available for injection into the filter

dynamics. This is the case in the application to filtering

homographies considered later in this article. The

remainder of this article considers a number of

different solutions to deal with an unknown group

velocity. The first approach taken is to assume that the

group velocity is constant. In practice, such an

assumption would never be expected to hold explicitly,

however, the filter will still function effectively in the

case where the group velocity varies slowly compared

to the transient response of the filter. We propose a

filter that includes an adaptive estimate of the

unknown group velocity and prove the local exponen-

tial stability of the full error dynamics. Thus, the

proposed filter will track a slowly time-varying group

velocity with a small error. This is a common principle

used in observer and filter problems and the experi-

mental results presented in Section 4 demonstrate the

effectiveness of the approach.

Assumption 3.1: Assume that the velocity A2 slð3Þ in

Equation (3) is constant.

Define a second error signal

~A ¼ A� Â:

The goal of the filter design is to choose dynamics for

ĤðtÞ 2SLð3Þ and ÂðtÞ 2 slð3Þ such that the estimation

errors ð ~H� I Þ and ~A are globally asymptotically and

locally exponentially stable to zero. In fact, we cannot

fully guarantee the global asymptotic stability as we

will find that the filter we propose has isolated unstable

critical points in the error dynamics, however, we will

be able to prove the almost global asymptotic stability.
Consider the following filter for H that satisfies (3)

_̂
H ¼ ĤAd ~H Â� k1P ~H>ðI� ~H Þ

� �� �
, Ĥð0Þ ¼ Ĥ0,

ð8aÞ

_̂
A ¼ �k2P ~H>ðI� ~H Þ

� �
, Âð0Þ ¼ Â0, ð8bÞ

where k1, k24 0 and ~H is given by (4). Given the above

filter, the error dynamics for ð ~H, ~AÞ ¼ ðĤ�1H,A� ÂÞ

are easily verified to be

_~H ¼ ~H ~Aþ k1P ~H>ðI� ~H Þ
� �� �

ð9aÞ

_~A ¼ k2P ~H>ðI� ~H Þ
� �

: ð9bÞ

Theorem 3.2: Consider the group kinematics given by

(3) for a constant group velocity A (Assumption 3.1).

Consider the filter given by (8a)–(8b), Then, for the error

dynamics (9):

(i) All solutions converge to E¼Es[Eu with

Es ¼ ðI, 0Þ

Eu ¼ ð ~H0, 0Þ : ~H0 ¼ � Iþ ð��3 � 1Þvv>
� �

, v2S2

 �
where �5 0 is the unique real solution of the

equation �3� �2þ 1¼ 0.
(ii) The equilibrium point Es¼ (I, 0) is locally

exponentially stable.
(iii) Any point of Eu is an unstable equilibrium.

More precisely, for any ð ~H0, 0Þ 2Eu and any

neighbourhood U of ð ~H0, 0Þ, there exists an

ð ~H1, ~A1Þ 2U such that the solution of system (9)

issued from ð ~H1, ~A1Þ converges to Es.

Proof: We will proceed item by item:

Proof of part (i): Let us consider the following

candidate Lyapunov function:

L ¼
1

2
k ~H� Ik2 þ

1

2k2
k ~Ak2: ð10Þ

4 R. Mahony et al.
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The derivative of L along the solutions of system (9) is

_L ¼ tr ð ~H� I Þ>
_~H

� �
þ

1

k2
tr ~A>

_~A
� �

¼ tr ð ~H� I Þ> ~H ~Aþ k1ð ~H� I Þ> ~HP ~H>ðI� ~H Þ
� �� �

þ
k2
k2

tr ~A>P ~H>ðI� ~H Þ
� �� �

:

Recalling (2), one obtains

_L ¼ k1 Pð ~H>ð ~H� I ÞÞ,P ~H>ðI� ~H Þ
� �� 
� 


þ ~A,Pð ~H>ð ~H� I ÞÞ þ P ~H>ðI� ~H Þ
� �D ED E

,

¼ �k1kPð ~H>ð ~H� I ÞÞk2: ð11Þ

The derivative of the Lyapunov function is negative

semi-definite, and equal to zero when

P ~H>ðI� ~H Þ
� �

¼ 0. Since L goes to infinity for

k ~H� Ik unbounded, the error dynamics are bounded

and exist for all time. The dynamics of the estimation

error is autonomous and it follows from LaSalle’s

theorem that all solutions of this system converge to

the largest invariant set contained in fð ~H, ~AÞ :

Pð ~H>ð ~H� I ÞÞ ¼ 0g.
We now prove that, for system (9) with

P ~H>ðI� ~H Þ
� �

� 0, the largest invariant set E con-

tained in fð ~H, ~AÞjPð ~H>ð ~H� I ÞÞ ¼ 0g is equal to

Es[Eu. We need to show that the solutions of

system (9) with P ~H>ðI� ~H Þ
� �

� 0 consist of all fixed

points of Es[Eu. Note that Es¼ (I, 0) is clearly

contained in E. Consider a solution ð ~HðtÞ, ~AðtÞÞ 2Eu.

First, we deduce from (9) with P ~H>ðI� ~H Þ
� �

� 0 that
_~AðtÞ is identically zero on the invariant set E and

therefore ~A is constant. We also deduce from (9) with

P ~H>ðI� ~H Þ
� �

� 0 that
_~H ¼ ~H ~A. Note that at this

point one cannot infer that ~H is constant.
Since Pð ~H>ð ~H� I ÞÞ ¼ 0, we have that

~H>ð ~H� I Þ ¼
1

3
trace ~H>ð ~H� I Þ

� �
I, ð12Þ

and hence ~H ¼ ~H> ~H� �I for some �2R and ~H is a

symmetric matrix. Therefore, ~H can be decomposed as

~H ¼ UDU>, ð13Þ

where U2SO(3) and D¼diag(�1, �2, �3)2SL(3) is a

diagonal matrix which contains the three real eigenva-

lues of ~H. Without loss of generality, let us suppose

that the eigenvalues are in an increasing order,

�1� �2� �3. Substituting (13) into (12), one obtains

DðD� I Þ ¼
1

3
traceðDðD� I ÞÞI:

Given that det(D)¼ 1, the �i’s satisfy the following

equations:

�1ð1� �1Þ ¼ �2ð1� �2Þ ð14Þ

�2ð1� �2Þ ¼ �3ð1� �3Þ ð15Þ

�3 ¼ 1=ð�1�2Þ, ð16Þ

which can also be written as follows:

�1 � �2 ¼ ð�1 � �2Þð�1 þ �2Þ ð17Þ

�1 � �3 ¼ ð�1 � �3Þð�1 þ �3Þ ð18Þ

�3 ¼ 1=ð�1�2Þ: ð19Þ

First of all, note that if �1¼ �2¼ �3 then

�1¼ �2¼ �3¼ 1. This solution is associated with the

equilibrium point Es¼ (I, 0).
If �1¼ �25 �3 then

1 ¼ �2 þ �3 ð20Þ

�3 ¼ 1=ð�22Þ, ð21Þ

where �22 (�1, 0) is the unique real solution of the

equation �32 � �
2
2 þ 1 ¼ 0. This solution is associated

with the equilibrium set Eu.
If �15 �2¼ �3 then

1 ¼ �1 þ �2 ð22Þ

�1 ¼ 1=�22 ð23Þ

so that �2 is also a solution of the equation

�32 � �
2
2 þ 1 ¼ 0. But this is impossible since we

supposed �15 �2 and the solution of the equation is

such that �15 �25 0 and 05 �1 ¼ 1=�22 5 1.
If �1 6¼ �2 6¼ �3, then

1 ¼ �1 þ �2 ð24Þ

1 ¼ �1 þ �3 ð25Þ

�3 ¼ 1=ð�1�2Þ, ð26Þ

which means that �2¼ �3, a contradiction.
In conclusion, ~H2Eu has two equal negative

eigenvalues �1¼ �2¼ �5 0 (� is the unique real

solution of the equation �3� �2þ 1¼ 0) and the third

one is �3¼ 1/�2. Writing the diagonal matrix D as

follows:

D ¼ �ðIþ ð��3 � 1Þe3e
>
3 Þ

International Journal of Control 5
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and substituting this into Equation (13), the matrix for

the second solution (�1¼ �2) can be expressed as

follows:

~H ¼ �ðIþ ð��3 � 1ÞðUe3ÞðUe3Þ
>
Þ:

We have shown that ~H must have the form

~H ¼ �ðIþ ð��3 � 1Þvv>Þ, ð27Þ

where v¼Ue3 is a unitary vector, kvk¼ 1 and � is the

unique real constant value that verifies the equation

�3� �2þ 1¼ 0.
It remains to show that ~A¼ 0 on Eu. Note that

~H ¼ UDU> with D, a constant matrix with eigenvalues

(�, �, 1/�2) where �3� �2þ 1¼ 0. It follows that
_~H ¼ �½ ~H,Z� for some Z¼�Z> possibly time-varying

such that _U ¼ ZU, where ½ ~H,Z� ¼ ~HZ� Z ~H is the Lie

bracket. Since
_~H ¼ ~H ~A, then

~H ~A ¼ �½ ~H,Z� ð28Þ

and consequently, using the fact that ~A is constant,

we have

d

dt
~A ¼ 0 ¼ �

d

dt
~H�1½ ~H,Z�

¼ ~H�1½ ~H,Z� ~H�1½ ~H,Z� � ~H�1½½ ~H,Z�,Z�

� ~H�1½ ~H, _Z�:

Rearranging, one obtains

½ ~H, _Z� ¼ ½ ~H,Z� ~H�1½ ~H,Z� � ½½ ~H,Z�,Z�

¼ � ~HZ ~H�1Z ~Hþ Z ~HZ:

It is easily verified that v>½ ~H, _Z�v ¼ 0 where v is defined

in (27). Then we compute1

v>½ ~H, _Z�v ¼ v> � ~HZ ~H�1Z ~Hþ Z ~HZ
� �

v

0 ¼ �
1

�4
v>Z ~H�1Zvþ v>Z ~HZv

0 ¼ þ
1

�5
kZvk2 � �kZvk2

0 ¼ kZvk2

since ð 1
�5
� �Þ 6¼ 0. It follows Zv¼ 0 or that Z¼ �v� for

some � 2R, is where v� is the skew-symmetric matrix

associated with the cross-product by v, i.e. v�y¼ v� y,

for all y. Substituting this into (28), it follows directly

that ~A¼ 0 since ½ ~H, v�� ¼ 0 and this concludes the

proof of Part (i).

Proof of part (ii): We compute the linearisation of

system (9) at Es¼ (I, 0). Let us define X1 and X2 as

elements of slð3Þ corresponding to the first-order

approximations of ~H and ~A around (I, 0)

~H�ðIþ X1Þ, ~A�X2:

Substituting these approximations into (9) and dis-
carding all terms quadratic or higher order in (X1,X2)
yields

_X1

_X2

 !
¼
�k1I3 I3

�k2I3 0

� �
X1

X2

� �
: ð29Þ

Since k1, k24 0, the linearised error system is expo-
nentially stable. This proves the local exponential
stability of the equilibrium (I, 0).

Proof of Part (iii): It is easily verified that for
ð ~H, ~AÞ 2Eu

L ¼
1

2
k ~H� Ik2 þ

1

2k2
k ~Ak2

¼
1

2
kD� Ik2 ¼ ð�� 1Þ2 þ

1

2
ð��2 � 1Þ2

¼: Lu 4 0 ð30Þ

is constant. To prove the desired result it is sufficient to
show that for any point ð ~H0, 0Þ 2Eu, and any
neighbourhood U of this point, one can find
ð ~H1, ~A1Þ 2 U such that

Lð ~H1, ~A1Þ5Lu: ð31Þ

Since L is strictly non-increasing along trajectories and
all solutions converge to Es[Eu, then the solution
originating at such a point must converge to Es.

Let ~Hð�Þ denote a smooth curve on SL(3), solution
of

_~H ¼ ~HC with C, a constant element of slð3Þ
that will be specified latter on. We also assume that
ð ~Hð0Þ, 0Þ 2Eu. Let f ðtÞ ¼ k ~HðtÞ � Ik2=2 so that, by (10),
f(0)¼Lu. The first derivative of f is given by

_f ðtÞ ¼ trðð ~HðtÞ � I Þ>
_~HðtÞÞ

¼ trðð ~HðtÞ � I Þ> ~HðtÞCÞ

¼ Pð ~H>ðtÞð ~HðtÞ � I ÞÞ,C
� 
� 


:

For all elements ð ~H0, 0Þ 2Eu, one has Pð ~H>0 ð
~H0 � I ÞÞ ¼

0, so that _f ð0Þ ¼ 0. We now calculate the second-order
derivative of f

€f ðtÞ ¼ trð
_~HðtÞ>

_~HðtÞÞ � trððI� ~HðtÞÞ>
€~HðtÞÞ

¼ trð
_~HðtÞ>

_~HðtÞÞ þ tr ð ~HðtÞ � I Þ>
_~HðtÞC

� �
,

where we have used the fact that C is constant.
Evaluating the above expression at t¼ 0 and replacing
_~Hð0Þ by its value ~Hð0ÞC yields

€f ð0Þ ¼ k ~Hð0ÞCk2 þ tr ð ~Hð0Þ � I Þ> ~Hð0ÞC2
� �

: ð32Þ

When ð ~H0, 0Þ 2Eu, one has

~H2
0 ¼ �

2Iþ
1

�2
� �

� �
vv> ¼ ~H0 þ ð�

2 � �ÞI:
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Therefore, we deduce from (32) that

€f ð0Þ ¼ k ~Hð0ÞCk2 þ �ð�� 1ÞtrðC2Þ: ð33Þ

Since ð ~Hð0Þ, 0Þ 2Eu, there exists a v2S2 such that
~Hð0Þ ¼ �Iþ ð 1

�2
� �Þvv>. From this expression and

using the fact that �3� �2þ 1¼ 0, one verifies that

k ~Hð0ÞCk2 ¼ �2kCk2 þ
1

�2
� �

� �
trðC>vv>CÞ: ð34Þ

Setting C ¼ v� 2 slð3Þ, it follows from (33) and
(34) that

€f ð0Þ ¼ �2kCk2 þ �ð�� 1ÞtrðC2Þ

¼ �2trðv>�v�Þ þ �ð�� 1Þtrððv�Þ
2
Þ

¼ ��2trððv�Þ
2
Þ þ �ð�� 1Þtrððv�Þ

2
Þ

¼ ��trððv�Þ
2
Þ ¼ 2�kvk2 ¼ 2�5 0:

Therefore, there exists a t14 0 such that for any
t2 (0, t1),

f ðtÞ� f ð0Þ þ t _f ð0Þ þ t2=2 €f ð0Þ

�Lu þ t2=2 €f ð0Þ5Lu:

Equation (31) follows by setting ð ~H1,A1Þ ¼ ð ~HðtÞ, 0Þ
with t2 (0, t1) chosen small enough so as to have
ð ~HðtÞ, 0Þ 2 U. This concludes the proof of Part (iii) and
the proof of the theorem. œ

4. Complementary filtering for homographies

In this section, we consider the application of the
results proposed in Sections 2 and 3 to the problem of
tracking time-varying homographies.

A homography is a mapping between two images of
a planar scene P. Let p¼ (u, v) represent the pixel
coordinates of a 3D point x2P, as observed in the
normalised image plane of a pinhole camera. Let A
(resp. B) denote projective coordinates for the image
plane of a camera A (resp. B), and let {A} (resp. {B})
denote its (right-hand) frame of reference. Any 3� 3
non-singular matrix, H, defines a homography map-
ping H : B!A, pA¼w(H, pB), by

wðH, pÞ ¼
ðh11uþ h12vþ h13Þ=ðh31uþ h32vþ h33Þ

ðh21uþ h22vþ h23Þ=ðh31uþ h32vþ h33Þ

� �

with hij the entries of H. The mapping is only defined
up to a scale factor; that is, for any scale factor � 6¼ 0,
pA¼w(� H, pB)¼w(H, pB).

Recall that the special linear Lie-group SL(3) is
defined as the set of all real valued 3� 3 matrices with
unit determinant

SLð3Þ ¼ fS j detS ¼ 1g:

Since a homography matrix H is only defined up to
scale, then any homography matrix is associated with a
unique matrix H	 2SL(3) by re-scaling

H	 ¼
1

detðHÞ
1
3

H ð35Þ

such that det(H	)¼ 1. Moreover, the map w is a group
action of SL(3) on R2

wðH1,wðH2, pÞÞ ¼ wðH1H2, pÞ

wðI, pÞ ¼ p,

where H1, H2 and H1H22SL(3) and I is the identity
matrix. As a consequence, one may think of homo-
graphies as identified with the elements of SL(3).

Remark 2: It is worth noting that a homography H
does not in itself reference specific images A and B.
The same homography may refer to different images
taken with respect to different frames of reference.
Indeed, if one fixes A and considers only homogra-
phies that map to an arbitrary second image B, then
the resulting subset of all possible homographies is a
proper subset of SL(3).

The algorithm proposed in Theorem 3.2 was
applied to a sequence of homographies obtained
from real data. The data used for this experiment
were obtained from a fully calibrated system. In the
experiment, the user selects a rectangular area of
interest in the first image. The homographies that
transform the area of interest in the current image are
measured using the ESM visual tracking software2

(Benhimane and Malis 2007). Figure 1 shows four
images extracted from the Corkes sequence. The first
image in the figure shows a rectangle containing the
area of interest that must be tracked in all the images of
the video sequence. For each image of the sequence,
the output of the ESM visual tracking algorithm is the
homography that encodes the transformation of each
pixels of the rectangular area from the current to the
first image.

The measured homographies are the input of the
proposed nonlinear filter. In this experiment the gains
were k1¼ 5 and k2¼ 1. The filtering effect of the filter
on the estimated homography are visible in Figure 2.
Note that the measurements have a level of jitter or
noise that is smoothed in the filtered estimates. A key
aspect of the proposed approach is that it provides
estimates of the group velocity Â as a part of the filter
process. The filter assumes that the group velocity is
constant, however, as long as the velocity varies slowly
with respect to the time constant of the filter then the
filter provides an estimate of the homography velocity.
The estimate of the group velocity is shown in Figure 3.
This estimate is clearly superior to an estimate
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obtained by differentiating the homography matrices
directly. The estimation of the group velocity is
potentially useful in image based control algorithms
or in image compression algorithms.

5. Homography filter for a camera moving with

rigid-body motion

In this section, we consider the case where the
homographies considered are generated by a camera
moving subject to rigid-body motion. The goal is to
develop a nonlinear filter for the image homography
sequence using the velocity associated with the rigid-
body motion of the camera rather than the group
velocity of the homography sequence, as was assumed
in Section 4. This is an important consideration for
applications where the velocity of the rigid-body
motion of the camera is known or partly known
from additional external sensors. For example, angular
velocity can be measured using gyroscopes mounted on
the camera, while in applications such as, for example,
a camera fixed to an automobile or attached to a fixed-
wing drone, the body-fixed frame direction of velocity
is constrained and its magnitude is not difficult to
measure. It is also of interest to consider the case of
constant but with unknown rigid-body linear velocity,
either in the body-fixed frame or inertial frame, as

these are common assumptions in many applications.

These cases are treated in subsections following the

main result of the section.
A homography can be related to the underlying

rigid-body pose of the cameras with respect to the

planar scene. We denote the attitude and position of

{B} with respect to {A}, by3 (ARB, A�B). A homography

H mapping B to A can be written as (see Faugeras and

Lustman (1988) for a numerical decomposition and

Malis and Vargas (2007) for the analytical

decomposition)

H ¼ �K Rþ
�nB
>

dB

� �
K�1 ð36Þ

where K is the upper triangular matrix containing the

camera intrinsic parameters, R ¼ A
ARB is the rotation

matrix representing the orientation of {B} with respect

to {A} expressed in {A}, � ¼ A
A�B is the translation

vector of the origin of {B} with respect to {A}

expressed in {A}, nB is the normal to the planar

surface P expressed in {B}, dB is the orthogonal

distance of the origin of {B} to the planar surface and �
is a scaling factor. Note that there exist multiple

possible solutions to the decomposition (36) (Ma et al.

2003) that must be separately resolved by considering

of physical constraints of the imaging system. The local

parameterisation given by (36) is also singular when

image 1 image 50

image 100 image 180

Figure 1. Images from the Corkes sequence. The quadrilateral in the centre of the first image indicates the image patch tracked in
subsequent images. The visual tracking is correctly performed in real-time. However, the noise in the images and modelling errors
affect the accuracy of the measured homographies.
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{A} and {B} are collocated. That is, when �¼ 0, the

differential of the mapping, H � (R, �), defined by

(36) is degenerate. Indeed, in this case the normal, nB,

to the planar surface is not observable.
Denote the rigid-body angular velocity and linear

velocity of {B} with respect to {A} expressed in {B} by

� ¼ B
A�B and V ¼ B

AVB, respectively. The rigid body

kinematics of (R, �) are given by

_R ¼ R�� ð37Þ

_� ¼ RV ð38Þ

where �� is the skew symmetric matrix associated with

the vector cross-product, i.e. ��y¼�� y, for all y.

Assumption 5.1: Assume that the sequence of homo-

graphies are generated by a moving camera viewing a

stationary planar surface.

This assumption imposes non-trivial constraints on

the possible group velocities that can be attained. In

particular, the assumption is equivalent to fixing the

rigid-body pose of the camera in the reference position

and fixing the planar scene stationary. Thus, any group

velocity (infinitesimal variation of the homography)

must be associated with instantaneous variation in

measurement of the active image (due to motion of the

rigid-body pose of the camera) and not variation in the

reference image. This imposes constraints on two

degrees of freedom in the homography velocity, in

particular, those associated with the variation of the

normal to the reference image, and leaves the remain-

ing six degrees of freedom in the homography group

velocity depending on the rigid-body velocities of the

camera.
Let n denote the normal to the planar surface that

is viewed by the camera. Then nB is this normal

h11 h12 h13

0 5 10 15 20
0.85

0.9

0.95

1

1.05

1.1

0 5 10 15 20
−0.6

−0.4
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0.1

h21 h22 h23

0 5 10 15 20
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−0.3

−0.2

−0.1

0

0.1

0 5 10 15 20
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Figure 2. Corkes sequence. Each plot represents an element of the (3� 3) homography matrix. The leading line (red or lighter
line): the measured homography matrix H. The second (blue or darker) line: the observed homography Ĥ lags slightly behind the
noisier homography measurement due to the time variation of the velocity.
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expressed in {B} and nA¼RnB is the same physical

vector expressed in {A}. It is easily verified that

_nB ¼ ���nB, _nA ¼ 0 ð39Þ

This constraint on the variation of nA and nB is

precisely the velocity constraint associated with

Assumption 5.1.
The scalar dB is the orthogonal distance of the

origin of {B} to the planar surface while dA is used to

refer to the orthogonal distance from the origin of {A}

to the surface. It is easily verified that

_dB ¼ �n
>
BV,

_dA ¼ 0:

Although this equation appears to result in an

additional constraint to the possible velocities of the

homography, this is not the case since the relative scale

constraint associated with variation in dA is already

absorbed in the scale invariance of the homography

representation.

Assumption 5.2: Assume that the calibration matrix K

for the considered camera is known.

For the remainder of this article, we will restrict our

attention to the calibrated homography H¼K�1Hraw

K where Hraw is the measured homography given by

(36). That is,

H ¼ K�1HrawK ¼ � Rþ
�n>B
dB

� �
ð40Þ

where � is the scale factor chosen such that det(H )¼ 1.

Lemma 5.3: Consider a camera moving with kine-

matics (37) and (38) viewing a planar scene

(Assumption 5.1). Let H : B!A denote the calibrated

homography (40). The group velocity A2 slð3Þ such that
_H ¼ HA induced by the rigid-body motion is given by

A ¼ �� þ
Vn>B
dB
�
n>BV

3dB
I

� �
ð41Þ
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Figure 3. Corkes sequence. Each plot represents an element of the observed homography velocity matrix Â.
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where nB is the normal to the observed planar

surface expressed in the camera frame {B} at time t

and dB is the orthogonal distance of the camera to the

planar surface.

Proof: Consider the time derivative of (40). One has

_H ¼ � _Rþ
_�n>B þ � _n>B

dB
�

_dB�n
>
B

d2B

 !
þ

_�

�
H: ð42Þ

Recalling Equations (37) and (38), one has

_H ¼ � R�� þ
RVn>B þ �n

>
B��

dB
þ
n>BV�n

>
B

d2B

� �
þ

_�

�
H

¼ � Rþ
�n>B
dB

� �
�� þ Rþ

�n>B
dB

� �
Vn>B
dB

� �
þ

_�

�
H

¼ H �� þ
Vn>B
dB
þ

_�

�
I

� �
:

Applying the constraint that tr(A)¼ 0 for any element

of slð3Þ, one obtains

0 ¼ tr �� þ
Vn>B
dB
þ

_�

�
I

� �
¼

n>BV

dB
þ
3 _�

�
:

The result follows by substitution. œ

Note that the group velocity A induced by camera

motion depends on the additional variables nB and dB
that define the scene geometry at time t as well as the

scale factor �. The scale factor � can be computed

from the calibrated homography matrix H by taking

the second singular value (Ma et al. 2003,

Lemma 5.18)

�ðtÞ :¼ �2ðHðtÞÞ: ð43Þ

An explicit formula for the calculation of � is proposed

in Malis and Vargas (2007). Thus, we will consider � to

be a measured variable. One has

detðHÞ ¼ �3 det Rþ
�n>B
dB

� �

¼ �3 det Iþ
R>�n>B
dB

� �

¼ �3 1þ
n>BR

>�

dB

� �
:

Since dA ¼ dB þ n>BR
>�, it follows that

dB
dA

� �
¼ �3

and � can be used to provide information on the

relative scale.
The scene parameters nB and dA remain unknown

and unmeasurable variables. They must be taken into

account in the filter design. This leads to the first result

of this section. In particular, let

NB ¼
nB
dA

,

Then, recalling (39), one has _NB ¼ ���NB since dA is

constant. Define the filter as follows:

_̂
H ¼ ĤAd ~H

 
�� þ

1

�3
VN̂>B �

1

3�3
ðN̂>BVÞI

� k1P ~H>ðI� ~H Þ
� �!

ð44Þ

_̂
NB ¼ ���N̂B �

k2
�3

P ~H>ðI� ~H Þ
� �>

V ð45Þ

where k1, k24 0. The variable N̂B 2R
3 is an estimate

for NB. Let ~NB ¼ NB � N̂B, then the error dynamics

for the system are

_~H ¼ ~H
1

�3
V ~N>B �

1

3
ð ~N>BVÞI

� �
þ k1P ~H>ðI� ~H Þ

� �� �
,

ð46Þ

_~NB ¼ ��� ~NB þ
k2
�3

P ~H>ðI� ~H Þ
� �>

V: ð47Þ

Theorem 5.4: Consider a camera moving with kine-

matics (37) and (38) viewing a planar scene (Assumption

5.1). Let H : B!A denote the calibrated homography

(40) (Assumption 5.2). Let � be given by (43) and assume

that � is bounded above and below, that is there exists an

05 �5B51 such that �� � �B for all time. Assume

that the body-fixed frame velocities V ¼ B
AVB and

� ¼ B
A�B are measured, bounded and persistently

exciting in the sense that the time-varying linear

system with the state matrix A(t) and measurement

matrix C(t) given by

AðtÞ ¼

�k1I9
1

�3
vecðI3ÞV

> �
1

3
I3 
 V

� �
k2
�3

V> 
 I3
� �

T ���

0
BB@

1
CCA

CðtÞ ¼ I9 09�3ð Þ ð48Þ

is uniformly observable.4 Assume in addition, that _V is

bounded. Consider the filter dynamics (44) and (45), then

the following points hold for the filter error dynamics

(46)–(47):

(i) All solutions converge to E¼Es[Eu with

Es ¼ ðI, 0Þ

Eu ¼ fð ~H0, 0Þ : ~H0 ¼ � Iþ ð��3 � 1Þvv>
� �

, v2S2g
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where �5 0 is the unique real solution of the
equation �3� �2þ 1¼ 0.

(ii) The equilibrium point Es¼ (I, 0) is locally
exponentially stable.

(iii) Any point of Eu is an unstable equilibrium.
More precisely, for any ð ~H0, 0Þ 2Eu and any
neighbourhood U of ð ~H0, 0Þ, there exists an
ð ~H1, ~N1

BÞ 2 U such that the solution of system (9)
issued from ð ~H1, ~N1

BÞ converges to Es.

Proof: The proof is inspired from that of
Theorem 3.2, with the differences due to the fact that
system (46)–(47) is not autonomous, and therefore
LaSalle’s invariance principle does not apply.

Consider the Lyapunov function

L ¼
1

2
k ~H� Ik2 þ

1

2k2
k ~NBk

2: ð49Þ

The derivative of L is

_L ¼ tr

 
ð ~H� I Þ> ~H

 
1

�3
V ~N>B �

1

3
ð ~N>BVÞI

� �

þ k1P ~H>ðI� ~H Þ
� �!!

þ
1

k2
~N>B ��� ~NB þ

k2
�3

P ~H>ðI� ~H Þ
� �>

V

� �
,

¼ �k1kP ~H>ðI� ~H Þ
� �

k2

where we note that ~N>B�� ~NB ¼ 0 since �� is anti-
symmetric and the inner products are taken on slð3Þ.
Given that V, � are bounded, it is easily verified that _L
is uniformly continuous and Barbalat’s lemma can
be used to prove the asymptotic convergence of
P ~H>ðI� ~H Þ
� �

! 0.

Proof of part (i): Let

EH
u ¼

~H2SLð3Þ j H ¼ �ðIþ ð��3 � 1Þvv>Þ, v2S2

 �

:

ð50Þ

Then the convergence of P ~H>ðI� ~H Þ
� �

to zero and
boundedness of ~H imply, as in the case of Theorem 3.2,
that either ~H! I or ~H! EH

u and it remains to show
that ~NB converges to zero. First, note that k ~H� Ik
converges to a constant value ‘0. We have ‘0¼ 0 if ~H
converges to the identity and ‘0¼Lu given by (30) if
~H converges to EH

u . Since L is decreasing and positive,
L converges to a constant value so that k ~NBk also
converges to a constant value.

Note that, if ~H converges to I then
_~H converges to

zero because
_~H is uniformly continuous, since _V is

bounded. Thus, from (46) one has

lim
t!1

V ~N>B �
1

3
ð ~N>BVÞI

� �
¼ 0:

Since both V and ~NB are bounded then continuity

ensures that

lim
t!1

V> V ~N>B �
1

3
ð ~N>BVÞI

� �
~NB

� �

¼ kVk2k ~NBk
2 �

1

3
ð ~N>BVÞ

2

� �
¼ 0: ð51Þ

Applying the Cauchy–Schwartz inequality, it follows

that kVk k ~NBk converges asymptotically to zero. Since

k ~NBk converges to a constant and V is persistently

exciting, one concludes that ~NB converges to zero and

the set Es¼ {(I, 0)} is locally asymptotically stable.
It remains to show that the only other possibility is

that the error system ð ~H, ~NBÞ converges to Eu. The

proof proceeds by contradiction. Assume that

ð ~H, ~NBÞ 6! Eu [ Es. Then since the solution is bounded

and exists for all time, and consequently evolves on a

compact set, there exists limit points ð ~H?, ~N?Þ and an

unbounded increasing sequence of times tn such that

lim
n!1

~HðtnÞ ¼ ~H? 2E
H
u ,

lim
n!1

~NðtnÞ ¼ ~N? 6¼ 0:

The first of these conditions follows from the

Lyapunov argument that shows that if ~H 6! I then
~H! EH

u while the second is the consequence of the

assumption that we wish to contradict.
Without loss of generality choose the sequence tn

such that infn{tnþ1� tn}4 0. Then there exists a 	4 0

and two sequences of strictly increasing times {an} and

{bn} with

� � � 5 an 5 tn 5 bn 5 anþ1 5 tnþ1 5 bnþ1 5 � � �

with bn� an¼ 	4 0. Define a sequence of functions

~Hn : ½�	=2, 	=2� ! SLð3Þ, ~Hnð
Þ :¼ ~Hð
 þ anÞ:

Due to the smooth definition of the system and

bounded nature of the inputs, the sequence of

functions ~Hn are smooth bounded functions defined

on a compact interval. From the Arzelà–Ascoli

theorem, possibly taking a subsequence of times,

there exists a smooth function ~H?ð
Þ ¼ limn!1
~Hnð
Þ

with ~H?ð0Þ ¼ ~H? by construction. Moreover, it is

straightforward to verify that ~H?ðtÞ 2E
H
u for t2 [�	/2,

	/2]. To save the notation, we rely on context to

distinguish between the limit function ~H?ð
Þ and limit

point ~H?.
Next choose a sequence of smooth vector-valued

functions fvn0ðtÞ, v
n
1ðtÞ, v

n
2ðtÞg defined on the closed time

intervals [�	/2, 	/2] that are normalised eigenvectors of
~HnðtÞ and such that

lim
n!1

vni ð0Þ ¼ v?i , for i ¼ 0, 1, 2,
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where fv?0, v
?
1, v

?
2g is a set of orthonormal eigenvectors

for ~H?ðtÞ such that ~H? ¼ �ðIþ ð�
�3 � 1Þv?0v

?
0
>Þ.

Applying the Arzelà–Ascoli theorem again, and
taking a suitable subsequence, the smooth functions
fvn0ðtÞ, v

n
1ðtÞ, v

n
2ðtÞg, each thought of as a function from

[�	/2, 	/2], have limits

lim
n!1

vni ðtÞ ¼ v?i ðtÞ

with v?(t) differentiable on (�	/2, 	/2). By continuity
one has that fv?0ðtÞ, v

?
1ðtÞ, v

?
2ðtÞg are a set of orthonormal

eigenvectors for ~H?ðtÞ such that ~H?ðtÞ ¼ �ðIþ ð�
�3�

1Þv?0ðtÞv
?
0ðtÞ
>
Þ. Finally, we will also need the two

sequence of functions

~Nn
B : ½�	=2, 	=2� ! SLð3Þ, ~Nn

Bð
Þ :¼
~NBð
 þ anÞ

Vn : ½�	=2, 	=2� ! SLð3Þ, Vnð
Þ :¼ Vð
 þ anÞ:

Using continuity and regularity and recalling that
all the considered functions are defined on a compact
interval [�	/2, 	/2], one has, for any i¼ 0, 1, 2,

lim
n!1

d

dt
vni
> ~Hnv

n
i

� �
¼

d

dt
lim
n!1

vni
> ~Hnv

n
i

� �
¼

d

dt
v?i
> ~H?v

?
i ¼ 0

where the final equality follows since v?i is an eigenvector
of ~H? with a constant eigenvalue. Computing
the same limit but taking the derivative first yields

lim
n!1

d

dt
vni
> ~Hnv

n
i

¼ lim
n!1

1

�3
vni
> ~Hn Vn ~Nn

B

>
�
1

3
~Nn
B

>
VnI

� �
vni

¼ lim
n!1

const

�3
~Nn
B

> 1

3
I� vni v

n
i
>

� �
Vn

with ‘const’ a non-zero constant which depends on i.
This implies that for all i,

lim
n!1

1

3
~Nn
B

>
Vn ¼ lim

n!1
~Nn
B

>
vni ðtnÞv

n
i ðtnÞ

>Vn: ð52Þ

Analogously to above, one has

lim
n!1

d

dt
vn1
> ~Hnv

n
2

� �
¼

d

dt
v?1
> ~H?v

?
2

� �
¼ 0:

Since v?1 and v?2 are orthogonal vectors associated with
the same eigenvalue �, taking the derivative before the
limit, one has

lim
n!1

d

dt
vn1
> ~Hnv

n
2

� �
¼ lim

n!1

1

�3
vn1
> ~Hn Vn ~Nn

B

>
�
1

3
~Nn
B

>
Vn

� �
vn2

¼ lim
n!1

const

�3
~Nn
B

>
vn2v

n
1
>Vn ¼ 0 ð53Þ

and vice versa with the indices reversed. Now multi-

plying (52) together for i¼ 1 and i¼ 2 and using (53),

one obtains

lim
n!1

1

9
~Nn
B

>
Vn

� �2
¼ 0 ð54Þ

or that limn!1
~Nn
B

>
Vn ¼ 0:

Recalling (46), and exploiting regularity of the

solutions and limits, one has

lim
n!1

~H�1n
_~Hnv

n
0 ¼

~H�1?
d

dt
~H?v

?
0

¼ ��1 Iþ ð��3 � 1Þv?0v
?
0
>

� ��1
�ð��3 � 1Þ

� _v?0v
?
0
>
þ v?0 _v?0

>
� �

v?0

¼ Iþ ð��3 � 1Þv?0v
?
0
>

� ��1
ð��3 � 1Þ _v?0

¼ ð��3 � 1Þ _v?0 ð55Þ

since v?0 and _v?0 are orthogonal and v?0 is a unit vector. A

similar argument shows that

lim
n!1

~H�1n
_~Hn _vn0 ¼ �

3ð��3 � 1Þk _v?0k
2v?0:

On the other hand, from (54) and (46) one has

lim
n!1

~H�1n
_~Hnw

n ¼ lim
n!1

1

�3
Vn ~Nn

B

>
wn ð56Þ

for any sequence of functions wn with a limit. It

follows that

ð��3 � 1Þ _v?0 ¼ lim
n!1

1

�3
ð ~Nn

B

>
v?0ÞV

n

�3ð��3 � 1Þk _v?0k
2v?0 ¼ lim

n!0

1

�3
ð ~Nn

B

>
_v?0ÞV

n:

Since Vn � 0 due to the persistence of excitation

assumption, and noting that ðv?0Þ
> _v?0 ¼ 0, the only

way that these equations can hold is if _v?0 ¼ 0. It follows

that limn!1
_~Hn ¼ 0. From here, it follows that a version

of Equation (51) holds for the functions ~Nn
B and Vn and

the Cauchy–Schwarz inequality can be used to show

lim
n!1

~Nn
B ¼

~N? ¼ 0:

This contradicts the assumption and concludes part (i)

of the proof.

Proof of part (ii): The linearisation of (46) and (47)

around ð ~H, ~NBÞ ¼ ðI, 0Þ is given by

_X ¼ �k1Xþ
1

�3
Vz> �

1

3�3
ðz>VÞI

_z ¼ ���zþ
k2
�3

X>V,
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where ~H � Iþ X, X2 slð3Þ and z� ~N2R
3. Taking the

vec of this equation and writing x¼ vec(X) yields

_x

_z

 !
¼

�k1I9
1

�3
vecðI3ÞV

> �
1

3
I3 
 V

� �
k2
�3

V> 
 I3
� �

T ���

0
BBB@

1
CCCA:

ð57Þ

This linear system (that is known to be asymptotically
stable from part (i) since Es is isolated) is exponentially
stable if the associated linear system with output y¼ x
is uniformly observable (Khalil 1996). The condition
imposed for the persistence of excitation in the theorem
statement (48) completes the proof for part (ii).

Proof of part (iii): This result follows from part (iii) of
Theorem 3.2. Indeed, it was proved that for any
ð ~H0,0Þ2Eu ¼ fð ~H0,0Þ : ~H0 ¼ �ðIþð�

�3� 1Þvv>Þ,v2S2g,
and any neighbourhood U of this point, there exists an
ð ~H1,A1Þ ¼ ð ~H1,0Þ2U such that Lð ~H1,A1Þ5Lu, with Lu
the value of L on Eu and L the Lyapunov function (10).
Now taking the Lyapunov function (49) used in the
present proof, it follows that Lð ~H1,0Þ5Lu where Lu is
also the value of this function on Eu. Instability of this
set follows from the fact that L is decreasing along the
system solutions. œ

The persistence of excitation condition (48) on the
velocity in Theorem 5.4 appears somewhat obscure,
however, it is satisfied in almost all situations. If V is
uniformly zero, then the homography sequence degen-
erates to a pure rotation and it is known that the
normal to the reference plane cannot be determined
from the homography (Faugeras and Lustman 1988;
Malis and Vargas 2007). This property manifests as a
loss of observability in (48). Considering (48) it is clear
that as long as V(t) is sufficiently ‘non-zero’ in some
uniform sense, the resulting linear system will be
uniformly observable for bounded � and independent
of the signal �. We believe it is most natural to think of
this condition (uniform observability of (48)) as a
persistence of excitation condition on the velocities, in
this case really just a condition on V. The upper bound
on � in the theorem statement is also linked to the loss
of uniform observability of (48). Physically, �!1
corresponds to the camera moving infinitely far away
from the planar target while the corresponding
homography converges to a pure rotation in which
information on the reference normal is unobservable.
The bound �4 �4 0 is more direct since �! 0
corresponds to the camera intersecting the observed
plane and leading to a singularity in the homography
representation.

In the remaining two subsections we will consider
the cases where the linear velocity of the vehicle is

unknown and constant, either in the body-fixed frame

or in the inertial frame.

5.1 Constant linear velocity in the body-fixed frame

In this subsection we consider the case where the linear

velocity is unknown but constant in the body-fixed

frame. We will assume as before that the angular

velocity in the body-fixed frame is measured. This is a

common scenario in the motion of velocity-controlled

non-holonomic robotic vehicles. In this case non-

holonomic constraints typically constrain the vehicle to

move in a fixed direction in the body-fixed frame, for

example a unicycle mobile robot. If it is assumed in

addition that the speed of the vehicle is constant then

one has the case considered in this subsection. This

class of system includes, at least approximately, a wide

range of interesting real-world systems such as cars,

and to a first approximation, fixed wing UAV drones

and surface vessels, etc. There are a range of

applications where homographies are used in the

navigation and control of robotic vehicles

(Fraundorfer et al. 2007) and especially unmanned

aerial vehicles (Caballero et al. 2007; Mondragóon

et al. 2010) where due to the height of the vehicle the

planar scene constraint is usually approximately

satisfied.

Corollary 5.5: Consider a camera moving with kine-

matics (37) and (38) viewing a planar scene

(Assumption 5.1). Let H : B!A denote the calibrated

homography (40) (Assumption 5.2). Let � be given by

(43) and assume that � is bounded above and below, that

is there exists an 05 �5B51 such that �� � �B for

all time. Assume that the body-fixed frame velocities

� ¼ B
A�B is measured, uniformly continuous, bounded

and persistently exciting signal. Assume that the body-

fixed linear velocity is constant and unknown

V ¼ B
AVB ¼ const:

Let M ¼ ð1=dAÞVn
>
B and let

_̂
H¼ ĤAd ~H ��þ

1

�3
M̂�

1

3�3
trðM̂ÞI�k1P ~H>ðI� ~H Þ

� �� �
ð58Þ

_̂
M ¼ M̂�� �

k2
�3

P ~H>ðI� ~H Þ
� �

ð59Þ

where k1, k24 0. Then the dynamics of ð ~H, ~MÞ ¼

ðĤ�1H,M� M̂Þ satisfy properties (i), (ii) and (iii) in

Theorem 5.4 with a suitable interpretation of the sets Eu

and Es.
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Proof: It is straightforward to verify that

_M ¼M��:

Differentiating the estimation error ð ~H, ~MÞ ¼

ðĤ�1H,M� M̂Þ, one obtains

_~H ¼ ~H
1

�3
~M�

1

3�3
trð ~MÞIþ k1P ~H>ðI� ~H Þ

� �� �
ð60Þ

_~M ¼ ~M�� þ
k2
�3

P ~H>ðI� ~H Þ
� �

: ð61Þ

Consider the Lyapunov function

L ¼
1

2
k ~H� Ik2 þ

1

2k2
k ~Mk2:

Differentiating L, one obtains

_L ¼ tr

 
ð ~H� I Þ> ~H

 
1

�3
~M�

1

3�3
trð ~MÞI

þ k1P ~H>ðI� ~H Þ
� �!!

þ
1

k2
tr ~M> ~M�� þ

k2
�3

P ~H>ðI� ~H Þ
� �� �� �

¼ �k1kP ~H>ðI� ~H Þ
� �

k2:

Using the assumption that � � �, _L is uniformly

continuous in time and Barbalat’s lemma yields that

P ~H>ðI� ~H Þ
� �

! 0.
Analogously to the arguments in the proof of

Theorem 5.4, it can be shown that
_~H! 0. It follows

that ~M! 1
3 trð

~MÞI. It is easily verified that
_~M is

uniformly continuous since � is uniformly continuous,

and it follows that k
_~M� �ðtÞIk ! 0 where �(t) is a time-

varying scalar. However, recalling the error dynamics

and applying the limit for ~M, one has equally that

k
_~M� 1

3 trð
~MÞ��k ! 0. Since � is persistently exciting,

these two limits can only hold if �(t)! 0 and

trð ~MÞ ! 0. Given that ~M! 1
3 trð

~MÞI, then ~M! 0.

We conclude that ð ~H, ~MÞ converges to either Es or Eu.

Finally, it is easily verified that the linearisation of the

error system at Es¼ (I, 0) is uniformly observable. œ

Remark 3: In the case where V¼ 0 the orientation of

target plane is unobservable, as discussed after

Theorem 5.4. However, since Corollary 5.5 only

attempts to identify ~M ¼ 0, the loss of observability

of the structure parameters of the homography does

not affect the convergence of the overall homography

estimate.

Remark 4: Note that the continuity and persistence

of excitation of � are essentially required to insure

that ~M ¼ 0 and to guarantee the observability of

the system. The loss of continuity and persistence of

excitation of � does not affect the convergence of the

homography error to identity as long as � is upper

bounded.

5.2 Constant linear velocity in the inertial-frame

In this subsection we consider the case where the linear

velocity is an unknown constant in the inertial while

the angular velocity in the body-fixed frame is

measured. This is a less common scenario in robotics

applications, however, it is a key scenario in the image

registration and stabilisation problem (Irani et al.

1994; Buehler et al. 2001; Cho et al. 2007).
The assumption that the inertial velocity is constant

leads to poorly defined asymptotic observability

conditions on the homography system. A fixed inertial

linear velocity must lead to one of: constant motion

towards the observed plane, constant motion parallel

to the plane or constant motion away from the

observed plane. In the first case, the camera will

intersect the target plane in a finite time, leading to a

singularity in the homography representation. In the

third case, the camera will move infinitely far away

from the target plane, with the homography conver-

ging asymptotically to a pure rotation, leading to a loss

of observability of the scene parameters in the

asymptotic analysis of the filter. Only when the

constant motion is parallel to the plane then the filter

problem remain well-defined asymptotically.

Nevertheless, it is often the case that a filter is used

only for a short period of time, or that the constant

velocity assumption is used when actually the velocity

is slowly varying with time. The practical applications

lead us to propose a filter for the case where the inertial

velocity is assumed to be constant, however, we only

prove a restricted result.

Corollary 5.6: Consider a camera moving with kine-

matics (37) and (38) viewing a planar scene

(Assumption 5.1). Let H : B!A denote the calibrated

homography (40) (Assumption 5.2). Assume that the

body-fixed frame velocities � ¼ B
A�B is measured,

uniformly continuous and bounded. Assume that the

inertial linear velocity is constant

A
AVB ¼ const:

Let Ĥ be given by (58) and

_̂
M ¼ ½M̂,��� �

k2
�3

P ~H>ðI� ~H Þ
� �

:

Then P ~H>ðI� ~H Þ
� �

! 0.
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Proof: Given that AVA
B is constant, then V ¼ BVA

B ¼
BRA

AVA
B and _V ¼ ���V. Let M ¼ ð1=dAÞVn

>
B then it

follows that

_M ¼ ���MþM�� ¼ ½M,���:

Noting that tr ~M>½ ~M,���
� �

¼ tr ~M�� ~M> �
�

~M>�� ~MÞ ¼ 0 then the remainder of the proof
is analogous to the proof (up to the point
P ~H>ðI� ~H Þ
� �

! 0) in Corollary 5.5. œ

6. Conclusion

In this article, we proposed a nonlinear complementary
filter on the special linear SL(3). The filter obtained
has a natural complementary filtering interpretation,
preserving the low-frequency component of the state
measurement and fusing this with the high-frequency
content of the integrated velocity measurement. The
simple case where the group velocity is known is
considered and then extended to a filter that estimates
an unknown constant group velocity. Motivated by the
homography example, we also consider the case where
the angular velocity of the camera is measured and the
scene is static or moving with constant velocity, a
common scenario in de-noising of sequences, image
registration problems and compensating for video
‘shake’ as well as estimation of homographies for
navigation of aerial vehicles. We prove almost global
stability and local exponential stability of the filters
considered and believe that the filters provide a robust
and effective solution to the considered problems.
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Notes

1. Here we use the fact that v is an eigenvector of ~H with
eigenvalue 1/�2 and that Zv is orthogonal to v, and hence
is also an eigenvector of ~H but with eigenvalue �.

2. Available for download at http://esm.gforge.inria.fr.
3. We reserve the upper left index to indicate what frame of

reference a physical object is expressed with respect to.
The right subscript refers to the object being measured,
and the left subscript refers to the frame with respect to
which the measurement is made. Thus the vector A�B
representing the origin of {B} with respect to {A} can be
expressed in {A} as A

A�B or in {B} as B
A�B ¼ R> A

A�B, with
R ¼ A

ARB the normal attitude matrix representing the
orientation of {B} with respect to {A}.

4. Where the vec operation stacks the columns of a matrix
one on top of the other to form a vector and 
 is the

Kroneker matrix product (see, e.g. Helmke and Moore
1994). Define In2R

n�n to be an n-dimensional identity
matrix, 0n�m2R

n�m the zero matrix and T2R
9�9 to be

the permutation matrix such that T vec(X)¼ vec(X>).
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