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Robustness of Image-Based Visual Servoing With a
Calibrated Camera in the Presence of Uncertainties in

the Three-Dimensional Structure
Ezio Malis, Youcef Mezouar, and Patrick Rives, Member, IEEE

Abstract—This paper concerns the stability analysis of image-
based visual servoing control laws with respect to uncertainties on
the 3-D parameters needed to compute the interaction matrix for
any calibrated central catadioptric camera. In the recent past, re-
search on image-based visual servoing has been concentrated on
potential problems of stability and on robustness with respect to
camera-calibration errors. Only little attention, if any, has been
devoted to the robustness of image-based visual servoing to esti-
mation errors on the 3-D structure. It is generally believed that
a rough approximation of the 3-D structure is sufficient to en-
sure the stability of the control law. In this paper, we prove that
this is not always true and that an extreme care must be taken
when approximating the depth distribution to ensure stability of
the image-based control law. The theoretical results are obtained
not only for conventional pinhole cameras but for the entire class
of central catadioptric systems as well.

Index Terms—Image-based, stability analysis, visual servoing.

I. INTRODUCTION

V
ISUAL servoing is a flexible method for the control of un-

calibrated dynamic systems evolving in an unknown envi-

ronment. Typical applications of visual servoing are positioning

of a robot and tracking of objects by using the information pro-

vided by an in-hand camera. Several vision-based control laws

have been proposed in the literature (see [1] and [2] and the

recent tutorial in [3] and [4]). Contrary to model-based visual

servoing methods, image-based visual servoing does not need

the knowledge of the full model of the target. On the other

hand, it is necessary to provide some information about the 3-D

structure of the object in the camera frame. In this paper, we

consider the case in which the task function is built using the

coordinates of image points. Thus, the interaction matrix de-

pends on the depths of the corresponding 3-D points [5]. It is

generally believed that a rough approximation of the depths is

sufficient to ensure the stability of the control law. However,

if the environment is completely unknown and the robot is un-
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calibrated, the stability of the visual servoing in the presence

of depth-estimation errors can become a serious issue. In the

recent past, research on the stability of image-based visual ser-

voing has been concentrated on the solution of convergence and

visibility problems.

Convergence problems occur since image-based control is

a local method that, even in the absence of calibration errors,

can fail if the initial camera displacement is too big [6]. In

order to avoid these potential convergence problems, several

possible approaches have been proposed. In hybrid approaches,

some global information is introduced by estimating the camera

displacement between the current and reference views [7]–[9].

The rotation of the camera is, thus, controlled directly in the

Cartesian space while some image-based information is used to

control the translation. The image-based information used in [7]

consists of only one image control point. Thus, the method does

not need the estimation of the depths of all other points, and it

is stable for any positive approximation of the depth of the con-

trol point [10]. This approach has been easily extended to the

entire class of central catadioptric systems in [11]. Conversely,

other hybrid approaches [8] and [9] use all available informa-

tion in the image, and thus, they need the estimation of the depth

distribution. A partitioned approach [12] has been proposed in

order to avoid the camera-displacement reconstruction, but the

approach is also strongly dependent on the depth-distribution

estimation. For this reason, the stability analysis of hybrid (ex-

cept for [10]) and partitioned approaches is as difficult as the

stability analysis of the standard image-based visual servoing.

Another solution to potential stability problem of the image-

based approach is provided by interpolation approaches. These

methods define a path in the image by interpolating initial and

reference image features [13], [14]. Thus, the error in the image

is maintained small at each iteration of the control law. Even

if interpolation approaches are an elegant solution to potential

convergence problems of the standard image-based visual ser-

voing, a fundamental theoretical question stands: How is the

image-based visual servoing robust with respect to calibration

errors? Due to the complexity of the problem, only few theoret-

ical results have been obtained concerning the stability analysis

of image-based visual servoing in the presence of calibration

errors. The theoretical analysis has been carried out only in very

simple cases [15]–[17], often considering a simplified model for

the camera-intrinsic parameters but always supposing that the

depth distribution was perfectly estimated.

Visibility problems occur since conventional cameras suf-

fer from a restricted field of view. This motivated the growing
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interest for omni-directional sensors in robotics applications. In

the literature, there have been several methods proposed to in-

crease the field of view of cameras systems [18]. One effective

way is to combine mirrors with a conventional imaging system.

The obtained sensors are referred to as catadioptric imaging sys-

tems. The resulting imaging systems have been termed central

catadioptric when a single projection center describes the world-

image mapping. From a practical view point, a single center of

projection is a desirable property for an imaging system [19].

Baker and Nayar in [19] derive the entire class of catadioptric

systems with a single viewpoint. Many applications in vision-

based robotics, such as mobile robot localization [20], [22] and

navigation [23], can benefit from a panoramic field of view

provided by omni-directional cameras. Clearly, visual servoing

applications can also benefit from cameras with a wide field

of view since vision-based control methods need to maintain

the target visible in the image during the task. As a conse-

quence, such sensors have been successfully integrated as part

of a closed-loop feedback-control system [24]–[27]. However,

the theoretical stability analysis of image-based control laws has

never been done.

The main contribution of this paper is the theoretical study

of the robustness of standard image-based visual servoing (i.e.,

when points coordinates are used as input of the control scheme)

with respect to errors on the 3-D parameters introduced in the

interaction matrix when any central catadioptric camera is used

as a sensor [28], which includes the conventional perspective

pinhole cameras [29]. The analysis proposed in this paper is

not only limited to standard image-based control laws, but it ap-

plies to the efficient second-order approximation method (ESM)

control law proposed in [30] as well.

II. THEORETICAL BACKGROUND

In this section, we describe the projection model for central

catadioptric cameras, and then, we focus on eye-in-hand image-

based visual servoing methods.

A. General Camera Model

As shown in [19], a central catadioptric system can be built

by combining an hyperbolic, elliptical, or planar mirror with a

perspective camera and a parabolic mirror with an orthographic

camera. To simplify notations, conventional perspective cam-

eras will be embedded in the set of central catadioptric cameras.

In [31], a unifying theory for central panoramic systems is pre-

sented. According to this generic model, all central panoramic

cameras can be modeled by a central projection onto a sphere fol-

lowed by a central projection onto the image plane (see Fig. 1).

This generic model can be parameterized by the couple (ξ, ϕ)
describing the type of sensor and the shape of the mirror. Setting

ξ = 0, the general projection model becomes the well-known

perspective-projection model.

Let Fc and Fm be the frames attached to the conventional

camera and to the mirror, respectively. Suppose that Fc and

Fm are related by a translation along the Z-axis. The centers

C and M of Fc and Fm will be called optical center and

principal projection center, respectively. Let X be a 3-D point

Fig. 1. Generic central catadioptric camera model.

with coordinates X = (X, Y, Z) with respect to Fm . After

setting ρ =
√

X2 + Y 2 + Z2 , let m = (x, y, 1) be the point

(in normalized homogeneous coordinated) projected into a vir-

tual plane according to the generic projection model [31]

m =

(
X

Z + ξρ
,

Y

Z + ξρ
, 1

)
. (1)

Taking into account the intrinsic camera and mirror parameters,

the 3-D point X is projected in the real image plane to a point

with homogeneous pixel coordinates p = (u, v, 1)

p = Km (2)

where the upper triangular matrix K contains the camera in-

trinsic parameters and the mirror parameter ϕ. Using approx-

imations K̂ of the camera and mirror intrinsic parameters K

and a measured image point p, it is possible to compute the

corresponding normalized point from (2): m̂ = K̂−1p. Obvi-

ously, if the camera and mirror intrinsic parameters are per-

fectly known K̂ = K, the normalized coordinates are perfectly

estimated m̂ = m.

B. Interaction Matrix of Central Catadioptric Cameras

Consider a 3-D point Xi with coordinates Xi = (Xi , Yi , Zi)
with respect to Fm and its normalized image coordinates ex-

tracted from m: si = (xi , yi). The derivative of si with respect

to time is

ṡi = Liv

where v is the velocity of the camera, and Li is the interaction

matrix. The interaction matrix can be derived by differentiating

the function f(X) with respect to the camera pose evaluated at

the origin or by following [27]. Li can be decomposed into two
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submatrices Li = [Ai Bi ] with

Ai =




− 1+x2

i (1−ξ(σ i +ξ))+y 2
i

ρ i (σ i +ξ)
ξx i y i

ρ i

x i σ i

ρ i

ξx i y i

ρ i
− 1+x2

i +y 2
i (1−ξ(σ i +ξ))

ρ i (σ i +ξ)
y i σ i

ρ i





(3)

Bi =




xiyi − (1+x2

i )σ i −ξy 2
i

σ i +ξ yi

(1+y 2
i )σ i −ξx2

i

σ i +ξ −xiyi −xi



 (4)

where σi =
√

1 + (1 − ξ2)(x2
i + y2

i ). Equations (3) and (4)

present the general central catadioptric interaction matrix

as a function of image coordinates si , the distance ρi =√
X2

i + Y 2
i + Z2

i , and sensor parameter ξ. Notice that if ξ = 0,

then the interaction matrix Li is the well-known interaction

matrix for conventional perspective cameras.

We rewrite the interaction matrix valid for the generic cata-

dioptric model in order to have a structure similar to the structure

of the standard perspective interaction matrix.

In the sequel, we assume that Z �= 0. Let us denote ηi =
sign(Zi)ρi/|Zi | = sign(Zi)

√
1 + X2

i /Z2
i + Y 2

i /Z2
i . The co-

ordinates of the image point can be rewritten as

xi =
Xi/Zi

1 + ξηi

yi =
Yi/Zi

1 + ξηi
.

By combining the two previous equations, it is easy to show

that ηi is the solution of the following second-order equation:

η2
i − (xi + yi)

2(1 + ξηi)
2 − 1 = 0

with the following potential solutions:

ηi =
±σi − ξ(x2

i + y2
i )

ξ2(x2
i + y2

i ) − 1
. (5)

Note that the sign of ηi is equal to the sign of Zi , and then, it

can easily be shown that the exact solution is

ηi =
−σi − ξ(x2

i + y2
i )

ξ2(x2
i + y2

i ) − 1
. (6)

This equation shows that ηi can be computed as a function of

image coordinates si and sensor parameter ξ. The matrix Ai

can thus be rewritten as

Ai =
1

Zi
Gi

with

Gi =




− 1+x2

i (1−ξ(σ i +ξ))+y 2
i

η i (σ i +ξ)
ξx i y i

η i

x i σ i

η i

ξx i y i

η i
− 1+x2

i +y 2
i (1−ξ(σ i +ξ))

η i (σ i +ξ)
y i σ i

η i



 .

Note that, only the depth Zi is unknown in the matrix

Ai . If we consider the (2n × 1) vector s = (s1 , s2 , . . . , sn ),
the corresponding (2n × 6) interaction matrix is L(z, s) =
(L1 ,L2 , . . . ,Ln ), and the time derivative of s is

ṡ = L(z, s)v.

Matrix L(z, s) can be decomposed into two (2n × 3) submatri-

ces

L(z, s) = [A(z, s) B(s)]

where A = (A1 ,A2 , . . . ,An ), and B = (B1 ,B2 , . . . ,Bn ).
Due to the form of matrix A(z, s), we also have

A(z, s) = D(z) G(s)

where G(s) = (G1 ,G2 , . . . ,Gn ), and D(z) is a (2n× 2n) di-

agonal matrix containing the depth distribution z

D(z) = diag

(
1

Z1
,

1

Z1
,

1

Z2
,

1

Z2
, . . . ,

1

Zn
,

1

Zn

)
.

C. Image-Based Visual Servoing

The goal of image-based visual servoing is to position a robot

by controlling the current position of the robot such that the

current measured image features s reach their reference s∗. Con-

sider the following task function [5]:

e = C(s − s∗)

where C is a (6× 2n) combination matrix. Several choices have

been proposed for this matrix, as given in the following points.

1) C = L̂+ , where L̂+ is the pseudoinverse of an approxi-

mation of the true (2n× 6) interaction matrix [5].

2) C = L̂+ |s=s∗ , where the matrix L̂+ is computed at the

reference coordinates and, thus, is constant [5].

3) C = (L̂+ + L̂+ |s=s∗)/2, where the matrix is the average

between the previous matrices [30].

4) C = βL̂+ + (1 − β)L̂+ |s=s∗ , where β is a weight such

that 0 ≤ β ≤ 1 [32].

In these cases, the derivative of the task function is

ė =
dC

dt
(s − s∗) + Cṡ = (O(s − s∗) + CL)v (7)

whereO(s − s∗) is a 6× 6 matrix such thatO(s − s∗)|s=s∗ = 0.

Consider the following control law:

v = −λ e. (8)

In order to compute the control law, it is necessary to provide

the approximated interaction matrix L̂. Plugging (8) into (7),

we obtain the following closed-loop equation:

ė = −λ(O(s − s∗) + CL)e. (9)

It is well known from the control theory that the equilibrium

point e = 0 of the nonlinear system (9) is locally asymptotically

stable in a neighborhood of s = s∗, if and only if the equilibrium

point of the linearized system is stable

ė = λQe (10)

where Q = −(CL)|s=s∗ = −L̂+ (s∗)L(s∗) for any of the four

choices of C. The equilibrium point of the linear system (10)

is asymptotically stable if and only if Q has eigenvalues with

negative real part

real(eig(Q)) = real(eig(−L̂+L)) < 0.
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The matrix Q = Q(K̂,K, M̂,m, ẑ, z) depends on two sets of

unknown parameters. Obviously, ifK = K̂,M̂ = m and ẑ = z,

then Q = I, and the system is stable. The objective of the robust-

ness analysis is to know if the system is locally asymptotically

stable in the presence of unavoidable calibration errors.

III. STABILITY ANALYSIS

Let us suppose that the camera and mirror parameters are

perfectly known (i.e., K̂ = K, m̂ = m). Thus, the normalized

points are perfectly estimated ŝ = s, and the uncertainties on

the estimated interaction matrix only depend on the depth dis-

tribution ẑ

L̂(ẑ, s) = [A(ẑ, s) B(s) ] .

It is easy to verify that the estimated submatrix A(ẑ, s) can be

written as a function of the true submatrix A(z, s)

A(ẑ, s) = D(ẑ) G(s) = Γ−1(ẑ, z)A(z, s) (11)

where, setting γi = Ẑi/Zi as the ratio between the estimated

and true depths, the diagonal matrix Γ is

Γ = D(z)D−1(ẑ) = diag (γ1 , γ1 , γ2 , γ2 , . . . , γn , γn ).

From (11), one can deduce that

L(z, s) = [ΓA(ẑ, s) B(s) ] .

Setting ∆ = Γ − I one can deduce that

L = L̂ + ∆ [A(ẑ, s) 0 ] .

Setting Â = A(ẑ, s), the matrix Q is

Q = −L̂+L = −I −
[
L̂+∆Â 0

]
.

If L̂ is full rank, its pseudoinverse can be written as

L̂+ =

[
Â♮

B♮

]

where Â♮ is a generalized inverse of Â (i.e., Â♮Â = I), and

B♮ is a generalized inverse of B̂ (i.e., B♮B = I). Note also that

Â♮B = 0 and that B♮Â = 0. Matrix Q can be rewritten as

Q = −I −
[
Â♮

B♮

] [
∆Â 0

]
= −

[
I + Â♮∆Â 0

B♮∆Â I

]
.

Setting again ∆ = Γ − I

Q =

[
Q11 Q12

Q21 Q22

]
=

[−Â♮ΓÂ 0

−B♮ΓÂ −I

]
.

Thus, the closed-loop matrix is block lower triangular. In this

case, it is well known that the eigenvalues of Q are the eigenval-

ues of the two (3 × 3) matrices Q11 and Q22 . Since Q22 = −I

its eigenvalues are negative for any choice of the depth distribu-

tion. The analysis is limited to the eigenvalues of the following

matrix:

Q11 = −Â♮ΓÂ =
n∑

i=1

γiÂ
♮
i Âi

where Â
♮
i are submatrices of matrix Â. Note that

Â♮Â =
n∑

i=1

Â
♮
i Âi = I.

The first important results of the analysis is that the depth distri-

bution can be estimated up to a positive scalar factor. The scalar

factor only influence the performance of the servoing but not

its stability since it does not change the sign of the eigenvalues.

Thus, without loss of generality, we can factor γj > 0 from the

sum

Q11 = −γj

n∑

i=1

ψiÂ
♮
i Âi = γjF

where ψi = γi/γj , and obviously, ψj = 1. Since γj > 0, Q11

is stable, if and only if F is stable. Therefore, we can focus on

the stability of F.

A. Necessary-and-Sufficient Conditions

The eigenvalues of F are the roots of the characteristic poly-

nomial

λ
3 − tr(F)λ2 +

1

2
(tr(F)2 − tr(F2))λ − det(F) = 0

where tr and det are, respectively, the trace and the determinant

of a matrix. The necessary and sufficient conditions for the roots

of the polynomial to have negative real part are obtained from

the Routh–Hurwitz theorem

tr(F) < 0

tr(F2) − tr(F)2 < 0

det(F) < 0

tr(F)(tr(F)2 − tr(F2)) − 2det(F) < 0.

The necessary-and-sufficient conditions can be used to test the

stability of the servoing and to obtain the robustness domain

(see, e.g., the simulations in Section IV). However, for a large

number of parameters, the computation time can be high. In

some cases, it is preferable to have a simple test in order to know,

given a bound on the precision of depths estimates |ψi | ≤ ψi , if

the eigenvalues are negative. Similar to [29], we can also find

simple sufficient conditions in order to obtain an approximation

of the robustness domain.

B. Sufficient Conditions

Since ψj = 1, we can rewrite the (3×3) matrix F as

F = −Â
♮
j Âj −

n∑

i=1,i �=j

ψiÂ
♮
i Âi

from equation Â
♮
j Âj = I −

∑n
i=1,i �=j Â

♮
i Âi ; thus

F = −I −
n∑

i=1,i �=j

δiÂ
♮
i Âi = −I + E(δ)

where δ = (δ1 , δ2 , . . . , δm ), and δi = ψi − 1. Matrix F can be

regarded as a perturbation of the matrix −I, where E(δ) is the
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perturbation matrix. Let us define the spectral variation of a

matrix m̃ with respect to a matrix m as [33]

svm (m̃) = max
i

min
j

|λ̃i − λj |.

The Bauer–Fike theorem [33] states that

svm (m̃) ≤ ‖m̃ − m‖.
In our case, applying the Bauer–Fike theorem to the spectral

variation F with respect to −I, we obtain

sv(F) = max
i

|λ̃i + 1| ≤ ‖E(δ)‖.

Thus, a simple sufficient condition for the stability of F is

‖E(δ)‖ < 1. Indeed, if ‖E(δ)‖ < 1, then

max
i

|λ̃i + 1| < 1 (12)

which implies λ̃i < 0. From the definition of spectral variation,

all others eigenvalues λk ∀k are such that |λ̃k + 1| ≤ |λ̃i +
1|. Thus, |λ̃k + 1| < 1, which means λ̃k < 0 ∀k. Now, since

E(δ) = −
∑n

i=1,i �=j δiÂ
♮
i Âi

‖E‖ ≤
n∑

i=1,i �=j

|δi |‖Â♮
i Âi‖

and setting µi = ‖Â♮
i Âi‖ > 0, the condition (12) can be im-

posed by bounding the previous inequality

n∑

i=1,i �=j

µi |δi | < 1. (13)

In the inequality, each error |δi | is weighted by the scalars µi . The

smaller µi is, the larger |δi | can be. Thus, the best choice for the

point γj is µj = maxk µk . Inequality (13) defines a polygonal

region whose axis are weighted by the scalars µi . The volume of

the region V =
∏n

i=1,i �=j µi gives a measure of the robustness

domain. If we suppose that the precision of measurement is the

same for all points |δi | ≤ δ, then

δ <
1∑n

i=1,i �=j µi
. (14)

This is a very simple test for the local stability. Indeed, the

parameters µi can be easily computed from image data only.

C. Special Case of Planar Targets

When the object is planar, the depths are related to the normal

n to the plane and proportional to the distance d of the plane

from the center of projection

Zi =
d

n⊤m

where n = (nx , ny , nz ) is a unit vector. This vector can

be written as a function of two parameters n(θ, φ) =

(cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)). The estimated depth Ẑi

can be obtained using an approximation of n̂(θ̂, φ̂) and d̂

Ẑi =
d̂

n̂⊤m

and then

γi =
Ẑi

Zi
=

d̂

d

n⊤mi

n̂⊤mi
and ψi =

γi

γj
=

n⊤mj

n̂⊤mj

n̂⊤mi

n⊤mi
.

As expected, the stability of the visual servoing does not depend

on d̂ but only on n̂.

In the particular case of a planar target, it is possible to plot

for each couple (θ̂, φ̂) whether the control law is stabilizing or

not. After plotting the stability regions of symmetric targets, we

found the following surprising result.

Conjecture 1: If a central camera observes a centered sym-

metric planar target (i.e., for each point m = (x, y, 1), the point

m′ = (−x,−y, 1) also exists on the target) parallel to the image

plane [i.e., n = (0, 0, 1)], the control law (8) is stabilizing for

any admissible choice of n̂.

We observed this with several simulations using a pinhole

or a catadioptric camera (see Section IV-B2), but we did not

succeed in finding a short and elegant proof. Thus, we leave the

proof to the interested reader since a symmetric planar target

parallel to the image plane of a central camera is only a special

configuration of the more general analysis proposed in the paper.

On the other hand, in the even more particular case when the

target is a square, it is possible to prove the following theorem.

Theorem 1: If a pinhole perspective camera observes a

centered symmetric planar square target (i.e., the reference

image consists of the four points m1 = (−α,−α, 1), m2 =
(α,−α, 1), m3 = (α, α, 1), and m4 = (−α, α, 1)) parallel to

the image plane (i.e., n = (0, 0, 1)), the control law (8) is stabi-

lizing for any admissible choice of n̂ (i.e., if d̂n̂z > 0).

Proof of Theorem 1: In this simple case, we can suppose

without loss of generality that d = 1 (we remember that the scale

factor does not influence the stability), and we can explicitly

compute the real part of the the eigenvalues of matrix Q11

real(λ1) =
−2 d̂ n̂z α2

n̂2
x + n̂2

y + 2α2 + 2α4(n̂2
x + n̂2

y )

real(λ2) =
−d̂ n̂z ((n̂

2
x + n̂2

y )(2α4 + 1) + 4α2)

2n̂2
z (n̂

2
x + n̂2

y )(2α4 + α2 + 1) + 2(1 + n̂2
z )α

2

real(λ3) =
−d̂ n̂z ((n̂

2
x + n̂2

y )(2α4 + 1) + 4α2)

2n̂2
z (n̂

2
x + n̂2

y )(2α4 + α2 + 1) + 2(1 + n̂2
z )α

2
.

We obviously choose d̂ n̂z > 0 since the target must be in front

of the pinhole camera (and not behind). Thus, for any admissible

choice of n̂ and for any α, the real parts of the eigenvalues are

negatives, and the control law is stabilizing.

We tried to prove a similar theorem considering a centered

rectangle, but it was impossible to find an easy way to show

that the real part of the eigenvalues is positive. However, the

simple case of the square is sufficient to support, together with

the simulation (with an hyperbolic camera) presented in the

following section, the claim in the conjecture. If the conjecture

is proven, then we will have indications on which is the best

configuration of the target so that we will have the larger stability

regions.
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Fig. 2. Stability regions for a nonplanar object. If the parameters are chosen
inside the yellow area, the control law will be stabilizing. If the parameters are
chosen outside the yellow area, the control law may be stabilizing or not. (Top)
Approximation of the stability region for a target composed by three points.
(Bottom) Approximation of the stability region for a target composed of four
points.

IV. SIMULATION RESULTS

The stability results obtained in the previous section have

been tested with simulations for an eye-in-hand configuration,

both for planar and nonplanar targets. In this paper, we recall the

results for nonplanar targets presented in [29], and we present

a new set of tests with a symmetric planar target parallel to

the image plane and with an ordinary planar target confirming

the results obtained in [29] and [28]. As already mentioned, in

this case, the stability analysis only depends on the estimated

normal to the plane, whatever the number of points on the plane.

Thus, from the necessary and sufficient conditions, we obtain

the exact robustness domain.

A. Estimating the Stability Domain by the Sufficient Condition

When the target is nonplanar, it is easier to use the

sufficient condition. In the simulation, we show the sta-

bility regions for 3 and 4 points since they can be rep-

resented in a plot. The 3-D point coordinates of the ob-

ject were P1 = (−0.2, 0.2, 0.9443), P2 = (−0.2,−0.2, 0.847),
P3 = (0.2,−0.2, 0.9417), and P4 = (0.2, 0.2, 0.8498). In

Fig. 2(a), we used the first three points, and in Fig. 2(b), we

used all the four points. In the first case, we find µ1 = 0.186
and µ2 = 0.219 [see Fig. 2(a)]. After adding a point not on the

plane, we find µ1 = 0.186, µ2 = 0.219, and µ3 = 0.223 [see

Fig. 2(b)]. For higher dimensional problems, the volume of the

convex polyhedron gives an idea of the precision required in the

measurement of the depth distribution.

B. Stability Domain for Planar Objects

1) Ordinary Target: Figs. 3–6 show the stability regions for

conventional, parabolic, and hyperbolic cameras for an increas-

ing number of points on the same plane. First, note that all central

cameras have similar stability region. Thus, one cannot expect

to increase significantly the stable region by changing the type

of central camera. When considering three image points (see

Fig. 3), the corresponding stable region is not so wide. Note

that, adding a point inside the triangle defined by the other

points (see Fig. 4) only slightly modifies the stability region.

When learning the reference image, one can think that it is

probably better to choose points spread in the image. If we add

Fig. 3. (a) Image points with conventional camera; stability regions. (b) Con-
ventional, (c) parabolic, and (d) hyperbolic cameras. If the parameters are chosen
in the clear area the control law is stabilizing. If the parameters are chosen in
the dark area the control law is not stabilizing. If the parameters are chosen in
the black region the depth of a point is negative.

Fig. 4. (a) Image points with conventional camera; stability regions: (b) con-
ventional, (c) parabolic, and (d) hyperbolic cameras.

four more points as in Fig. 5, the clear stability region increases.

Increasing then the number of points only slightly modifies the

stability regions (see Fig. 6). However, even in this very favor-

able case, there exists an important dark instability region. Note

finally that, in the three point case illustrated in Fig. 3(b), if we

have absolutely no idea about the 3-D position of the plane, a

simple guess n̂ = (0, 0, 1) makes the visual servoing unstable

in the case where three points are used.

2) Symmetric Target Parallel to the Image Plane: In this set

of experiments, the target composed of six points is initially

symmetric (with respect to the principal point) and parallel to
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Fig. 5. (a) Image points with conventional camera; stability regions. (b) Con-
ventional, (c) parabolic, and (d) hyperbolic cameras.

Fig. 6. (a) Image points with conventional camera; stability regions. (b) Con-
ventional, (c) parabolic, and (d) hyperbolic cameras.

the image plane [see Fig. 7(a)]. The target is observed by a hy-

perbolic camera, but similar results are obtained with pinhole

and parabolic cameras. The pixel coordinates of the six points

are {(320, 418), (180, 81), (180, 418), (320, 81), (106, 250),
(394, 250)}. In this case, the control law (8) is stabilizing for

any admissible choice of the depth distribution, as can be seen

in Fig. 7(b). The target is then slightly moved so that it no

longer appeared as a symmetric target [see Fig. 7(c)–(d)]. The

new image coordinates of the target are {(322, 422), (183, 90),
(181, 414), (320, 80), (114, 250), (401, 250)}, and can be seen

in Fig. 7(d), the unstable region is very small. The refer-

ence image is then modified in a more important manner

(the new image coordinates of the target are {(324, 427),
(190, 103), (183, 409), (317, 88), (125, 250), (394, 250)}; see

Fig. 7. (a) and (e) Image points with hyperbolic camera. (b), (d), and (f)
Related stability regions.

Fig. 7(e)–(f)). As expected the unstable region increases also in

a more important manner. These results confirm that a centered

symmetric object parallel to the image plane is a very favorable

configuration. One should, if possible, chose a configuration

near this ideal one when learning the reference image.

V. EXPERIMENTAL RESULTS

In this section, theoretical results are validated on a six

degree-of-freedom (DOF) eye-in-hand system. A conventional

calibrated perspective camera observing a planar target is used.

To reduce as far as possible image processing errors, the target

is composed by six white marks. The extracted visual features

are the image coordinates of the center of gravity of each mark.

The coordinates of these points are extracted and tracked using

the visual servoing platform (VISP) library [34]. The desired

depth distribution z∗ is estimated using the nonlinear procedure

presented in [35] initialized with the output of the Dementhon’s

algorithm [36]. The camera displacement is small and composed

of a translation t = [−0.035, 0.004, 0.003] m and a rotation

θu = [−1.11, −1.64, −6.97]◦.

The stability regions, which are given as a function of (θ̂, φ̂),
are plotted in Fig. 8. The true normal is n = (0, 0, 1) and cor-

responds to the cross with coordinates θ = 0 and φ = 0 in

the plot. Three experiments are presented. In the first one,
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Fig. 8. Stability regions. If the parameters are chosen in the clear area, the
control law is stabilizing. If the parameters are chosen in the dark area, the
control law is not stabilizing. If the parameters are chosen in the black region,
the depth of a point is negative, which is impossible.

Fig. 9. First experiment. The depth distribution is correct, and the control law
is stable. (a) Translation velocity (in meters per second) and (b) rotation velocity
(in radians per second).

Fig. 10. Second experiment. The depth distribution is not correctly estimated,
and the control law is stable. (a) Translation velocity (in meters per second) and
(b) rotation velocity (in radians per second).

the true depth distribution z∗ = (0.912, 0.912, 0.912, 0.912,
0.912, 0.912)m is used (corresponding to θ = 0 and φ = 0).

In this case, as expected, the control laws is stable [see Fig. 9(a)

and (b)]. In the second experiments, the depth distributions

is taken as ẑ∗ = (1.261, 1.209, 1.162, 1.392, 1.331, 1.273)m,

which corresponds to (θ̂, φ̂) = (70 − 40)◦. Once again, the

control laws is stable [see Fig. 10(a) and (b)]. This was also

expected since (θ̂, φ̂) lies on the stable region (the clear re-

gion in Fig. 8). In the third experiment, the depth distributions is

taken as ẑ∗ = (0.952, 1.010, 1.077, 0.947, 1.004, 1.069). In this

case, (θ̂, φ̂) = (10 30)◦ lies on the unstable region (dark region

in Fig. 8), and the control law is unstable [which is confirmed

by Fig. 11(a) and (b)]. Note that, despite that the maximal and

mean errors on the depth distribution is larger in the second

experiment (0.480 and 0.359 m, respectively) than in the third

Fig. 11. Third experiment. The depth distribution is not correctly estimated,
and the control law is unstable. (a) Translation velocity (in meters per second)
and (b) rotation velocity (in radians per second).

experiment (0.165 and 0.098 m, respectively), the positioning

task is correctly realized only in the second experiment.

VI. CONCLUSION

In this paper, we have analyzed the robustness of image-

based visual servoing with central catadioptric cameras when

the 3-D parameters of a target are only approximately known.

These parameters are needed to compute the control law. For all

catadioptric cameras, the stability region in presence of errors

on 3-D parameters can be quite large. The most favorable case

is to use a pinhole camera observing in the reference image a

centered symmetric object parallel to the image plane. However,

in many cases, we need to take care of the instability regions

since small errors on the estimated depth may lead to unstable

control laws. It has been noticed that for all these sensors, the

stability region is similar. Thus, one cannot expect to enlarge it

by simply changing the type of central camera used. In order to

improve image-based controllers, we need to study control laws

that do not need the a priori knowledge of the 3-D parameters

of the target [21], [37], [38].
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