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Abstract The fundamental task of visual tracking is consi- 1 Introduction
dered in this work as an incremental direct image registra-
tion problem. Direct methods refer to those that exploit thevisual tracking of an object of interest can be formulated
pixel intensities without resorting to image features. Wee p  as an incremental image registration task. In other terms, a
pose new transformation models and optimization methodshe problem of estimating the incremental transformations
for directly and robustly registering images (includindozo ~ which optimally align a reference image with successive
ones) of rigid and deformable objects, all in a unified man{frames of a video sequence (see Fig. 1). In this case, the re-
ner. We also show that widely adopted models are in facterence image is also called the fixed image, and the current
particular cases of the proposed ones. Indeed, the propos#mlage can also be referred to as the moving one. Frequently,
general models combine various classes of image warps amly a region of interest (also called template) within the e
ensure robustness to generic lighting changes. Finally, thtire reference image is to be aligned with successive frames
proposed optimization method together with the exploitaimage registration is a fundamental component in a variety
tion of all possible image information allow the algorithm of vision-based applications, e.g., in medical image analy
to achieve high levels of accuracy. Extensive experimentsis, augmented reality and vision-based robot controkeGiv
are reported to demonstrate that visual tracking can indeeits importance, a huge body of literature has been elakibrate
be highly accurate and robust despite deforming objects an@rown, 1992; Maintz and Viergever, 1998). An exhaustive
severe illumination changes. description of this production is beyond the scope of this
article. Therefore, let us start by making explicit the con-
text on which this paper focuses. Then, we shall present the
state-of-the-art methods and our contributions to the.field
First of all, the solutions to this problem can in general
be classified into feature-based or direct methods (Irathi an
Anandan, 1999; Szeliski, 2005). Feature-based methods re-
Squire first extracting and matching a set of geometric prim-
itives (e.g., points, lines, contours, etc.) from the twaim
ges. The estimation problem is afterward solved. Direct
methods exploit the pixel intensities without having to ex-
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technique proposed, e.g., by Comaniciu et al. (2000), thoug
effective, is not sufficient for our purposes since it pre@sd
up to a similarity transformation. Moreover, this techréqu
only works for color images. We investigate techniques that
can work with both grayscale and color images.

1.1 Related Work

(@) (b) Initial works within that context specially focused on regi
Fig. 1 (a) Reference image (template) superimposed by a grid. (b§€ring images of planar surfaces (Shum and Szeliski, 2000),
Current image superimposed by the aligned grid. Image registratioand on using the iterative Gauss-Newton minimization of
consists in estimating the appropriate parameters to optimaiiy all  thejr sum of squared differences. The same optimization ap-
pixels within a reference template to another image of the saieetpb . .
taken at different imaging conditions. proach can be used for the direct alignment of deformable
surfaces (Bartoli and Zisserman, 2004). Contributionsief t
present article are both in the field of direct transfornratio
veira and Malis, 2007a) and visual SLAM (Silveira et al., models, and on the efficiency issue of the registration.
2008). Hence, we can suppose that the frame rate is suffi- One important step toward real-time applications con-
ciently high such that only relatively small interframe-dis sists in improving the efficiency of the Gauss-Newton opti-
placements of the object are observed. Moreover, high accunization method. Two approaches are possible for building
racy is often needed for these applications. Thus, we focusfficient algorithms. The first one is to keep the same con-
here on direct image registration methods. vergence rate (the number of iterations needed to obtain the
Further, this article concentrates only on uncalibrated diminimum of the cost function), whilst reducing the compu-
rect algorithms that are both robust to (at least a certain deational cost per iteration. This can be achieved by precom-
gree of) illumination changes and potentially real-timedo  puting partially (Hager and Belhumeur, 1998) or completely
robotic system. Therefore, methods that rely on the Bright(Baker and Matthews, 2001) the Jacobian used in the mi-
ness Constancy Assumption (BCA) (Lucas and Kanadejimization. The main limitation of these approaches is that
1981; Benhimane and Malis, 2007), or that perform a bundleéhey can only be applied to certain classes of warps. Another
adjustment are not considered here. Bundle adjustment teclimitation concerns the visibility issue. The object ofdrgst
niques are not considered within those robotic applicationmust be fully visible in the image, otherwise the Jacobians
because of its noncausal estimation. must be recalculated. Furthermore, in the case of surfaces i
Moreover, since in most cases only local nonlinear opthe 3D space, the convergence rate of the widely used algo-
timization techniques can be used in a real-time setting, wathm (Baker and Matthews, 2004) is not equivalent to the
suppose that an initial estimate sufficiently close to the tr convergence rate of (Lucas and Kanade, 1981). An alterna-
solution is available. This is the case when either the imative approach for building efficient algorithms is to keep th
ges present a sufficient amount of overlapping, or a suitableame computational cost per iteration, whilst increadiey t
prediction is available (this issue will be discussed later convergence rate. This can be achieved, e.g., by using the
However, methods based on optical flow computation (Neefficient second order minimization method (Malis, 2004).
gahdaripour, 1998; Black et al., 2000; Haussecker and,FleeThis approach has been applied by Benhimane and Malis
2001) are also not considered here since they assume a t®007) for visual tracking planar surfaces under the BCA.
small interframe displacement of the objects. An approach derived from this latter is proposed by Mégret
In addition, we consider applications where off-line lear-et al. (2008). Here, we propose a flexible and efficient algo-
ning steps are not possible to be executed prior to the regisithm that can be used for the alignment of rigid and defor-
tration task. Hence, the techniques proposed, e.g., byrHagmable surfaces, whilst completely relaxing the BCA, all in
and Belhumeur (1998), La Cascia et al. (2000) and Nasta unified manner. Compared to existing techniques, a great
et al. (1996) cannot be applied. The image registration musfficiency is obtained by reducing the number of iterations
start immediately after that the reference image is saedecte needed to converge to the minimum of the cost function.
This selection can be made either manually or automatically Indeed, we also tackle here an important issue to all
Very importantly, the solution to our problem must sup-vision-based algorithms: the robustness to generic hghti
port all classes of image transformations, including persehanges. We address the efficient tracking of Lambertian
pective deformations. This is crucial to developing a genand non-Lambertian objects under unknown imaging con-
eral scheme. In particular, this enables the control of alllitions, also in a unified manner. To this end, a possible
six degrees-of-freedom of a robot. Thus, the visual tragkin scheme to increase the robustness to variable illumination
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color vectors. Given two images of a Mondrian warlth-

der specific condition$,Finlayson et al. (1994) claim that

a multiplication of each tristimulus value (in an approfeia
basis) by a scale factor is sufficient to support color con-
stancy in practice. This framework has been exploited in
color-based point tracking (Montesinos et al., 1999; Gouif
fés et al., 2006) and in color image registration (Bartoli,
2008). Here, we show that such a framework corresponds

Fig. 2 (a) Original color image (please see it in the monitor, or print it t0 a particular case of the proposed general model.
in color, so as to verify how rich this image is) and (b) after ds\er-

sion to grayscale. Almost all information has been lost in this exemp

what illustrates the need to work with the color image directly 1.2 Contributions

(@) (b)

This article proposes a direct technique to visual tracking
is by performing a photometric normalization. For exam.various classes of objects despite challenging lightirrg va

ple, the images may be normalized using the mean and tH’agpns. To this end, we propose a 'new modeliof flumi-
standard deviation. However, this method provides inferior?atlon changes 'and anew geomgtrlc model of 'lmage mo-
performance, especially when the interframe displacesnenf'on' The resulting photogeometric transformation model
are large (Baker and Matthews, 2004). Another widely use general. On effect, the proposed model overcomes the

technique is to model the change in illumination as an affin |m|tat|0n_s_ of bOth_ the Mondrian woridanq those work-
ing conditions? whilst naturally encompassing the graylevel

transformation (Jin et al., 2001). Despite the fact that im- . . .
( ) P ase. Furthermore, it does not require prior knowledgeef th

proved results are obtained, only global changes are mod2se: ;
eled and thus specular reflections, for example, are nontakd "ad!Ng SENSOrs (e.g., spectral response characteyjsiics

into consideration. A possible strategy to deal with Iocal_the light sources (e.g., number, power, pose), or of the Ob._

changes is to use a robust error function (Huber, 1981). Néget (e.g.,.albedos, s_hape). As for the proposed geometric

vertheless, they are shown to be inefficient in the case godel of image motion, we show here how to encompass

n

t

direct tracking (Baker and Matthews, 2004). The reaso oth rigid and deformable objects whilst St".l pre_serving
are twofold. First, they may discard important, pertinent i at robustness property. The related geometric variadstes

formation that could be easily modeled and thus, expIoiteo‘?arammrlzed using the Lie algebra. Th_e transform_atl(_)n mo-
f/el can be adapted such that the real-time constraint & sati

Hence, the convergence rate of the algorithm tends to slo
led, at an eventual expense of robustness/accuracy. Furthe

down or, even worse, the tracking may fail. Second, in thi tend the efficient d ord imati
case there is an ambiguity in the interpretation of the inten0re: We extend he eflicient second order approximation

sity differences between those caused by motion and thoé@ethOd to simultaneously obtain the optimal global and lo-

caused by lighting changes (Jurie and Dhome, 2002). On th%al parameters related to all those models. Hence, large rat

other hand, those robust functions may be applied to handffjénd dqmalps Of. convergence are achieved. .
unknown occlusions since their realistic modeling is agath This article is a r_ewsed_and_ext_ended version of the ap-
difficult task. proaches proposed in partin (Silveira and Malis, 2007b) and
in (Malis, 2007). In particular, we show here that widely
Finally, we are interested in improving the robustness tadopted models are in fact particular cases of the proposed
generic illumination changes not only in grayscale imagesgeneral transformation models. Another contribution & th
but also in color images. Color images can be of particulapaper is the generalization to the case of color images. In
importance in many scenarios. As a matter of fact, extremether terms, we show that the photometric model proposed
cases exist where all visual information is lost when gray4in (Silveira and Malis, 2007b) for grayscale images is also
scale cameras are used (see Fig. 2). Even if this is an ua-particular case of a more general model of illumination
likely situation in practice, we can conjecture that in manychanges. Given the parametric models, we demonstrate how
cases color cameras provide much richer information thaa hierarchical scheme in terms of number of parameters can
their grayscale counterparts. Hence, their applicationlsh  be devised. Another discussion only present here concerns
be studied in more depth. Another motivation to work withthe important aspect of surface modeling. Typically, iteep
color images is owing to the possibility of removing spe-sents a compromise between computational complexity, ro-
cularities in these images (Tan and lkeuchi, 2005; Klinkebustness and accuracy. Finally, this article presents tie m
etal., 1990). Color constancy (also referred to as chramati—; — X
. .. : . . A Mondrian is a planar surface composed of Lambertian patches,
adaptation) is indeed an active research topic, which Seelﬁﬁd is after Piet Mondrian (1872-1944) whose paintings ardaimi

illuminant-invariant color descriptors. A closely reldtgro- 2 For example, the light that strikes the surface has to be of imifo
blem is to find illuminant-invariant relationships betweenintensity and spectrally unchanging, no interreflections, etc
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limitations of the proposed framework, as well as some pos2.2 Image Formation
sible solutions to overcome them.

Results are provided using various real-world sequencesonsider throughout this article the pinhole camera mo-
of images under large ambient, diffuse and specular refleglel. According to major illumination models, both experi-
tions, which vary in power, type, number and space. Anomental (Blinn, 1977) and physically-based ones (Cook and
ther complication that can arise concerns the occurrence dbrrance, 1982), the intensity (i.e., irradiance) at a Ipixe
off-specular peaks (glints) and interreflections. Resiéts P = [u,v,1] € P? is due to specular, diffuse and ambient
monstrate that the proposed approach also accommodat&flections. These models can be concisely expressed as
them without making any additional change. For the expe:

. ) = >
riments, representative rigid and deformable surfaceg werI(hm’p) Zu(hs,p) + Za(ha,p) + Za(ha) >0, (1)

chosen which range from smooth to rough, including metalyhereh,,, = {h,, hg,h,} comprises the respective parame-
and dielectric objects. Existing efficient direct techrégu ters, which depend on a given illumination model. For exam-
are not able to cope with such a challenging scenario, egie, the Blinn-Phong model is a function of the object pose
pecially when the object is not near-Lambertian and/or-relarelatively to the viewing direction, the spatial distritmrt
tively large interframe displacements of the object are caropf the light sources and their radiance (per-wavelength), o
ried out. Supplemental multimedia material is providedsso athe diffuse and specular albedos of each surface point (per-
to better support and demonstrate the generality, robsstnewavelength), the specular exponent and camera gain. In the
and reliability of the proposed visual tracking technique.  case of the Cook-Torrance model, other parameters include
the Fresnel reflectance and the surface roughness.

1.3 Paper Organization Case 2.2.1 (Lambertian surfacéB)ese particular surfaces
do not change appearance depending on the viewing direc-

This article is organized as follows. Section 2 briefly réxal tion. The specular term in (1) is thus nully(hs,p) =

standard modeling aspects and techniques related to imageVp € Z.

registration. The proposed models are introduced in Sec-

tion 3, whereas the proposed methods are presented in Sec-

tion 4. Section 5 contains comparison results with theeelat 2-3 Two-view Epipolar Geometry

state-of-the-art techniques. Many other experimentallies . ) .
are reported in Section 6, which also describes the supplér-he epipolar geometry establishes the relations between co

mental multimedia material. Finally, Section 7 presents th '€SPonding image points in a pair of images. Let us consider

main conclusions and some directions for future research, N this section uncalibrated views afjid objects, defined
with respect to the current framE and the reference one

F*. In this case, the geometric relation between correspon-

2 Theoretical Background ding image pointp < p* is given by (Faugeras etal., 2001;
Hartley and Zisserman, 2000)

2.1 Notations pox Gp*+p'e € IP’27 )

Unless otherwise stated, scalars are denoted eitherisital \yhere the symbol <’ indicates proportionality up to a

or in lowercase Greek letters, e.g,, \; vectors in lower-  nonzero scale factoG € R3*3 is a homography relative
case bold fonts, e.gv; whereas matrices are represented intg an arbitrary plandl not going through the origin of *,
uppercase bold fonts, e.gv,. Also, 0 (resp.1) denotes a ¢ ¢ R3 denotes the epipole (strictly speakirge P?), and
matrix of zeros (resp. ones) of appropriate dimensions, an,g* € R is the parallax (relative tdl) of the 3D point pro-
{vi}iL, corresponds to the s¢ty,vs,...,vn}. We follow  jected in the reference image asp*. This projective par-

the standard notation, v, v, and||v|| to respectively re- gjlax also encodes the inverse of the depth of this 3D point.
present an estimate, its true value, an increment, and the Eu

clidean norm ofv. Here, a superscripted asterisk, ev., is

used to characterize that a variable is defined with respect 2.4 Purely Geometric Direct Image Registration

the reference frame; whereas a superscripted circley@.g.,

denotes its optimal value relative to a given cost functionLet us consider in this section the particular case pibaar
Further,v’ represents a transformed, modified or a normaliobject for simplicity. In this case, a warping function can b
zed version of the originat. Finally, the gradient operator defined from (2) by setting™ = 0:

gpplied toa vector—vqlued fgnctio_m(v) with respect tqv w: R3S x P2 _ P2 3)

is denotedv d(v). This matrix of first order partial deriva-
tives is also referred to as the Jacobian malfix). (G,p") = p=w(G,p), (4)
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The problem of purely geometric direct image registra-
tion consists in searching for the geometric parametets tha
best warp the current image such that each pixel intensity

one in the reference image (p*). More formally, given an
estimateG (it can be the identity element) &%, and a geo-
metric transformation model (i.e., image warping funcjion

7,(GG,p") = I(p) = I(w(GG,p")) =0, (5)
a typical purely geometric direct image registration syste
seeks the incrementa&l to solve nonlinear optimization Fig. 3 (a) Reference image of a planar surface. (b) An invariant de-

(@) ’ (b)

roblems of th formation of the surface. Its 3D structure has been changedtfie
proble T orne typfz - 9 surface is not planar anymore), but it is still possible to obtajnbfy
_min - Z [I;(GG, p))-Z°(p}) |, (6)  moving the viewpoint only.
GEeR3x3 N

for the case of planar objects. If (5) returns a pixel coordiyhere . R, takes into account only invariant deforma-
natep; out of the image boundaries, this pixel is dlscardedtionsy andn* — [7732777;70]T ¢ R® captures the remain-

Of course, the cost function can be different, but the sum of,; yeformations. Invariant deformations refer to thosat th

square differences in (6) is the most widely used for regisbhange the 3D structure of the object with respecFtcbut

tering images of the same modality without aberrant Mmeag, ot giter the reference image. See Fig. 3 for an example.
sures. In the sequel, let us focus on monomodality registra- Thus, by applying the equations of motion (with respect

tion. Moreover, if unknown instances of those aberrant Me&y, some projective coordinate system) on (7) and using the

sures (e.g., ur)known occlusions) may be prefs,ent in -the dat@erspective projection, we can generalize the geometric mo
a robust function (Huber, 1981) may be considered in (6). del expressed in (2) as

Various solutions to the problem expressed in (6) are
available in the literature (Baker and Matthews, 2004). Howp « G (p* + %) + p*e € P?, (8)
ever, the solution proposed by Benhimane and Malis (2007)
has been compared favorably in the case of efficiently (ifvhered™ = [0;,4;,0]" € R? is an image coordinate de-
terms of both domain and rate of convergence) registerinfPrmation vector which encompassgs and <. We note
images of planar objects under the Brightness Constandfpat the parallay® € R in (8) also takes into considera-
Assumption (BCA). The keys to its efficiency are owing tion the deformation imposed by . Again,e € R3 denotes
both to the parametrization & as an element of the Lie 1€ epipole, an@s € SL(3) is a homography relative to an
groupSL(3) (the special linear group df x 3) matrices arbitrary plane not going through the origin &f.
having determinant one), and to the efficient second order The general relation (8) allows for defining a hierarchi-
approximation method proposed by Malis (2004). cal unified geometric modeling. Indeed, easy transition bet
In this article, we show first how to efficiently extend the Ween models is assured as follows.

registration to rigid and deformable surfaces. The extensi Case 3.1.1 (Planar objectdjhe planar case represents the
naturally encompasses that planar case. Then, we propose

X . ! Simplest class with respect to the number of parameters. In-
a technique to relax the BCA in a way that the images ca P b P

: . L - . r(ldeed, for this case we have
present arbitrary illumination variations, even in theecaé

color images. Finally, we show how to apply the efficients* =0 and p* = 0. (9)
second order approximation method to recover all related
parameters of the proposed models. Case 3.1.2 (Rigid object3he class of nonplanar rigid sur-

faces has a higher degree of complexity relatively to the pla
nar case since more parameters are required to fully model
them. However, once their structure parameters are ctyrrect
estimated they may be fixed for all times on:

3 Proposed General Models

3.1 Geometric Transformation Model
6*=0 and p*=0. (10)

Consider a 3D pointn* = [z*,y*,2*]T € R? defined re-

latively to the reference framg™*. Eventually, this 3D point Case 3.1.3 (Objects under invariant deformatidngrea-

is deformed to the coordinata*, also defined with respect sing the degree of complexity, the next class comprises the

to F*. We propose to model this change of position as:  deformable surfaces such that

*

m :i*mmrn* € R3, (7) 6"=0 and p* #0. (11)
KR
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In the most general case (i.e., the one with the highest degre
of complexity), the class of general deformable objects has

8 #0 and p* #£0 (12)

within the Desideratum (8).
Finally, we can also generalize the warping operator (3)
using (8) as

e/

iy
o

K
\,

A

T
TN 7
G

.—. v
N o~

w: G x P? - P? (13)
(8, p") — p=w(g p"). (14)
whereG is an appropriate group and

g=1{G,e,p", 0"} €G (15)

. - Fig. 4 (Color online) The illumination changes are viewed as anevol
encodes the geometric description of the scene structiire, Qg three-dimensional surface Thus, local lighting variations are also

the camera itself, and of its motion. This allows for definingcaptured by this model.
a general geometric transformation model as

Z,(g,p") = Z(w(g,p")). (16) etal., 2001; Baker and Matthews, 2004). The first assump-
tion is to consider that the surface is Lambertian (see the

Another important aspect concerns the parametrization q;articular Case 2.2.1) so that,(p) = 0,¥p € 7. Addi-

(15). Our proposed one will be discussed in Section 4.10na]ly, they assume that the entire surface holds the same

along with the corresponding photometric quantities. reflectance properties so thep € 7, cy(p) = a is a con-

stant. Although suited to some applications, both assump-

tions are obviously violated in many cases.

In this paper, we develop a general model of illumina-
tion changes. Instead of using (17), we seek an elementwise
multiplicative lighting variationS over the currenf, and a

For image registration purposes, the photometric modelin§!oPal? € R, such that the resulting;, matches as closely
aims at explaining the lighting changes between views. IS Possible to the referenge. Indeed, we propose the fol- -
other terms, it concerns the recovery of which lighting vari 10Wing general (in the case of grayscale images) photometri
ations have to be applied to the current imagél) such transformation model:

that the photometrically transformed of¢ reproduces as

closely as possible the illumination conditions at the tohe  Zr(S.8,Z) = S - I + 3, (18)
acquiring the reference imagg.

A possible photometric transformation model to act onwhere the dot operator ‘denotes the elementwise multipli-
7 (1) can be defined as cation. Hence, the lighting variatio$i is viewed as a sur-

face that evolves with time. Notice that, while the offget

T; (cs, g, B,p) = as(p) Zs(p) + aq(p) Za(p) + 3 >0, captures global variations only, the surfagealso models
(17) local illumination changes (e.g., produced by specular re-

flections). See Fig. 4 for an illustration. Very importantly
wherea,(p), aq(p) € R andj3 € R aim to counterbalance this model allows the registration to be performed without
the variations caused by specular, diffuse and global-lightprior knowledge of the object (e.g., albedos, shape) oref th
ing changes, respectively. The latter also includes thi¢ shilight sources (e.g., number, power, pose) or of the camera.
in the camera bias. Notice that the first two variables depend The proposed model (18) is also different from the one
on the albedos of each point on the surface, as well as ifgresented by Negahdaripour (1998), where the offset is also
shape, the camera parameters and other imaging conditiores a function of the pixels. This existing model is over-
These variables can be seen as a function of the changesparametrized, but is shown in that work to give satisfactory
h,, = {h,, hy, h,} between views. In this way, it represents results in the case of computing optical flow. This compu-
a difficult, computationally intensive problem where manytation is not our primary objective, though registration-me
images and priors are required to consistently recoveethoghods also recover that flow simultaneously. A strategy to
parameters. Indeed, two assumptions are widely adoptaeduce the problems related to that overparametrized model
by photogeometric direct image registration algorithniis (J (e.g., convergence issues) is given by Lai and Fang (1999).

3.2 Photometric Transformation Model

3.2.1 The Case of Grayscale Images
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Case 3.2.1 (Affine moddb)is easy to verify that the affine n-channel color imagd), that best matches the reference
case corresponds to a particular model of the general or@eZ™ through the model
(18). In this case, the surface is described by: n

Z,,(h, ) 21 S L+ B

S=11, (19) 7, ,(h,T) Sy Soj T+ Pa

; (21)
with v € R. This model is appropriate if that previously :
mentioned prior knowledge of the imaging conditions and| Z; (h,T) Z;’:l Snj I+ Bn

of the object is available. . .
where the full set of photometric variables

In the general case, if the alignment involves only two )
images and robustness to generic illumination changes R={5.8} <R™ -, (22)
sought, an underconstrained system is obtained (more uWherep is the number of image pixels, comprises the sur-
knowns than equations). Surface reconstruction algos'thmfaces related to the illumination changes
classically solve underconstrained problems throughareg

larization of the surface. The basic idea is to prevent pixel Si1 Sz - Sin

tensities from changing independently of each other. Given So1 Sy -+ Sop

that the model the illumination changes is viewed as a® = | : : - : |- (23)
evolving surface, the same technique can be applied to the S;Ll S;Lz ) S,.m

registration at hand. Indeed, the surfatis supposed to be

described by a parametric function and the per-channel shift in the ambient lighting changes an

camera bias, which is captured by the real-valued variable

S%fh(’)/,p), VPEIa (20) T
. /6: [ﬁllvﬁZ]-»"'a/Bnl]

where the real-valued vectgrcontains less parameters than

the available equations. Then, one has to choose an appio-the sequel, let the Desideratum (21) be concisely written

priate low-dimensional approximatiof),(~,p) of the ac-

tual surface. This will be discussed in Section 3.3.

(24)

W(hT) =S e IT+p, (25)

where the operatow’ represents the linear combination of
Highlights and shadowd§ hese particular effects can be in- the color channels, elementwise multiplied by the corres-
terpreted as well-structured types of occluders. The charaponding surface.
terization as an occluder is well-justified in the case where The proposed fully coupling photometric model (25) al-
all information which are useful for registration purposes islows the registration to be performed without prior know-
hidden. In this case, they are also well-structured becauseledge of the characteristics (including the spectral ones)
saturation pattern is exhibited either to zero or to the highof the light sources, of the object (which can be non-
est intensity level. Therefore, they can be filtered sujtabl Lambertian), and of the camera sensors. Nonetheless, these
one only needs to check whether or not those homogeneoygiors can be easily applied to that general model if they

patterns appear in each warped image region. are available. For example, prior knowledge of the spectral
response of the camera sensors (e.g., from its datasheet) al
3.2.2 Genera“zation to Color |mages IOWS f0r Suitably unCOUpIing the ||ght|ng VariatiQﬂ. ThIS

particular case is described below.

It is shown here how to extend the photometric model pre- o

sented in Section 3.2.1 to the case of colorimages. On ef‘fecq:ase,?"z'2 (Known spggtral characteristitithe color ca-

this new photometric transformation model overcomes thEheras datasheet specifies that thesensors are narrow-
limitations of both the Mondrian world and various working band, then a fully uncoupled model can be used by adopting
conditions (see Section 1.1), whilst naturally encgmpugssi S = diag(S11, S22, - - -, Sn)- (26)

the graylevel case. Furthermore, the extension will be made

for any color image, i.e., other multispectral images swh alf only some of them are narrow-band, it is possible to de-

those that include the infrared band. vise other particular models from the general one (25) so as
Let Z represent a color image, which is obtained byto suitably uncouple the corresponding channels. For exam-
stacking the channelg;, k¥ = 1,2,...,n. The main idea ple, given that at least the Red and the Blue channels are

consists in respecting all intrinsic couplings that may beonly weakly coupled in many RGB cameras, one may set
present between channels so as to be as general as possiblg. = S3; = 0 in (23). In addition, if a symmetry bet-
Indeed, we propose to obtain a photometrically transformedieen a particular coupling is present, then a reduction on
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the number of surfaces to be estimated can also be achievad underconstrained system. We remark that the total cha-
by settingS12 = Sa1 = Sp and/orSy3 = Sz = Ss, e, racterization of the surfaces to be estimated depends both
on the complexity of the data and on the task-specific re-

Su S 0 quirements. To this end, besides the number of surfaces, de-
S=|8 Sn S |. (27)  sign parameters also include both the function itself ard th
0 S3 Ss3 number of samples to define each surface. They typically

i o represent a compromise between computational complexity,
Case 3.2.3 (Affine mode8imilarly to the grayscale case robustness and accuracy.

(see Qase 3:2.1), itis easy to verlfy_that affine models for Let us first discuss the number of surfaces. Consider an
color images also correspond to particular cases of the Pro:_ channel imagen > 1. Of course, the case whene— 1
posed general photometric transformation model (25). A - '

X o ) o orresponds to a graylevel image. In the simplest case of a
f|rst possibility (Finlayson et "_"l" 1994) consists |n.chang planar object and fully decoupled surfaces for the illumina
ing the current and reference images to an appropriate ba

a3 X $18n changes, we have a total ofsurfaces to be estimated.
BeR _("e" toa su@able golor sp'a(_:.e) and then to SOIVeOn the other hand, in the most general case of a general de-
fora rgal diagonal matri. This possibility corresponds to formable object along with a fully coupled model of lighting
the affine model variations, a total of2 + 3 surfaces are required to accu-

1= [(B‘l DB) ® 1] o« T+0, (28) rately explain the image motion. They represent:

where the symbol®’ denotes the Kronecker product. If it the surface related to the projective parallax

is too difficult to estimate or choose the baBs another . _ )
o ) . . P = fo(Xp; P); (32)
option is to directly estimate the matrix

— the surface related to the general deformation inithe
direction

6y = f5(Au, P); (33)

— the surface related to the general deformation imthe
In the general case, if the alignment involves only two  direction
images and robustness to generic illumination changes is
sought, an underconstrained system is still obtained dveni d, = f5(Xy, P); (34)
n-channel images are considered. Thus, following the same ] ] o
technique for the graylevel case, we suppose ghatn be — and finally the surface(s) related to the illumination

B 'DB=A ¢cR3*3, (29)
This corresponds to a particular case of (25) where

S=A®1. (30)

described by parametric functions changes
S~ f,(I'p), VpeZ, (31) Ski(P) = fu(VijP)s ki =1,2,...,n (35)
where I’ = {m}’ k,j = 1,2,...,n. One then has To approximate those surfaces, an appropriate choice of

to choose an appropriate low-dimensional approximatioach function
fn(I',p) of the actualS. This will be discussed in the next . )
section. An efficient optimization procedure to estimate al/(): R* x P* — R, (36)

those parameters is devised in Section 4.2. whereq(.) denotes its number of parameters, has to be made.

N - This choice depends on several factors, as discussed next.
Highlights and shadowsSimilarly to the grayscale case, : .

. S .’ Of course, different choices can be made for each one of the
saturations due to highlights and shadows are also inter-

surfaces. We present below two possible functions:
preted as well-structured types of occluders. In the case 01u P P

color images each channel is independently filtered. 1. a widely used technique to regularize a surface is via
Radial Basis Functions (RBF) (Carr et al., 1997). In this
case, the function in (36) may be defined, for example,
as athin plate spling(z) = 22 log(x), V2 € R, along
with a first-degree polynomial, i.e.

3.3 Surfaces Modeling

The modeling of surfaces is an important design step within
estimation methods from visual data. Besides the scene s
structure, illumination changes are also modeled here as a f(v,p) = [vsy1, Vsi2, Ws+3]TP+Z% o(lp — a;ll),
surface. Additionally, we showed that regularization tech i=1

niques are needed in both cases so as to avoid constructing (37)
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(a) Original surface (b) Approx. by a RBF (c) Approx. by discretizing

Fig. 5 Some possibilities to approximate a surface. (b) Radial Basistiemsc(RBF) regularize it but do not capture discontinuiti@3.Dis-
cretization deals with discontinuities and yields a compaortaily efficient system, but ignores smoothness.

where{qi € IP’Q}‘::1 are image points (called centers) 4 Proposed Efficient Methods

that can be selected, for example, on a regularly spa-

ced grid or be interest points. The side conditions carf.1 The Full System

be easily imposed by solving a linear system, whilst the

interpolation conditions are indirectly imposed by mini- The full system is composed of the proposed transformation

mizing a S|m||ar|ty measure (e.g., the sum of square dimedEL along with its parametrization, and of the nonlinear

ferences). The use of RBFs allows for regularizing thePPtimization method.

surface, but they may fail to accurately capture disconti- ~ As for the modeling, a general photogeometric transfor-

nuities since the function (37) has a global support. mation model can be defined from the general model of illu-
2. A possible strategy for dealing with discontinuous sur-mination changes (25), along with the general warping mo-

faces is to approximate it via a discretization inteuf- ~ del (14). More formally, the action of the proposed general

ficiently small(Au x Av) regions with transformation model on pixels is given by
on(x,p") =T, (h, Z(p)) (40)
Fv.p) {g T e A (38) = 7, (h, Z(w(g.p"))) (41)
’ "ee = S(,p*) « Z(w(g,p)) +8 >0, (42)
such that wherex = {g,h} comprises the geometric and photo-

metric variables, respectively, = {G, e, p*, 6"} (15) and

5 h = {8,3} (22), and the operatoe* stands for a linear

//I S(p) dudv ~ Z f(vis p) Aui Av;. (39)  combination of the: channels ofZ, n > 1, elementwise
=t multiplied by the corresponding surface.

This discretization leads to a computationally efficient h Letus novtv.d|sc%ssrt]h<ta |mpto.rtant 'Sst'.L:.e oflpar(tahmettrlzmg
solution since sparse Jacobians are obtained. On {f{gOSe geometric and photometric quantities. In other terms

other hand, this approximation ignores eventual surfacd’® need to define the most approprlate set of parameters
smoothness. z = {z,4, 2} to describe the variables= {g, h}:

X =x(z) = z,),h(z EGXRPTLQ""”, 43
Hence, the appropriateness of a particular approximagen d (=) {g( 2 h)} (43)

pends on various factors, such as the assumptions concettiherep is the number of pixels considered for processing.

ing the surface smoothness and on the required system’s pdithereas the parametrization of the photometric quantities

formance. See Fig. 5 for illustrative examples. Other possih = h(z;) imposes no difficulties with

ble approximations include the use of bivariate polynogjial . . +n

and a combination of discretization followed by a suitable”” ~ {8} =1, By €RVT (44)

(e.g., cubic) interpolation. the adequate characterization of the geometric ghes
Additionally, the number of parameters to define eactg(z,) is a little more involved. Consider the x 4) matrix

surface, i.e.q, = dim(X,), ¢, = dim(A,), ¢, = dim(X,) {

andg, = dim(y,,), obviously has an impact on the sys- Q = ;; T ] € SA(3). (45)
tem'’s performance as well. Nevertheless, a hierarchical ap
proach can be applied to find a suitable number, startinghe Lie grougSA(3), i.e., the special affine group, is home-

from a planar surface to higher dimensional approximationsomorphic toSLL(3) x R?. The Lie grouSE(3) = SO(3) x
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R3, i.e., the special Euclidean group, is in fact a subspacehich seeks to minimize the set of intensity differences
of SA(3). The natural local parametrization 6f € SA(3)  d = {d;(x(z)ox) }. Differently from (Baker and Matthews,

is through the related Lie algebsa(3), whose coordinatés  2004; Bartoli, 2008), no transformation is applied on the re
are here denoted by = [vy,vs,...,v11]" € R¥3, ie., ference imageZ*. This allows for encompassing various
Q = Q(v) € SA(3). The mechanism for passing infor- classes of image warps, and for modeling both local and
mation from the Lie algebra to the related Lie group is theglobal illumination changes. Further, via a suitable adapt

exponential mapping tion, this also allows for simultaneously estimating the 3D
exp: sa(3) — SA(3) (46) camera pose gnq the scene s:tructur_e (Silveira et al., 2008).
Another benefit is that the object of interest does not have
A(v) = exp(A(v)) = Q(v), (47) 10 be fully visible in the images. Finally, larger domain and
where A (v) can be written as a linear combination of the rate of convergence for the optimization are obtained is thi
canonical basiA;,7 = 1,2,...,11, of the Lie algebra way. We find that these reasons largely overcompensate the
sa(3) (Warner, 1987; Varadarajan, 1974): marginal increase in the computational cost of calculating
11 the involved Jacobians at each iteration. Indeed, we d®scri
A(v) = Z viA; € sa(3). (48)  below a computationally efficient procedure to solve that op
i=1 timization problem (51) with nice convergence properties.

The exponential mapping (46) is smooth and one-to-one

onto, with a smooth inverse, within a very large neighbor-

hood around the origin ofa(3) and the identity element 4.2 The Optimization Procedure
of SA(3). This parametrization is then highly suitable to ex-

press incremental displacements. The set of geometric quaffVen the real-time requirements of robotic applications,
tities g = g(z,) can hence be fully parametrized by only minimization methods that have limited convergence

7 4ot gut g domain can be applied. Global methods such as Simulated
2o ={v, A, A, A} ER ’ : (49) Annealing (Horst and Pardalos, 1995) are too time consum-
In order to estimate all those parameters, an appropriaieg to be considered in a real-time setting. In this sectiee,
nonlinear optimization procedure is needed. For real-tim@ropose an algorithm that is both computationally efficient
systems, only local ones can generally be applied. An Initiaand has a relatively large domain of convergence.
estimatex sufficiently close to the true solution is then re-  Suppose that an estimatesufficiently close to the true
quired. This estimate is integrated into the proposed modglarameterx is available (this initialization issue will be dis-
(42) as cussed later). Further, consider that the underlying fanst
, L ~ o~ S are (at least piecewise) smooth so that they can be expanded
on(x(Z)oX,p") =S(I'oI',p") e T(w(g(Z4)°8.P")) in Taylor series. The nonlinear optimization problem (51)
+ B o fa >0, (50) can be concisely rewritten as
wherex = x(z) represents incremental values, and thecom- = 1 A
position operators’ depends on the involved Lie group. For "3 3 1 (x(z) o )|
example, if a matrix Lie group is involved then the product o L .
operation to be performed is the matrix multiplication. If Where the objective consists in finding the optinxakz°)
real-valued (resp. nonzero) vectors are considered, tieen tsuch that. its composition with the estim&gields the true
respective product operation may be defined, for exampl/aluesx, i.e.
as the (resp. elementwise multiplication) addition (Warne _ oy~
1987; Varadarajan, 1974). X =x(z°) oX. (53)
Instead of using a plane-based warping mafe(S) in |, 1his case, the image alignment is perfectly achieved:
(§), a general @rect image registration syste_:m can be d%;h(i7 p*) = T*(p*), ¥p*. A standard technique to solve
vised by applymg the general photogeometric transformag,is orohlem consists in first performing an expansion of the
tion modelZ y;, (50) in (6). In this way, a general system can g, tion in Taylor series and applying a necessary contitio
be cast as the following nonlinear optimization problem: ¢ ontimajity. From an initial estimat&,, the solution is
. 1 / ~ ok woxy 12 obtained by finding an incremental displacement x(z;
i 52 [Zn(@o%pl) TN ], (5D and updatixrqg it ite?atively: P =)

2

; (52)

z={2,4,21}

di (x(Z)o%)

3 By definition, the Lie algebraa(3) is of dimension 11, since the Xk+1 = X(Zk) o Xk (54)

(3 x 3) matrix G is an element of the Lie grouflL(3). Given that . N _ . . .
elements of this group have determinant one, a degree-afeéneés ~ SUCh thatim;, ... X = X, wherek indexes the iterations.

already constrained. In practice, the convergence to the optimal solution can be



G. Silveira and E. Malis International Journal of Computéidh, Vol. 89, No. 1, pp. 84-105, 2010

established whe(zy,) is arbitrarily close to the identity some of them are unknowns. Only a part of the latter can
element of the involved group, i.e., whég; || < e. always be computed (by applying the chain rule), since the
With respect to the Taylor expansion, a key techniqueeference image is given. The remaining part must be ap-
to achieve nice convergence properties is to perform an effproximated using, for example, the current estimate so that
cient second order approximationab(x(i) o)?). Indeed, its  (63) can be a rectangular linear system.iet J(X) repre-
second order approximation in Taylor series about the cursent this approximated Jacobian at the reference values. Ne

rent estimat& (i.e., abouk = 0) is vertheless, in some particular cases where the warping func
tion (14) is a group action oR? (e.g., in the planar cadg
d(x(z) o X) = d(X) + Vzd(x(2) 0 X) ‘N_OE a rectangular linear system is obtained from (63) without

1 any approximation. Independently (either approximately o
+ §V; (ng (x(z) o X) )2()%) z+o(|z]|), (55) exactly) of how a rectangular linear system is obtained from
- (63), its solution is found in the least-squares sense via

7=-20®+J) dE), (64)

where (-)™ denotes the pseudoinverse of a matrix and

where the rectangular matr(x, 7) also encompasses the 2 (J(X) +J)Td(x) represents our proposed descent direc-
square Hessian matrices, am(d|5||3) is the third order La-  tion- The Gauss-Newton method does not consider the im-

grange remainder. In turn, the first order Taylor expansioRrtant contribution ofJ, which includes the gradient of
of J(x(%) o X) again about the current estimatéi.e., about the 'reference image. The analytlcal expressions of thesg Ja
7 = 0) is given by cobians can be found in (Malis, 2007; Silveira and Malis,
2007b). It can be noted that the obtainédmay not align
J(x(z) oX) = J(X) + S(%,2) + o(||z]?), (57)  theimages using (53) at the first iteration, especially bsea
with the second order remaindev(||i\|2). By injecting faTaonr approximation of the_ t~rue nonlinear equations (62)
~ ~ . i : is performed. Thus, the solutiat? from (64) represents an
S(x,z) from (57) in (56) and neglecting the third order . . . .
- D . -_incremental displacement that must be iterated via (54) unt
terms, an efficient second order approximation (i.e., usm%
. L AL Lo onvergence.
only first order derivatives) o (x(z) o X) is obtained: . o
Therefore, we provide a second order approximation
method which leads to a computationally efficient optimiza-
tion procedure because only first order derivatives are in-

We can then apply a necessary condition for optimality.Vo_Iveq- In othe_r terms, differently from seconc_i order mini-
A necessary condition faf = z° to be a stationary point of mization techniques (e.g., Newton), the Hessians are never

or more compactly,

d(x(7)o%) = d(ﬁ)+J(§<)z+%S(ﬁ,a)ﬂo(nzn?’), (56)

d(x(z) o %) = d(®) + %(J(?c) +J3(x(2) o ﬁ)) Z.  (58)

our cost function in (52) is computed explicitly. This also contributes to obtain ni_cer
convergence properties. We remark that the computational
0= V;(l d(x(z) o g)Td(X(g) o g)) ’ (59) costof the proposed second order approximation is equiva-
2 F=20 lent to the cost of the Gauss-Newton method. Indeed, the
- o T or o~ cost of the addition of (x) with J in (64), within iterations,
N Vzd(x(z) ° X) z:zod(x(z )e X)’ (60) is truly negligible compared to the cost of the pseudoirevers
or more compactly, operatiqn requi.red by both methods. The gradient of the re-
ference image is an one-off computation.
J(®)'d(x(z°)o%) =0, (61)
using (53). Provided thak(x) is full rank, we have 4.3 Initialization Issue
d(x(z )OX) =0 (62) A common limitation of efficient nonlinear optimization

The roots of this system of nonlinear equations (62) iorocedures regards its domain of convergence. Although the
generally difficult to obtain in closed form. However, using parameters are obtained by a second order approximation
the Taylor approximation (58) abo#t= z° along with (53) method with nice convergence properties, it does not en-

yield the following system of equations sure that the global minimum will be reached. As previously
1 stated, global minimization procedures are too computatio
§(J(§) +J(x)) z° = —d(x), (63) nally intensive to be performed in a real-time setting. Here

1 . . . . .
whered(i) and the Jacobia.m(ﬁ) are completely computed In this particular case, if the homogra_pliy is pa_rametrlzed
as an element ofSL(3), the corresponding warping operator

using current information. On the other hand, the entire J&3) is a group action ofSL(3) on P2, ie., w(G1Ga,p*) =
cobianJ(X) at the reference (true) values cannot because (G, w(Gz,p*)), VG1, G2 € SL(3).
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we suppose that the image acquisition rate is sufficiently
high so as to observe small displacements of the objects
in successive images. This is generally true in robotic ap-
plications, where smooth camera motions are performed. In
other terms, the parameters estimated in the registrafion o
T* with T, wheret indexes the images, are used here as
a starting point for the alignment @* with Z(+). Never-
theless, we discuss in the sequel possible solutions if very
large interframe displacements are present. We remark that
none of the possibilities below are applied in this article.
A possible solution to avoid getting wedged in local _

.. L . . . . . _ S Reg\o
m'nlma within direct registration meth_OdS consists in us Fig. 6 Processing time pé? iteration for a nonoptimized implementa-
ing, for example, feature-based techniques as a bootstragn of our uncalibrated registration method in C on a Pentiu&GHz.
In addition to augmenting the domain of convergence, this

approach may also augment the rate of convergence. If the . . .
related parameters are closer to the true ones than those yL00 Pixels and for this affine case (10 parameters to be es-

using the minimization approach, they will act in this case a timated) on a monocore Pentium 3.2 GHz. See Fig. 6 for the
a prediction for aligning a new image of a video sequencePrOcessing times when varying those parameters. Compari-
In any case however, feature-based techniques do not e_ﬁon_results of a particular image registration tasl_< is shown
sure that the global minimum will be attained, since they ard? Fig. 7. The image to be aligned presents relatively large
not fully invariant to all possible photogeometric changes 9e0metric and photometric displacements with respectto th
Thus, one may also rely on other predictors to improve thdixed image, and is thus adequate to |IIust.rate the improve-
convergence properties of direct methods. In fact, the couTents gained by the method. Two conclusions can be drawn
pling between the image registration method with a filteringirectly. First, the error obtained by our technique is fsva
technique can be performed at this stage. In the case ofnaller th'rough iterations. Second, the existing angnth
sequential image registration task (i.e., visual trackimg 90t Stuck in a local minimum and thus, obtained a higher
Kalman filter can be used to provide another estimate of th8/T0r at the convergence. We remark that the difference in
optimization variables. The input (i.e., observationsjhe the final photometric error is significant as it also reveals
filtering are the recovered parameters from the minimizatio that the existing method is prone to fall into irrelevant min
process. To initialize the system (i.e., when a new image igna..Thls means that _for a different S|tuat|o.n that error m.ay
available), the best set of parameters among all predictof® higher, as well as it may accumulate drifts (thus leading
is chosen by comparing their resulting cost value. Neverthe© @ failure earlier) within a visual tracking task. With res
less, filtering approaches also have limitations in progdi pect to other existing strategies for this particular cente

sufficiently good predictions. The assumptions on the typd@s been shown (Bartoli, 2008) that, albeit more computa-
of noise (e.g., Gaussian noise) and/or on the model of mdionally efficient, that existing algorithm yields exactlye

tion (e.g., constant velocity) may not be realistic in manyS@me photometric error of the method proposed by Baker
scenarios. and Matthews (2004). The strategy presented by Jin et al.

(2003) did not converge after 100 iterations and was not in-
cluded in the figure.

100

%)
°
c
Q
o
[}
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=

e’”@[ 10

5 Comparison Results

Let the photometric error be defined as the Root-Mean5-2 Generic lllumination Changes

Square (RMS) of the difference image between the photo-

geometrically transformed imagg,,, and the referencg*. ~ BEAR sequenceWe have also applied the algorithm on a
sequence under severe changes in ambient, diffuse and spe-

cular reflections. The unknown light sources are varied in
5.1 Affine lllumination Changes power, type, number and moved in space. No existing effi-

cient direct techniques are able to cope with this challemngi
Existing efficient direct image alignment techniques essenscenario, especially when the object is not near-Lambertia
tially tackle affine lighting variations. To show the gerera and/or relatively large displacements are carried outllin a
ity of the proposed method, we compared it with an existingcase, we have tried the above-mentioned strategies (Bartol
algorithm (Bartoli, 2008) that is designed for that pargcu  2008; Baker and Matthews, 2004; Jin et al., 2003), but they
context. A nonoptimized implementation of our method in Chave failed. This includes their variants, for example, by
code runs at about 2.4 msf/iteration for a template size of 10performing a photometric normalization with/or using a ro-
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S — Proposed method
1205 - - -Existing method
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Fig. 7 Comparison results of an image alignment task where relativedg ldisplacements are present. As a means to compare with an existing
method, the lighting variations between (a) the original imagd (b) the synthetically transformed one comprise only affiaa@és. (c) The
proposed method obtains smaller errors and does not get tragpedelevant minima.

Fig. 8 (Color online) BEAR sequence: Comparison results for the general case, using exigeeg registration methods with and without a
robust function. They are outlined in yellow and in green, eesipely. Whereas both of them have failed, the proposed rddihalined in blue)
successfully registers (a) the reference image to all other in@Edgbe sequence. Some excerpts are shown in (b) and (c).

bust error function (a M-estimator with Tukey’s functiolj.  periment (we have 31 parameters to estimate), we fixed the
fact, the experiments showed that, when the robust functionumber of iterations per image of each algorithm to 5.
leads to a convergence for a given image, it takes an average Despite the simple spherical structure of the surface, the
of 2 times more iterations. See Fig. 8 for some excerpts anstandard Gauss-Newton fails to register the images since it
Online Resource 1 for the entire sequence. The proposeatbes not have enough iterations to converge (with 10 itera-
method successfully registers all images with a median phdions/image it works fine). The middle row of Fig. 9 shows
tometric error of 15.7 levels of grayscale (over 255), exethe corresponding registration results after 40 images. Ob
cuting a median of 6 iterations per image, for the requestederve that the regular grid is not transformed accordinméy t
accuracy. The surface related to the illumination changes aspherical surface, and the area of interest is not correstly
approximated by discretization and has not been further ingistered with respect to the reference template. On the othe
terpolated. Each block has a fixed size of680 pixels. hand, by using the efficient second order minimization the
images are correctly registered (see last row of Fig. 9). The
o average RMS error for the registration of the 40 images is of
5.3 Optimization Methods 4.9 levels of grayscale (over 255).

The proposed approach is also tested with a sequence of

known ground truth. Indeed, a video sequence has been syg-Experimental Results

thetically created by warping a textured sphere. We then

compare the proposed second order minimization metho@ihe generality and robustness of the proposed direct image
with Gauss-Newton one. The same transformation model igegistration technique are verified in this section through
applied to both cases. A region of size 400 pixels is tracking rigid and deformable objects, with and without se-
selected in the first image as the reference template (see topre lighting variations, using both grayscale and cola-im
row of Fig. 9). The centers for the surface approximation arges. To this end, we select a template in the reference (i.e.,
placed on a regular ¢65) grid. To simulate a real-time ex- first) imageZ™, which is then optimally aligned to succes-
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6.1 Purely Geometric Direct Visual Tracking
6.1.1 Rigid Surfaces

VAULT sequenceln this experiment we track a smooth vault
which is painted in still-life deception. Some excerptairo
the tracked sequence are given in the top row of Fig. 10 (see
Online Resource 2 for the entire sequence). A regularly spa-
ced (11x 9) grid is used, leading to a total of 110 para-
meters to be estimated. In the bottom row, the first image
shows the reference template. The other images correspond
to the currentimages warped, to the first frame, with the esti
mated parameters. The images are correctly registerdd, wit
an average photometric error of approximately 6.6 levels of
grayscale (over 255), and an average of 6 iterations of the
algorithm per image. Observe that the template partly goes
out of the image (see the upper corner of last image), with-
out any perturbation on the registration. In other terms, th
object must not be fully visible in the images.

BALL sequencen this experiment we track a basketball in

a sequence of images acquired with an uncalibrated camera.
Some excerpts from the tracked sequence are given in the
top row of Fig. 11 (see Online Resource 3 for the entire se-
guence). The bottom row shows that the area of interest is
successfully registered with respect to the template. A+reg
larly spaced (3x 3) grid is used. The average photometric
error is of approximately 13.6 levels of grayscale (over)255
and the algorithm performed an average of 7 iterations per
image for the required accuracy.

Fig. 9 Comparison results between optimization methods for sequeng.1.2 Deformable Surfaces
tially registering a 40-image sequence. (a) Left frame showsetfee r

rence image, whereas the selected reference template is shtwen at PAPER A def . heet of is tracked i
right. (b) Results for the Gauss-Newton method. The registréaits sequenc €lorming sheet of paper IS tracked In

due to real-time constraints. This is clearly visible in the righage  this experiment, using a regularly spacedx66) grid of
where the warped area of interest in the reference frame isquatte size 251x 201 pixels. All possible deformations are esti-

to_the_ reference template. (c) Successful results for the prdpmse mated using the hierarchical approach, leading to a total of
mization method.
98 parameters to be recovered. Some excerpts of the results
are shown in Fig. 12 (see Online Resource 4 for the entire
sequence). The bottom row shows that all images of the se-
guence have been correctly aligned with the reference tem-
sive images of the sequence. The hierarchical approach dgdate, with an average photometric error of approximately
cribed in Section 3.1 is used, where the observed surfacht.5 levels of grayscale (over 255).
is initially supposed to be a 3D plane parallel to the image
plane. We emphasize that the proposed algorithm does not
require any off-line training step, that any predictionitec 6.2 Photogeometric Direct Visual Tracking
nigue (e.g., Kalman filter) is applied in this article, andaal
that noncausal estimation is not performed in any case. Th&/e have also applied the algorithm on several real-world
parameters estimated in the registrationZof with W, sequences under generic illumination changes. They pgresen
wheret indexes the images, are used here as a starting poisevere variations in ambient, diffuse and specular redlasti
for the alignment ofZ™ with T Table 1 describes the as well as shadows, interreflections and glints. In addition
supplemental material and summarizes the details of all exhey comprise relatively large geometric displacements an
periments. objects with unknown reflectance properties. The surfaces
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Ref. image Image #099 Image #198 Image #395

Ref. template Registration #099

Fig. 10 VAuLT sequence: Visual tracking of a reference template in a sequémages acquired with an uncalibrated camera. (Top) Warped gr
is superimposed on the tracked area. (Bottom) The area of intenesgfistered with respect to the template. Last image shows thaethplate
can partly go out of the image without perturbing the task.

SRS

Ref. image Image #250 Image #500 Image #693

: . .

pAn (
=

—_—

Ref. template Registration #250 Registration #500 Registratt®3

Fig. 11 BALL sequence: Visual tracking of a basketball in a sequence of imagesred with an uncalibrated camera. (Top) Warped grid is
superimposed on the tracked area. (Bottom) Registered imagesegjitct to the template. They demonstrate the stability of thkdra
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Table 1 Index to multimedia Online Resources and their implementatiteildeLegend: Template refers to the size in pixels (widtheight) of
the reference region; #lter/Img stands for the median numbeeictions per Image; GM is the applied Geometric Model, wh€¥ésHor Planar
Object, RO is for Rigid Object, IDEF for Invariant Deformaticand GDEF is for General Deformation; GS denotes the typedé&e used for the
Geometric model, where RBF stands for Radial Basis Functiony Difretization and | for cubic Interpolation; #GP is the niambf Geometric
Parameters estimated; PM is the applied Photometric Model eshsignifies that a Surface is estimated (so as to model localigaggtand G
means Global parameters; PS denotes the type of Surface fandtenfetric model; #PP is the number of Photometric Parametensatet; and
RMS is the median photometric error obtained (over 255 levialgayscale) along the sequence.

Resource Type  Description #lmages Template #lter/lmg GM GS #GP PNPS #PP RMS
1 Video Comparison result: BAR seq. 953 36k 244 6 PO - 8 S+G D 41 157
2 Video  Tracking result: WULT seq. 396 500« 400 6 RO RBF 110 - - - 6.6
3 Video  Tracking result: BLL seq. 694 25 250 7 RO RBF 20 - - - 13.6
4 Video  Tracking result: RPER seq. 1365 25k 201 6 GDEF RBF 98 - - - 14.5
5 Video  Tracking result: Bok seq. 183 25k 201 7 PO - 8 S+G RBF 31 54
6 Video Tracking result: BAR-1l seq. 1783 424 318 4 PO - 8 S+G D 64 143
7 Video Tracking result: BLLOON seq. 1083  26% 262 5 IDEF D+l 27 G - 1 5.6
8 Video  Tracking resultcolor CAT seq. 898 25 250 9 PO - 8 35+3G D 78 15.7
9 Video Tracking resultcolor CaAT-11 seq. 175 150x 225 7 RO D+l 23 3S+3G D 165 16.8

y . , - 1 ]
Ref. template Registration #0342 Registration #0683 Regimtr&fl 024

Fig. 12 PaPER sequence: Visual tracking of a deformable surface with an weadid camera. (Top) Warped grid is superimposed on the tracked
area. (Bottom) The area of interest is registered with respehettemplate. The registered images show the stability of thkerac

ranged from smooth to rough, and including metal and disequence are shown in Fig. 13 (see Online Resource 5). The
electric objects. The unknown light sources are varied irthird row shows the estimated illumination changes relati-
power, type, number and moved in space. vely to the reference image. They are shown as an evolving
surface so as to emphasize how these changes are viewed in
this article. The errorimages between the reference templa
and photogeometrically transformed images are given in the

5 an thi . K aol bi bottom row. They are nearly all black for all sequences. The
ook sequenceln this experiment we track a planar object ., +oc are apart from each other by 50 pixels.

under variable reflections. The specular component is pri-
marily produced by a line source, albeit no assumptions of
its characteristics are made. Some excerpts from the wacke

6.2.1 Rigid Surfaces
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: R S\
Image #115

~ \

Ref. template Registration #050

— — ‘
/ . // T
/
Y

0 U D O B2 PO B

Initial surface Surface #050 Surface #115 Surface #140

Initial error image Error image #050 Error image #115 Error imégé0

Fig. 13 Book sequence: Direct image registration of a reference templatetessive frames of a video sequence. The sequence contains severe
changes in the specular, diffuse and ambient reflections. (ThivliThe estimated surface represents the illumination chanigesaspect to the
reference template. (Bottom) Error images after the registrand photometric transformation (using the estimated surfa¢k @urrent image

with respect to the reference template.

BEAR-II sequenceSome results obtained for another gray-6.2.2 Deformable Surfaces

scale sequence are shown in Fig. 14 (see Online Resource 6

for the entire sequence). For the requested accuracy, the aBALLOON sequenceln this experiment we track a defor-
proach performed along these sequences a median of 4 itgring balloon with an uncalibrated camera. We selected in
rations per image, and returned a median photometric errahe first image a template of size 262 262 pixels, and

of 14.3 levels of grayscale (over 255). The surface reladed tplaced the centers on a regularly spaceck(4) grid. Here

the illumination changes are approximated by discrebrati we do not use RBFs for surface approximations. We use
and has not been further interpolated. bicubic interpolation to approximate the surface given the
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Image #1398

Ref. template Registration #336 Registration #1140 Regisira#tl 398

Fig. 14 BEAR-II sequence: Sequence with large surface obliquity and itemt@ous changes in lighting. During the tracking, a largé @fethe
region has been occluded by the highlight. (Bottom) Regidtenages demonstrate the stability of the proposed visual tra¢cketmique.

Image #1000 Image #1082
Registration #0800 Registration #1000 Regimtréfl 082

Fig. 15 BALLOON sequence: Visual tracking of a deformable surface in a sequengegés acquired with an uncalibrated camera. (Top) The
regular grid used to track the area of interest in the sequeBo#o(n) the area of interest registered with respect to the teepla
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centers. In the hierarchical approach to describe thesesfa Severe lighting changes are handled via a new model of il-
it was sufficient to estimate up to an invariant deformationumination changes. We propose to view these changes as
of the object (i.e.d* = 0) and only the compensation of an evolving surface. In this way, even local variations can b
ambient illumination changes has been needed. The bottoadequately modeled. Of course, the cost of processing is de-
row of Fig. 15 (see Online Resource 7 for the entire trackeghbendent on the number of parameters to be estimated, which
sequence) shows that all images of the sequence have baanreases with increasing complexity of the surfaces.
correctly aligned with the reference template, despite the All parameters of the proposed photogeometric transfor-
lighting variations and a large change in the balloon’s sizenation model are simultaneously estimated by an efficient
and its deformations. The average photometric error far thisecond-order optimization procedure. It is computatignal
sequence is around 5.6 levels of grayscale (over 255). efficient because the Hessians are never calculated expli-
citly. In addition, the proposed procedure allows the dbjec
to undergo relatively large interframe displacements aith
6.3 Photogeometric Direct Visual Tracking in Color Imagesgetting trapped in irrelevant minima, and to partly go out of
the image. Nevertheless, as with any direct image registra-
Itis shown here some tracking results for color images usingon method, the object must still be sufficiently textured.
different objects, including that of a nonplanar rigid altje  Furthermore, the surfaces must be at least piecewise smooth
No prior knowledge of the object’s attributes (e.g., shapeso that the cost function can be expanded in Taylor series. Fi

albedos) is exploited. nally, a promising research direction consists in overcgmi
the main limitation of real-time direct registration medso
6.3.1 Rigid Surfaces i.e., its limited domain of convergence. Some of possible

solutions to overcome this limitation are briefly discusied

CAT sequenceSome excerpts from this experiment arethe article.

given in Fig. 16 (see Online Resource 9 for the entire tracked Comparisons results with existing direct techniques
sequence). In spite of severe specularities, shadows and irffhow significant improvements in the tracking performance.
tantaneous changes in diffuse and ambient reflections, tHextensive experiments using rigid and deformable objects,
bottom row shows that the images are successfully regista¥ith and without severe lighting variations, and using both
red with respect to the template. Last image also shows th&fayscale and color images, confirm the generality and ro-
the tracked object partly goes out of the image without probbustness of our method.

lems. For the requested accuracy, the approach performed

along these sequences a median of 9 iterations per image
and returned a median photometric error of 15.73 levels 04)‘
grayscale (over 255).
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Ref. Image Image #224

Ref. template Registration #102 Registration #224 Registra#tt24

Fig. 16 CAT sequence: Direct image registration of a reference image to ssiceecolor frames of a video sequence. The sequence contains
severe changes in the specular, diffuse and ambient reflect@ottofn) The registered images demonstrate the stability of thkeral ast image
shows that the template can partly go out of the image withoutlenos.
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Ref. template Registration #147 Registration #154 Registratl®2

Fig. 17 CAT-1l sequence: Direct visual tracking of a reference color imade unknown light source and camera perform unknown motions in
space. No prior knowledge of the object is exploited. (Bott®egyistered images demonstrate the stability of the proposed tiaokér.
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