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Summary. This is the first in a series of two tutorial articles devoted to triangulation-
decomposition algorithms. The value of these notes resides in the uniform presen-
tation of triangulation-decomposition of polynomial and differential radical ideals
with detailed proofs of all the presented results.We emphasize the study of the
mathematical objects manipulated by the algorithms and show their properties in-
dependently of those. We also detail a selection of algorithms, one for each task.
We address here polynomial systems and some of the material we develop here will
be used in the second part, devoted to differential systems.
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1 Introduction

The natural representation of a tower of separable field extensions is a tri-
angular set having some irreducibility properties. Those special triangular
sets, called characteristic sets, therefore provide a natural representation for
prime ideals in polynomial rings. That idea was in fact first fully developed
by J.F.Ritt [42, 43] in the context of differential algebra. Ritt gave an algo-
rithm to represent the radical ideal generated by a finite set of polynomials as
1 Available at http://www.inria.fr/cafe/Evelyne.Hubert/Publi/sncsp.pdf.
2 Thanks go to Christian Aistleitner (RISC, Austria) and Moritz Minzlaff (IAKS,

Germany) for pointing out typos.
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an intersection of prime ideals defined by their characteristic sets. For want
of effectiveness and realistic implementations the irreducibility requirements
were to disappear both in the representation of field extensions and of radical
ideals.

What we call a triangulation-decomposition algorithm is an algorithm
that computes a representation of the radical ideal generated by a finite set
of polynomials as an intersection of ideals defined by triangular sets. Many
triangulation-decomposition algorithms in fact provide a zero decomposition:
the variety defined by a set of polynomials is decomposed into quasi-varieties.
To be general, the quasi-varieties are described by a triangular system of equa-
tions and a set of inequations. Application or algorithm requirements lead to
output systems and decomposition with more or less specific properties, [51]
presents quite a few options. Bridges between different approaches have been
proposed in [3, 4, 18, 21].

Zero decomposition algorithms were investigated and developed for ap-
plication to geometry theorem proving starting with the work of Wu in the
late seventies [53]. Books devoted to the field include [54, 12, 14, 55]. As
for field representation, the D5 system [16, 22] was designed to work with
algebraic numbers without factorization. Its extension to the dynamical clo-
sure system D7 [27, 17, 19] is intended to work with towers of extensions. A
side product of the D7 system is a zero decomposition algorithm. Last but
not least, triangular forms of systems of polynomials are very amenable to
resolution. Triangulation-decomposition of polynomial systems are therefore
naturally applicable to solving polynomial systems with finite number of so-
lutions [35, 38] and parametric systems [25, 45]. In the case of polynomial
system with a variety of positive dimension the decomposition computed is
strongly unmixed dimensional [34, 37, 46, 2]. It therefore gives an excellent de-
scription of the variety and can be relatively easily refined into an irreducible
decomposition. Solving polynomial system with triangulation-decomposition
is particularly adequate when the solution set has relevant components of dif-
ferent dimensions, as is the case of the classification problem solved in [24].
Triangulation-decomposition has also proved adequate for solving positive
dimensional systems over the reals [5]. Also, elementary-algebraic systems
[40, 7] can be attacked with this technique.

The first focus of this paper is a thorough study of ideals defined by trian-
gular sets. Many of the presented results are either assumed or disseminated
in the literature. We will give full proofs to all those results. The second focus
will be on Kalkbrener’s algorithm. That algorithm was first presented in [31]
in a very synthetic and highly recursive way. Our presentation owes to the
presentation of [2].

The basic idea of working with triangular sets is to consider multivariate
polynomials as univariate polynomial in a distinguished variable, the leader.
We want to treat systems of polynomials recursively as univariate polynomi-
als. The reduction of one polynomial by another will be pseudo-division.



Triangulation-Decomposition Algorithms - Polynomial Systems 3

Triangular sets are sets of polynomials with distinct leaders. We look at
the ideals they define outside of some singularity sets, given by the initials
of the polynomials, i.e. the leading coefficients of the polynomials when con-
sidered as univariate polynomial in the leader. These ideals have excellent
properties: they are unmixed dimensional and the non leading variables give
a transcendence basis for all associated primes (see Section 4). Thanks to
that structure, we can associate a product of fields to a triangular set in a
natural way.

Some specific triangular sets, called regular chains (Section 5), are amenable
to computations. This is because the cutback of the ideal defined is given by
the cutback of the regular chain. Computations can thus be lead recursively
in a univariate way. Regular chains give the ideal they define a membership
test, as well as a zero-divisor test (Section 8).

Of course, not every ideal can be written as the ideal defined by a regular
chain. Our final goal is to give an algorithm that writes the radical ideal
generated by some finite set of polynomials as an intersection of (radicals of)
characterizable ideals. Characterizable ideals can be defined intrinsically and
are given by regular chains.

For the zero-divisor test or the decomposition into characterizable ideals,
there is an interesting notion coming in, the pseudo-gcd. This is a generaliza-
tion of the gcd of univariate polynomial over a field to the case of univariate
polynomials over a product of fields. In our case, we consider univariate poly-
nomials with coefficients taken modulo the ideal defined by a triangular set.

The paper is organized as follow. In Section 2 we shall review some def-
initions and basic properties on polynomial rings. We in particular give a
series of results about zero-divisors. We conclude the section with a simple
example of a splitting procedure of a product of fields. This serves as an
introduction to one of the two main components of Kalkbrener’s algorithm.
In Section 3 we review pseudo-division and its property and the definition
of pseudo-gcd, as in [2] . After the pseudo-gcd definition, we give an algo-
rithm to compute a pseudo-gcd assuming we are given a splitting procedure.
That provides an introduction to the second main component of Kalkbrener’s
algorithm. In Section 4 triangular sets together with the fundamental prop-
erties of the ideals they define are detailed. In Section 5, we define regular
chain, review the notion of characteristic set of Ritt and give the equiva-
lence of [3] between the two approaches. For the characterizable ideals they
define we exhibit canonical representatives. Section 6 defines characteristic
decompositions and makes the link between irredundant decompositions and
decomposition of a product fields. Before the algorithmic part of the article,
we assemble in Section 7 a number of results about the radical of an ideal
defined by a triangular set. These results are of use to construct the radical
of a characterizable ideal and in differential algebra [30]. Section 8 gives the
two components of Kalkbrener’s algorithm, one to split and one to compute
the pseudo-gcd. These components are then applied in Section 9 to provide a
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characteristic decomposition algorithm. A further application will be given in
[30] for the algebraic part of a decomposition algorithm in differential algebra.

2 Preliminaries and notations in commutative algebra

We recall here some basic definitions and results in commutative algebra and
take the opportunity to set up some notations. The notions we shall expand
on are saturation ideal, zero divisors and product of fields. All of these are
central in the techniques of triangular sets and in Kalkbrener’s algorithm.
Other notions can be found for instance in [23].

2.1 Ideals, saturation and equidimensionality

In this section and the following, R is a Noetherian ring. Let H be a subset
of R. We denote by H∞ the minimal subset of R that contains 1 and H and
is stable by multiplication and division i.e. a, b ∈ H∞ ⇔ ab ∈ H∞. When
H consists of a unique element h we will write h∞ instead of {h}∞.

Let I be an ideal of R. We define the saturation of I by a subset H of
R as I : H∞ = {q ∈ R | ∃h ∈ H∞ s.t. h q ∈ I}. I ⊂ I : H∞ and I : H∞

is an ideal. Consider H−1R the localization of R at H∞. Let H−1 I be the
extension of I in H−1R. When 0 /∈ H∞, I :H∞ = H−1 I ∩ R.

If P is a primary ideal of R, P :H∞ is either equal to P or R according
to whether H ∩

√
P is empty or not. This has the following consequence.

Proposition 2.1. Let J be an ideal of R, and H a subset of R. J : H∞ is
the intersection of those primary components of J the radical of which have
an empty intersection with H.

We shall see that the ideals defined by triangular sets that are central
in our approach are unmixed dimensional. The following definition is taken
from [47].

Definition 2.2. Let R be a Noetherian ring. An ideal I in R is equidimen-
sional if all its minimal primes have the same codimension. An ideal I in R is
unmixed dimensional, if all its associated prime have the same codimension.

An ideal that is unmixed dimensional is equidimensional and has no em-
bedded primes. Therefore, the set of primary components is uniquely deter-
mined. Every zero-dimensional ideal is unmixed dimensional.

We note (F ) the ideal generated by a non empty subset F of R. For an
ideal I of R, we note

√
I the radical of I that is

√
I = {r ∈ R | ∃α ∈

N s.t. rα ∈ I}, which is a radical ideal.
√

(F ) will be noted 〈F 〉.
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2.2 Zero divisors

In Kalkbrener’s algorithm, deciding if an element is a zero divisor modulo the
ideal defined by a triangular set is a central figure. We set up some notations
that will enable us to describe the algorithms in a more compact way. We
review also a number of results that will be useful, in particular Gauss lemma.

We shall see that to a triangular set is naturally associated a product
of fields. Computing modulo the ideal defined by a triangular set amounts
to compute over this product of fields. We review some of the features of
product of fields and their natural construction with the Chinese remainder
theorem.

Given a ring R, Zd(R) will denote the set consisting of 0 and the zero
divisors of R. The total quotient ring of R, that is the localization of R at
R \ Zd(R) will be written Q(R).

Let I be an ideal in R. An element p of R is said to be

– invertible modulo I if its canonical image in R/I is a unit.
– a zero divisor modulo I if its canonical image in R/I is a zero divisor. By

extension we write p ∈ Zd(R/I) or p ∈ Zd(I) for short.

Note that an element of R is invertible modulo an ideal I iff it is invertible
modulo the radical,

√
I. An element p of R is a zero divisor modulo an ideal I

iff p belongs to an associated prime of I. Thus, when I a unmixed dimensional
Zd(I) = Zd(

√
I).

The following theorem is Gauss lemma [23, Exercise 3.4]. It gives a prac-
tical test for a univariate polynomial to be a zero divisor. A weak version of
this lemma is traditionally used in the literature on triangular sets: the test
is made on the leading coefficient only. We will use it in its generality.

Theorem 2.3. Consider a polynomial f ∈ R[x] and note Cf the ideal in R
generated by the coefficients of f (the content of f). Then f ∈ Zd(R[x]) ⇔
Cf ⊂ Zd(R).

2.3 Product of fields

The Chinese Remainder Theorem [23, Exercise 2.6] is a major tool in con-
structing product of rings - and thus of fields.

Theorem 2.4. Let Q1, . . . , Qr be ideals in R such that Qi + Qj = R for all
i 6= j. Then

R/

(
r⋂

i=1

Qi

)
∼=

r∏
i=1

R/Qi.

When the Qi are maximal ideals in R, R/ (
⋂r

i=1 Qi) is isomorphic to
a product of fields. In particular, the quotient of R by a zero dimensional
radical ideal is isomorphic to a product of fields.
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Lemma 2.5. Let R be a ring isomorphic to a product of fields. The total
quotient ring of R, Q(R), is equal to R.

This is easily seen as a nonzero element of R that is not a zero divisor is
a unit.

2.4 A splitting procedure

We shall pause here to introduce on a simple case the concept of splitting
that comes into Kalkbrener’s algorithm. Let K be a field and c a square-
free univariate polynomial over K, say in K[λ]. Assume c =

∏r
i=1 ci is a

decomposition into irreducible factors. By the Chinese remainder theorem
R = K[λ]/(c) is isomorphic to the product of the fields Ki = K[λ]/(ci).

To work over R, i.e. modulo the algebraic condition on λ, one can factor c
and work over each Ki. Beside factorization, this implies repeating the same
computation for several components. Instead, at each step of a computation,
we can group the components where the same computation are done. We
only need to distinguish the components on which an element is a unit from
the components on which it is zero.

Given an element p in K[λ] it is possible to split R into two products of
fields, R0 and R1, in such a way that the natural projection of p on R0 is
zero while the projection on R1 is a unit. If g0 = gcd(p, c) and g1 = c

g0
then

we can just take R0 = K[λ]/(g0) and R1 = K[λ]/(g1). If g0, g1 /∈ K then
R ∼= R0 ×R1.

When c is not square-free we consider R = K[λ]/ 〈c〉. We can take R0 =
K[λ]/ 〈g0〉, where g0 = gcd(p, c). But now p and g1 = c

g0
may have common

factors, in which case p is not a unit in K[λ]/ 〈g1〉. Consider the sequence
starting with g1 s.t. gk+1 = gk

gcd(p,gk) . For some k, gk+1 ∈ K. We can then
take R1 = K[λ]/ 〈gk〉 so that R = R0 ×R1.

3 Univariate polynomials over a ring

The basic reduction step in the triangular set techniques is pseudo division.
We review briefly the properties of such an operation. We then introduce the
notion of pseudo-gcd that was defined in [2] to put a mathematical frame
on Kalkbrener’s algorithm. The pseudo-gcd (or pgcd) of a non empty set of
univariate polynomials over a ring is the generalization of gcd in a principal
ideal ring, i.e. the generator of the ideal. It is well defined over a product
of fields. We shall show how to compute a pseudo-gcd over a product of
fields when we have a splitting algorithm. This is a fairly simple extension of
Euclid’s algorithm. Kalkbrener’s algorithm evolves on this basic idea.
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3.1 Pseudo division

Let R[x] be a ring of univariate polynomials with coefficients in the ring R.
For a polynomial p ∈ R[x] we will note

– deg(p, x) the degree of p in x
– lcoeff(p, x) the coefficient of xdeg(p,x) in p (the leading coefficient).
– tail(p, x) = p− lcoeff(p, x) xdeg(p,x).

Let p, q ∈ R[x], q 6= 0, d = deg(p, x), e = deg(q, x) and c = lcoeff(q, x).
The pseudo-remainder of p w.r.t. q is defined as the unique polynomial p̄
such that deg(p̄, x) < deg(q, x) and cd−e+1 p ≡ p̄ mod (q) when d ≥ e, p
otherwise [26, 48]. A sparse pseudo-remainder is usually defined by taking a
power of c as small as possible. One can be slightly more general and define a
sparse pseudo-remainder of p with respect to q to be a polynomial r of degree
in x strictly lower than that of p for which there exists h ∈ c∞ s.t. h p ≡ r
mod (q). An equality h p = aq+r where p, q, a, r ∈ R[x], deg(r, x) < deg(q, x)
and h ∈ lcoeff(q, x)∞ is called a pseudo-division relationship (of p by q). We
will write r = srem(p, q, x) and a = squo(p, q, x), though these two quantities
depend on the algorithm used to compute them. We nonetheless have a kind
of uniqueness property.

Proposition 3.1. Let f, g ∈ R[x] such that lcoeff(g, x) /∈ Zd(R). Assume
h f = q g + r and h′ f = q′ g + r′ are two pseudo division relationships. Let
h̄, h̄′ ∈ lcoeff(g, x)∞ be chosen so that h̄ h = h̄′ h′. Then h̄ q = h̄′ q′ and h̄ r =
h̄′ r′

Proof. Indeed h̄ h f = h̄ (q g + r) and h̄′ h′ f = h̄′ (q′ g + r′). Therefore (h̄ q −
h̄′ q) g = h̄′ r′−h̄ r. The right hand side is of degree strictly less than deg(g, x).
Since lcoeff(g, x) is not a zero divisor, it follows that (h̄ q − h̄′ q) is zero and
so is (h̄′ r′ − h̄ r).

It follows that the pseudo remainder is zero iff all the sparse pseudo re-
mainders are zero. The following property is shown in a similar way.

Proposition 3.2. Let f, g ∈ R[x] be such that lcoeff(g, x) /∈ Zd(R). The
polynomial g divides f in Q(R)[x] iff srem(f, g, x) = 0.

3.2 Pseudo-gcd over a product of fields

The notion of pseudo-gcd is present in [34, 31, 38] We reproduce here the
definition given in [2].

Definition 3.3. Let R be a ring isomorphic to a product of fields and F
a non-empty subset of R[x]. The pseudo-gcd of F over R is a set of pairs
{(R1, g1), . . . , (Rr, gr)} such that

– (F ) = (gi) in Ri[x], 1 ≤ i ≤ r.
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– R1, . . . ,Rr are isomorphic to products of fields and R ∼= R1 × . . .×Rr.

The existence of a pseudo-gcd is secured by the existence of a gcd over
each field that is a component of R.

We shall expand here on the generalization of Euclid’s algorithm over
a product of fields as it is a good introduction to Kalkbrener’s algorithm.
Assume that we have for a product of fields R the procedures

– is-zero that decides if an element of R is zero
– is-zerodivisor that decides if an element of R is a zero divisor
– split that splits R according to a zerodivisor p into R0 and R1 s.t. R ∼=
R0 ×R1 and p = 0 in R0 while p is a non zero divisor in R1.

In Section 2.4, we saw for R = K[λ]/ 〈c〉, c a polynomial in K[λ], how to write
these procedures. One can rework Euclid’s algorithm to compute the pseudo-
gcd of two polynomials in R[x]. It will work with the following property:

Proposition 3.4. Let f, g ∈ R[x] be such that lcoeff(g, x) /∈ Zd(R). The ide-
als (f, g) and (srem(f, g, x), g) are equal when considered as ideals in Q(R)[x].

Recall that Q(R) = R when R is a product of fields and so (f, g) =
(srem(f, g, x), g) in R[x]. In the general pgcd algorithm of Section 8.1 we will
nonetheless have a slightly stronger result that needs this statement.

The following algorithm computes the pgcd of two univariate polynomials
over R. It is described in maple style. As we shall often do in algorithm de-
scription, S is a set of tuples that await more computations while G contains
data for which the computation is over. The command pop returns one ele-
ment of a set and removes it from that set. Tuples are noted with parenthesis
to fit mathematical notation rather than the maple list construction with
brackets.

Algorithm 3.5. pgcd
Input:

– R a ring that is isomorphic to a product of fields.
– p and q polynomials in R[x].

Output: A pgcd {(R1, g1), . . . , (Rr, gr)} of p and q over R.
S := {(R, p, q)};
G := ∅;
while S 6= ∅ do

(Q, a, b) := pop (S);
if b = 0 then
G := G ∪ {(Q, a)};

else
c := lcoeff(b, x);
if is-zero(Q, c) then
S := S ∪ {(Q, a, tail(b, x))};
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elif is-zerodivisor(Q, c) then
Q0,Q1 := split (Q, c) ;
S := S ∪ {(Q0, a, tail(b, x)), (Q1, b, srem(a, b, x))};

else
S := S ∪ {(Q, b, srem(a, b, x))};

fi;
return(G);

Together with what was presented in Section 2.4 we can now compute the
pgcd of two polynomials in (K[λ]/ 〈c〉)[x]. The procedure can be made more
efficient by using subresultant sequences [1, 20].

4 Multivariate polynomials with a recursive univariate
viewpoint

We shall see multivariate polynomials as univariate polynomials in a distin-
guished variable. The coefficients are multivariate polynomials. Triangular
sets are the basic objects of our approach. They define ideals with specific
structure to which we associate products of fields.

4.1 Vocabulary for multivariate polynomials

Consider the polynomial ring K[X] where X is a set of ordered variables. The
order on the indeterminates is called a ranking in the line of the terminology
introduced by Ritt. A side effect is to avoid possible confusion with the term
ordering used in Gröbner bases theory. For x ∈ X we write X>x, and respec-
tively X<x, the set of variables greater, and respectively lower, than x in X.
We denote also X≤x = X<x ∪ {x}. When we write K[X][y] for K[X ∪ {y}] it
will be understood that ∀x ∈ X, x < y.

Let p be a polynomial in K[X] \ K. The leader and the initial of p are
respectively the highest ranking variable appearing in p and the coefficient
of its highest power in p. They will be noted lead(p) and init(p). If d is the
degree of p in its leader, the rank of p is the term rank(p) = lead(p)d.

The ranking on X induces a pre-order3 on the polynomials of K[X]. An
element q ∈ K[X] \ K is said to have higher rank (or to rank higher) than
p when its leader, lead(q), has higher rank than lead(p) or when lead(p) =
lead(q) and the degree in this common leader is bigger in q than in p. In that
case we write rank(q) > rank(p).

A polynomial q is reduced w.r.t. p if the degree of q in lead(p) is strictly
less than the degree of p in lead(p).

3 We take the convention that a pre-order is a relation that is reflexive, transitive
and connex [6]. Therefore the difference with an order is that a ≤ b and b ≤ a
does not imply a = b.
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4.2 Triangular sets

From now on we consider a polynomial ring K[X] endowed with a ranking.

Definition 4.1. A subset of K[X] is a triangular set if it has no element in
K and the leaders of its elements are pairwise different.

A triangular set cannot have more elements than X but can be the
empty set. Let a1, a2, . . . , ar be the elements of a triangular set A such that
lead(a1) < lead(a2) < . . . < lead(ar). We shall write A = a1 M a2 M . . . M ar.
We will also use the small triangle M to construct triangular sets by mixing
polynomials a and triangular sets A,B in the following ways:

– aM A denotes the triangular set A∪{a} if a is such that lead(a) ranks lower
than the leader of any element of A

– A M a denotes the triangular set A ∪ {a} if a is such that lead(a) ranks
higher than the leader of any element of A

– A M B denotes the triangular set A ∪ B if the leader of any element of A
ranks less than the leader of any element of B.

For a triangular set A in K[X] we note L(A) and IA the sets of the leaders
and of the initials of the elements of A. We will also note T(A) = X \ L(A)
the set of the non leading variables of A. For x ∈ X we define Ax to be the
element of A with leader x if there is any, 0 otherwise. A<x = A ∩ K[X<x],
A≤x = A ∩ K[X≤x] and A>x = A \ (A≤x). A<x can be considered as a
triangular set of K[X] or as a triangular set of K[X<x].

A polynomial p is said to be reduced with respect to a triangular set
A if for all x in L(A) we have deg(p, x) < deg(Ax, x). The pseudo division
algorithm can be extended to compute the reduction of a polynomial in K[X]
with respect to A.

Lemma 4.2. Let A be a non empty triangular set and p a polynomial in
K[X]. There exists h ∈ I∞A and r ∈ K[X] reduced w.r.t. A such that h p ≡ r
mod (A). We will write r = red(p, A).

The pair (h, r) is not unique but in our use, any such pair will do. If
A = a1 M . . . M am we can take

red(p, A) = srem(. . . srem(srem(p, am, um), am−1, um−1), . . . , a1, u1) ,

where ui = lead(ai).
Note that if red(p, A) = 0 then p ∈ (A) : I∞A . The best we can expect to

represent with a non empty triangular set A of K[X] is the ideal (A) :I∞A . For
readability in some equation we note I(A) = (A) :I∞A and R(A) =

√
I(A) =

〈A〉 :I∞A . For the empty set we take as a convention that I(∅) = R(∅) = (0).
A triangular set is said to be consistent if 1 /∈ (A) :I∞A .

At some points we shall extend the coefficient field to the rational function
field in the non leading variables T(A) of A. We will write KA = K(T(A)) and
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consider the ring of polynomials KA[L(A)]. If L(A) is ordered according to the
ranking on K[X] then A is a triangular set in KA[L(A)]. For a consistent trian-
gular set A we furthermore define R(A) the ring K(T(A))[L(A)] / R(A). We
shall see that this ring is isomorphic to a product of fields (Proposition 4.7).

4.3 Ideals defined by triangular sets

In this section we examine the properties of the ideal I(A) = (A) :I∞A defined
by a triangular set A. They are unmixed dimensional and all the associated
prime share the same transcendence basis, as stated in Theorem 4.4. There are
several references for that theorem or its related results [25, 31, 46, 2, 28]. We
also study the cutback properties of ideals defined by triangular sets. Indeed
the basic operations on triangular sets is to extend or cut them shorter.

Lemma 4.3. Let A be a triangular set in K[X]. Let a ∈ K[X][x] be of strictly
positive degree in x and h = init(a). Then

(I(A) :h∞ + (a)) :h∞ = I(A M a) and I(A M a) ∩ K[X] = I(A) :h∞

Proof. We prove the first equality. Since h ∈ IA M a, it follows that I(A) :
h∞ ⊂ I(A M a) and thus ((a) + I(A) :h∞) :h∞ ⊂ I(A M a).

Let p ∈ I(A M a). There exist h̄ ∈ h∞, k ∈ I∞A and q̄ ∈ K[X][x] such
that h̄ k p = q̄ a mod (A). Since h̄ k /∈ Zd(I(A) : h∞), p is divisible by a in
Q(K[X]/I(A) :h∞)[x]. By Proposition 3.2 there exists h′ ∈ h∞ and q′ ∈ K[X]
such that h′ p = q′ a mod I(A) :h∞. Thus p ∈ (I(A) :h∞ + (a)) :h∞.

For the second equality assume p ∈ I(A M a) = (I(A) : h∞ + (a)) : h∞.
There exists h′ ∈ h∞, q ∈ K[X][x] such that h′ p − q a ∈ I(A) : h∞, and
therefore all the coefficients of the powers of x in h′ p−q a belong to I(A) :h∞.
Since h = init(a) is not a zero divisor modulo I(A) : h∞, if p ∈ K[X] then
q = 0. Thus I(A M a)∩K[X] ⊂ I(A) :h∞ and the other inclusion is immediate
from what precedes.

Intuitively this shows that if I(A) : h∞ 6= (1), a is not a zero divisor
modulo I(A) :h∞ and therefore the dimension of I(A M a) is one less then the
dimension of I(A). Nonetheless an iterative proof of the dimension properties
of the ideal defined by a triangular set is not easy. Conversely, the following
fundamental property of the ideal I(A) allows us to understand better the
iterative properties of triangular sets.

Theorem 4.4. Let A be a consistent triangular set of K[X]. I(A) is unmixed
dimensional of codimension the cardinal of A. Furthermore T(A) forms a
transcendence basis for each associated prime of I(A).

Proof. Let us note A = a1 M . . . M am and let ui denote the leader of ai. Each
ai introduces the new variable, ui. Consider the localization LA = I−1

A K[X].
We note I−1

A (A) the ideal generated by A in LA. By the principal ideal
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theorem [23, Theorem 10.2], I−1
A (A) has at most codimension m. Considered

as a univariate polynomial in ui, ai has one of its coefficient, its initial,
invertible in LA. By Gauss lemma (Lemma 2.3) ai can not divide zero modulo
I−1
A (a1, . . . , ai−1) . It follows that a1, . . . , an is a LA-regular sequence. I−1

A (A)
has depth greater or equal to m. As LA is Cohen-Macaulay I−1

A (A) has
codimension m and therefore is unmixed dimensional [23, Proposition 18.14
and 18.9]

As I(A) = (I−1
A (A)) ∩ K[X], an associated prime of I(A) is the intersec-

tion with K[X] of an associated prime of I−1
A (A). They all have codimension

n and there is no embedded prime [23, Exercise 9.4].
Let P be a minimal prime of I(A). It contains no initial of the elements

of A. Therefore all the elements of L(A) are algebraic over T(A) modulo P .
Considering dimensions, T(A) provides a transcendence basis for P .

It follows that Zd(I(A)) = Zd(R(A)) and we will simply write Zd(A).

Proposition 4.5. Let A be a consistent triangular set of K[X] and x ∈ X.
Assume P is a minimal prime of I(A). P ∩ K[X≤x] is a minimal prime of
I(A≤x).

Proof. Obviously I(A≤x) ⊂ I(A) in K[X]. Therefore I(A≤x) ⊂ I(A) ∩
K[X≤x] in K[X≤x]. Let P be a minimal prime of I(A) in K[X]. P ∩ K[X≤x]
is a prime ideal that contains I(A≤x). It must contain a minimal prime P ′ of
I(A≤x). Now P ∩K[X≤x] admits T(A) ∩X≤x = T(A≤x) as a transcendence
basis; It has codimension the cardinal of L(A)∩X≤x = L(A≤x). Theorem 4.4
applies to A≤x in K[X≤x]. Thus P and P ′ have the same dimension. They
must be equal.

This property admits generally no converse implication. Some minimal
prime of I(A≤x) are not obtained as the intersection with K[X≤x] of a mini-
mal prime of I(A). Lemma 5.8 gives a sufficient condition for this to happen.

Example 4.6. In Q[x, y] with x < y, consider the triangular set A = x2 −
1 M (x+1) y−1. We have I(A) = (x−1, 2 y−1) while I(A≤x) = (x−1)∩(x+1).

4.4 Product of fields associated to a triangular set

The association of a product of fields to a normalized triangular set was
introduced and used in [34, 37, 2]. This association allows us to define a
pseudo-gcd modulo a triangular set. Here, to introduce a product of fields we
shall use the easy correspondence between positive dimension and dimension
zero when dealing with ideals defined by triangular sets.

Let A be a triangular set of K[X]. A can be considered as a triangular set
in K(T(A))[L(A)]. The ideals will be subscripted by K or by KA = K(T(A))
to indicate where they are taken when confusion can arise

By Theorem 4.4 T(A) is a transcendence basis of each associated prime of
I(A) so that I(A)KA

is a zero dimensional ideal of KA[L(A)] and I(A)KA
∩
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K[X] = I(A)K. Similarly, R(A)KA
is a zero dimensional radical ideal of

KA[L(A)] and R(A)KA
∩ K[X] = R(A)K. The construction of the product

of fields associated to A is then an immediate consequence of the Chinese
remainder theorem.

Proposition 4.7. Let A be a consistent triangular set. The ring R(A) =
KA[L(A)] / R(A)KA

is isomorphic to a product of fields.

Proof. R(A)KA
is a zero dimensional radical ideal of KA[L(A)]. Let P1, . . . , Pr

be the associated primes of R(A)KA
. They are maximal ideals and therefore

theKA[L(A)] /Pi are fields. By application of Theorem 2.4,KA[L(A)] / R(A)KA
∼=

KA[L(A)] /P1 × . . .×KA[L(A)] /Pr.

We shall see that when the triangular set is a regular chain, the product
of fields defined is computable in the sense that an element can be tested
to be a zero divisor and we can write a splitting algorithm. As we have
seen in Section 3.2 we can thus write a pseudo-gcd algorithm over R(A) =
KA[L(A)] / R(A).

Note that K(T(A))[L(A)] / R(A) is equal to its total field of fraction
(Proposition 2.5). Therefore K(T(A))[L(A)] / R(A) = Q (K[X] / R(A)). For
ideals defined by triangular sets, we thus obtain the same product of field as
[2]. The benefit of the present presentation is that we control the elements
we invert, namely only the elements in K[T(A)].

5 Regular chains and characterizable ideals

Chains are special kinds of triangular set that allow the definition of char-
acteristic set of an ideal. That notion of characteristic set was introduced
by J.F. Ritt [41, 43]. He defined them as chains that are minimal w.r.t. to
a certain pre-order. The chains of Ritt are the autoreduced sets of Kolchin.
The chains we define are less restrictive but only slightly.

Characterizable ideals were introduced in [28]. They are ideals that are
well defined by their characteristic sets. Ritt and Kolchin made use of the
fact that dimension of prime ideals could be read on their characteristic set
and that membership to prime ideals could be tested by reduction w.r.t. any
of their characteristic set. Characterizable ideals is a wider class of ideals that
have those two properties.

Regular chains were introduced by Kalkbrener [31]. It is close to the def-
inition of regular set of [37] These definitions were shown to be equivalent
in [3]. The definition we give is equivalent, we only avoid the use of tower of
simple extensions.

We show that characterizable ideals are in fact ideals defined by regular
chains. Say it otherwise: regular chains are characteristic sets of characteri-
zable ideals. That result appeared in [3]. Thus, the approach through char-
acteristic sets allows to define characterizable ideals intrinsically while the
regular chain approach allow us to construct characterizable ideals.
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5.1 Characteristic sets

The ranking on X induces a pre-order4 on the set of triangular sets of K[X].
Let A = a1 M . . . M ar and B = b1 M . . . M bs be triangular sets. A is said to
have lower rank than B when there exists k, 0 ≤ k ≤ r, s, such that rank(ai) =
rank(bi) for all 1 ≤ i ≤ k and either k = r < s or rank(ak) < rank(bk). If this
is the case, we write rank(A) < rank(B).

If A = B M C then rank(A) < rank(B) reflecting the inclusion of ideals
(B) ⊂ (A). In particular, if B is the empty set and A is not then rank(A) <
rank(B).

Recall that a relation on a set M is well founded if every non empty
subset of M has a minimal element for this relation. This is equivalent to the
fact that there is no infinite decreasing sequence in M . See for instance [6,
Chapter 4].

Theorem 5.1. The pre-order on triangular sets is well founded.

Proof. Assume that the variables are indexed by increasing rank from 1 to n.
The rank of a triangular set A = a1 M . . . M ar can be modeled by an element
(i1, d1, . . . , in, dn) of N2n where, for j ≤ r ij and dj are respectively index of
the leader of aj and the degree of aj in its leader while for j > r ij = n + 1
and dj = 0. The pre-order on the triangular set is given by the lexicographic
order in N2n and that latter is well founded.

This property allows us to show termination of algorithms and to show
that every ideal admits a characteristic set. But for this purpose we need
to consider chains and not simply triangular sets. Indeed one can extend a
triangular set included in an ideal to a lower rank one still included in the
ideal.

Example 5.2. Consider the ideal I = (x, y) in Q[x, y, z]. xM y is a triangular
set in I as is xM y M xz which has lower rank. This latter is nonetheless useless
in discriminating I.

Definition 5.3. A subset of K[X] is an autoreduced set if any of its element
is reduced w.r.t. the others.

A triangular set A in K[X] is a chain if for all x ∈ L(A), the rank of
red(Ax, A<x) is equal to the rank of Ax.

An autoreduced set must be a triangular set. The important fact behind
the definition of a chain is that to any chain we can associate an autoreduced
set B with the same rank. We just take B = {red(Ax, A<x) | x ∈ L(A)}.
Unfortunately the definition of chain above depends on the choice of the
pseudo-division algorithm used, as illustrated in the example below. It is
4 A pre-order is a relation that is reflexive, transitive and connex. The difference

with an order is that a ≤ b and b ≤ a does not imply a = b.
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nonetheless practical to be able to define characteristic sets of ideals that are
not necessarily autoreduced. Autoreduced sets have been replaced by weak
ascending chains [13] or fine triangular sets [49], i.e. triangular sets such
that ∀x ∈ L(A) red(init(Ax), A<x) 6= 0, in Wu-Ritt type of triangulation-
decomposition algorithm. Nonetheless, it is not always possible to associate
an autoreduced set to a fine triangular set while keeping the same rank. It is
indeed possible that red(init(Ax), A<x) 6= 0 but that red(Ax, A<x) does not
have the same rank as Ax. We give an example.

Example 5.4. In Q[x, y, z] with ranking x < y < z consider

– A = x2 M xy − 1 M xz + y . Then red(init(Az), A<z) = x 6= 0 but
red(Az, A<z) = 1.

– A = x2 − xM xy− 1 M (x− 1)z + xy. If sparse pseudo-division is used then
A is a chain as red(Az, A<z) = (x− 1)z +1. If pseudo-division is used then
A is not a chain as red(Az, A<z) = x.

Definition 5.5. Let I be a proper ideal in K[X]. A chain A contained in I
is a characteristic set of I if one of the following equivalent conditions holds:

1. A is of minimal rank among the chains contained in I.
2. there is no non zero element of I reduced w.r.t. A.
3. ∀q ∈ I, red(q, A) = 0.

We shall make explicit the equivalences in the definition.

1. ⇒ 2. Assume that there is a nonzero element p in I reduced w.r.t. A. Let
x = lead(p) and consider B = A<x M p. B is a chain in I of lower rank
than A. This contradicts the hypothesis on A.

2. ⇒ 1. Assume there exists a chain B in I of rank lower than A. We can
assume that B is an autoreduced set. Let A = a1 M . . . M as and B =
b1 M . . . M br and k, 0 ≤ k ≤ r, s, such that rank(bi) = rank(ai) for all
i ≤ k and rank(bk+1) < rank(ak+1) or k = s. As bk is reduced w.r.t.
b1 M . . . M bk−1 it is reduced w.r.t. A. That cannot be the case.

2. ⇔ 3. is immediate to write down.

From Point 3. in this definition we deduce that if A is a characteristic set
of an ideal I of K[X] then (A) ⊂ I ⊂ (A) :I∞A . From Point 1. and Theorem 5.1
we deduce that every ideal in K[X] admits a characteristic set and all the
characteristic sets of a given ideal (for a given ranking) have the same rank.

The example below illustrate the fact that a chain A is not obviously a
characteristic set of (A) :I∞A .

Example 5.6. In Q[x, y] endowed with a ranking x < y consider, the chain
A = (x− 1) y − 1 M x2 − 1. Note that (x + 1) ∈ (A) :I∞A though it is reduced
w.r.t. A.
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5.2 Regular chains

The idea behind the definition of regular chains is that a generic zero of
R(A<x) can be extended to a generic zero of R(A≤x). This is expressed in
Proposition 5.8 by the fact that any associated prime of R(A<x) does not
disapear as in Example 4.6 but is always the cutback of an associated prime
of R(A).

Definition 5.7. Let A be a triangular set in K[X]. A is a regular chain if
for all x ∈ L(A), init(Ax) is not a zero divisor modulo I(A<x).

A regular chain is a chain according to Definition 5.3. Indeed, if rank(red(Ax, A<x))
were different from rank(Ax) that would imply that init(Ax) ∈ R(A<x). If A
is a regular chain, the ideal I(A) is not trivial and the properties of triangular
sets apply. Namely

– I(A) is unmixed dimensional; it has no embedded prime; its set of primary
components is unique.

– T(A) is a transcendence basis of each associated prime of I(A).
– Zd(I(A)) = Zd(R(A)) and we write Zd(A).

Furthermore, by Lemma 4.3, if A M a is a regular chain in K[X] then (I(A)+
(a)) :h∞ = I(A M a).

Proposition 5.8. Let C be a regular chain in K[X] and x ∈ X. C≤x is a
regular chain in K[X≤x] and

– I(C) ∩ K[X≤x] = I(C≤x)
– the associated primes of I(C≤x) are the intersections with K[X≤x] of the

associated primes of I(C).

Proof. The first point is an immediate consequence of Proposition 4.3 since
init(Cx) /∈ Zd(I(C≤x)). Together with Theorem 4.5, we can thus say that the
set of the minimal primes of I(C≤x) in K[X≤x] is equal to the set of the
intersections with K[X≤x] of the minimal primes of I(C).

That implies that an element p ∈ K[X≤x] belongs to Zd(C) if and only if
p ∈ Zd(C≤x). We can choose q ∈ K[X≤x] s.t. p q ∈ I(C). With this property
we can write without confusion, for any regular chain C, Zd(C≤x) to mean
Zd(C≤x) or Zd(C)∩K[X≤x] since these two sets are equal in K[X≤x] and can
be extended to K[X]. Note nonetheless that two different minimal primes of
I(C) can have the same intersection with K[X≤x].

Example 5.9. In Q[x, y] where x < y consider the triangular set A =
xM y2 − 1. We have R(A) = 〈x, y − 1〉 ∩ 〈x, y + 1〉. Both the minimal primes
contract to 〈x〉 on K[x].
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5.3 Characterizable ideals

Ritt and Kolchin made high use of the fact that if A is a characteristic set
of a prime ideal P then P = (A) :I∞A and therefore p ∈ P ⇔ red(p, A) = 0.
We introduce the very useful wider class of ideals having this property. We
give an intrinsic definition and an explicit construction of those ideals.

Definition 5.10. An ideal I of K[X] is characterizable if for a characteristic
set A of I we have I = (A) :I∞A . A is said to characterize I.

Note that if I is a characterizable ideal characterized by A then p ∈ I ⇔
red(p, A) = 0. Prime ideals are characterizable for any ranking but not all
primary ideals are characterizable as illustrated in Example 5.11. Characteri-
zable ideals that are not prime do exist but that depends then on the ranking
(see Example 5.12). From Theorem 4.4 we see that characterizable ideals have
specific dimension properties. A natural question would be to determine if
an ideal given by its generators is characterisable. An answer in terms of
Gröbner basis is given in [28] for zero dimensional ideals and extended in [15]
to ideals of positive dimension.

Example 5.11. In Q[x, y] consider the primary ideal I = (x2, x y, y2). The
generators given here form a reduced Gröbner basis for the lexicographical
term ordering x < y. Thus a chain of minimal rank in I according to a ranking
x < y is given by A = x2 M x y. A is thus a characteristic set of I but note
that (A) :I∞A = (1) 6= I. I is not characterizable.

Example 5.12. Consider I = (y3−y, 2 x−y2 +2) in Q[x, y]. The generators
of I given above form a reduced Gröbner basis G for the lexicographical
term order where y < x. G is also an autoreduced set and therefore it is a
characteristic set of I for the ranking y < x. We have I = (G) = (G) : I∞G
and thus I is characterizable for the ranking y < x.

The Gröbner basis of I for the lexicographical order x < y is G′ = {2 x2 +
3 x + 1, 2 x y + y, y2 − 2 x − 2}. Therefore A = 2x2 + 3 x + 1 M 2 x y + y is a
characteristic set of I for the ranking x < y. We can check that I 6= (A) :I∞A
so that I is not characterizable for the ranking x < y.

The following equivalence was proved in [3, Theorem 6.1] but a related
result appears in [33, Lemma 13, Section 0.14]. It shows that characterizable
ideals are in fact ideals defined by regular chains.

Theorem 5.13. Let A be a chain in K[X]. A is consistent and A is a char-
acteristic set of (A) :I∞A if and only if A is a regular chain.

Proof. We first show by induction that if A is a regular chain then I(A)
contains no nonzero element reduced w.r.t. A. This is true for the empty
chain which is the only chain of K. Assume this hypothesis is true for all the
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regular chains of K[X]. Let A be a regular chain of K[X][x]. A<x is a regular
chain of K[X] and I(A) ∩ K[X] = I(A<x) (Lemma 5.8).

Let p ∈ K[X][x] belong to I(A) and be reduced w.r.t A. We can assume
further that deg(p, x) > 0, since otherwise p ∈ I(A) ⇔ p ∈ I(A<x). If
x /∈ L(A), the coefficients of p being considered as a polynomial in x must
belong to I(A<x); they are also reduced w.r.t. A<x and therefore must be
zero by induction hypothesis; p is equal to zero. Assume now x ∈ L(A). Since
I(A) = (I(A<x), Ax) : init(Ax) there exists h ∈ init(Ax)∞ and q ∈ K[X]
such that h p ≡ q Ax mod I(A<x). If q were non zero, the degree in x of p
would be greater or equal to the one of Ax, contradicting thus the hypothesis
that p is reduced w.r.t. A. It must be that q = 0; therefore p belongs to
I(A<x) : h∞ = I(A<x) and therefore its coefficients when considered as
a polynomials in x belong to I(A<x). The coefficients being reduced w.r.t
A<x, they must be zero by induction hypothesis. We have thus proved that
if A is a regular chain, 1 /∈ (A) :I∞A and A is a characteristic set of I(A).

Assume now A is not a regular chain. We shall prove that it is not a
characteristic set of I(A). There exists x ∈ X such that init(Ax) ∈ Zd(A<x).
Select the smallest such x. A<x is a regular chain so that it is a characteristic
set of I(A<x) by the first part of the proof. There exists q ∈ K[X<x], q /∈
I(A<x) such that q init(Ax) ∈ I(A<x). Let r = red(q, A<x); r is nonzero
since q /∈ I(A<x) and A<x is a characteristic set of this ideal. We have
r init(Ax) ∈ I(A<x) and therefore r ∈ I(A), while r is reduced w.r.t. A.
Thus either 1 ∈ (A) :I∞A or A is not a characteristic set of I(A).

Assume A is a regular chain in K[X]. Playing with definitions and Theo-
rem 5.13, we have:

– I(A) is a characterizable ideal characterized by A
– p ∈ I(A) ⇔ red(p, A) = 0.

We shall show now that the definition of characterizable differential ideals
is independent of the characteristic set chosen in Definition 5.10.

Proposition 5.14. Let I be a characterizable ideal. Any characteristic set
of I characterizes I.

Proof. Note first that if A is a characteristic set of an ideal I in K[X] then
A<x is a characteristic set of I ∩ K[X<x] for any x ∈ X. We prove the
proposition by induction on X.

In K, (0) is the only characterizable ideal and the only chain is the empty
set. Assume the proposition is true in K[X]. Let I be a characterizable ideal
in K[X][x]: there exists a regular chain C such that I = I(C). Then C<x is a
regular chain and a characteristic set of I(C<x) in K[X]. Let A be another
characteristic set of I; A and C have the same rank. A<x is a characteristic
set of I ∩ K[X] = I(C<x). By induction hypothesis, A<x is a regular chain
characterizing I ∩ K[X]. Thus I ∩ K[X] = I(A<x) = I(C<x).
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We shall show that A is a regular chain. If x /∈ L(A) then I = I(C<x)
and the result comes from the induction hypothesis. Assume now x ∈ L(A).
Since Ax ∈ I = (I(C<x), Cx) : init(Cx)∞, there exists h ∈ init(Cx)∞ such
that h Ax ≡ q Cx mod I(C<x), where q ∈ K since the degrees in x of Ax

and Cx are equal. If q = 0 then Ax ∈ I(C<x) : h∞ = I(C<x) = I ∩ K[X]:
the coefficients of Ax all belong to I ∩ K[X] and therefore are reduced to
zero by A<x which is a characteristic set of I ∩ K[X]. This contradicts the
fact that A is a chain. Thus q ∈ K \ {0}. Equating the leading coefficients
on both side of the pseudo-division relationship, we have that h init(Ax) ≡
q init(Cx) mod I(C<x). Thus init(Ax) cannot divide zero modulo I(C<x).
Since I(A<x) = I(C<x), A is a regular chain.

Furthermore, A being a characteristic set of I we have A ⊂ I(C) ⊂ I(A)
and thus I(A) = I(C) : I∞A = I(C) since IA<x

and init(Ax) are not zero
divisor of I(C).

5.4 Canonical representatives of characterizable ideals

We shall exhibit canonical representatives of characterizable ideals. These
canonical representatives are taken in what we call Gröbner chains. They
appear as p-chain in [25] for their relevance in deciding for which parameters
there is a (regular) zero. In [10], where they are called strongly normalized
triangular sets, they serve the purpose of computing normal forms of (differ-
ential) polynomials modulo a (differential) characterizable ideal. The name
owes to Proposition 5.16 that makes the link between the characteristic set
approach to represent ideals and the Gröbner bases approach.

Definition 5.15. A triangular set A such that ∀x ∈ L(A), init(Ax) ∈
K[T(A)] is a Gröbner chain. A Gröbner chain is reduced if it is an autoreduced
set such that none of its element has factors in K[T(A)].

Theorem 4.4 shows that, for a triangular set A in K[X], K[T(A)] contains
no zero divisor modulo I(A) . Therefore a Gröbner chain is a regular chain.

Proposition 5.16. A (reduced) Gröbner chain A in K[X] is a (reduced)
Gröbner basis in K(T(A))[L(A)] according to the lexicographical term order
on L(A) induced by the ranking on X.

Proof. The leading terms have no common divisors. According to the first
Buchberger criterion the S-polynomials are reduced to zero.

Proposition 5.17. Every characterizable ideal in K[X] admits a (unique)
characteristic set that is a (reduced) Gröbner chain.

Proof. Let I be a characterizable ideal. There exists A, a regular chain, such
that I = I(A). For all y ∈ L(A) we define qy and ry as follow. If init(Ay) ∈
K[T(A)] then qy = 1 and ry = 0. Otherwise since I(A<y)KA<y

is a zero
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dimensional ideal in K(A<y)[L(A<y)] and init(Ay) /∈ Zd(A<y) there exists
qy ∈ K[X<y] and uy ∈ K[T(A<y)] such that qy init(Ay) = uy + ry where
ry ∈ I(A<y). Let C =

a
y∈L(A)(qy Ay−ry init(Ay) rank(Ay)). C is a Groebner

chain. It characterizes I as C ⊂ I and rank(C) = rank(A).
The uniqueness of the second point owes to the canonical properties of

reduced and minimal Gröbner bases.

Given a regular chain A it is possible to compute the canonical Gröbner
chain of the characterizable ideal defined. First, one can think of making the
proof constructive by a generalization of the extended Euclidean algorithm
[25, 37, 10]. The algorithm of [37, 10] might require nonetheless to split the
ideal5. Alternatively, we can use Buchberger algorithm. Indeed the desired
Gröbner chain is the Gröbner basis of (A) in K(T(A))[L(A)] w.r.t. the lexi-
cographical term order induced by the ranking on L(A). This works thanks
to the following proposition derived from [2].

Proposition 5.18. If A is a regular chain then the ideal (A) :I∞A is equal to
the ideal (A) in K(T(A))[L(A)].

Proof. Assume A = a1 M . . . M ar and note y1, . . . , yr the leaders of a1, . . . , ar.
The proof works by induction. init(a1) ∈ KA so that (a1) : init(a1)∞ = (a1).
Assume that I(a1 M . . . M ak) = (a1, . . . , ak).

Since init(ak) /∈ Zd(a1 M . . . M ak) and I(a1 M . . . M ak) is a zero di-
mensional ideal in KA[y1, . . . , yk] there exists q ∈ KA[y1, . . . , yk] such that
q init(ak+1) ≡ 1 mod I(a1 M . . . M ak). If p belongs to I(a1 M . . . M ak+1)
that is equal to (I(a1 M . . . M ak) + (ak+1)) : init(ak+1)∞ then there exists
e ∈ N s.t. init(ak+1)ep ∈ (I(a1 M . . . M ak)+(ak+1)). Premultiplying by qe we
obtain that p ∈ (I(a1 M . . . M ak) + (ak+1)) so that by induction hypothesis
p ∈ (a1, . . . , ak+1).

The latter proposition entails that if a polynomial p does not belong
to Zd(A), where A is a regular chain, then p is a unit modulo (A) in
K(T(A))[L(A)] and therefore (A, p) contains an element in K[T(A)]. Those
properties are in fact definitions for a polynomial to be invertible w.r.t. A in
[36, 11].

6 Decomposition into characterizable ideals

In Section 9 we shall see that we can compute for any finite set of polynomials
a decomposition of the radical of the ideal generated by these polynomials
into characterizable ideals. This provides a membership test to this radical
ideal. It also provides a strongly unmixed dimensional decomposition. We
5 Personal communication of F. Lemaire
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define here characteristic decomposition and make the link to decomposition
of product of fields.

Let J , J1, . . . , Jr be radical ideals such that the equality J = J1 ∩ . . .∩Jr

holds. This equality defines a decomposition of J and the Ji are called the
component of J (in this decomposition). The decomposition is irredundant if
the sets of prime components of the Ji gives a partition of the set of prime
components of J . In other words, if P is a minimal prime of J , there exists
a unique i such that Ji ⊂ P .

The following proposition is then trivial but useful.

Proposition 6.1. Let J be a radical ideal in K[X]. If J = J1 ∩ . . .∩Jr is an
irredundant decomposition then Zd(J) = Zd(J1) ∪ . . . ∪ Zd(Jr).

Definition 6.2. Let J be a non trivial radical ideal in K[X]. A set of regular
chains C = {C1, . . . , Cr} defines a characteristic decomposition of J if

J = R(C1) ∩ . . . ∩R(Cr) i.e. J = 〈C1〉 :I∞C1
∩ . . . ∩ 〈Cr〉 :I∞Cr

.

We take as convention that the empty set is a characteristic decomposition
of J = K[X].

Proposition 6.3. Let A be a consistent triangular set of K[X]. If R(A) =
R(C1) ∩ . . . ∩ R(Cr) is an irredundant characteristic decomposition then
L(A) = L(C1) = . . . = L(Cr).

Proof. By Theorem 4.4, T(A) is a basis of transcendence of all the associated
prime of R(A) and thus of all the associated primes of (Ci) : I∞Ci

while, for
1 ≤ i ≤ r, T(Ci) is a basis of transcendence of the associated primes of
(Ci) :I∞Ci

. Thus T(A) and T(Ci) have the same cardinal and it is sufficient to
prove that L(A) ⊂ L(C). For 1 ≤ i ≤ r, no element of IA is a zero divisor of
(C1) :I∞C1

. Assume there exists x ∈ L(A) such that x /∈ L(Ci). Then {Ax}∪Ci

is a regular chain lower then Ci in (Ci) : I∞Ci
. This contradicts the fact that

Ci is a characteristic set of (Ci) :I∞Ci
. The conclusion follows: L(A) ⊂ L(C).

The same way we can consider A as a triangular set in KA[L(A)] we can
also consider the Ci as regular chains in KA[L(A)]. An irredundant decom-
position of R(A) provides in fact a decomposition of the product of fields
associated to A. Recall we defined R(A) = KA[L(A)]/R(A) which is equal
to Q (K[X]/R(A)).

Proposition 6.4. Let A be a consistent triangular set of K[X]. Assume
R(A) = R(C1) ∩ . . . ∩ R(Cr) is an irredundant characteristic decomposi-
tion in K[X]. Then R(A)KA

= R(C1)KA
∩ . . . ∩ R(Cr)KA

is an irredundant
characteristic decomposition in KA[L(A)] and R(A) ∼= R(C1)× . . .×R(Cr).

Proof. We have L(A) = L(C1) = . . . = L(Cr). Thus A,C1, . . . , Cr can be
considered as triangular sets in K(T(A))[L(A)] and we overline them when
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we consider them as such. Let P̄ be an associated prime of R(Ā)KA
. If P̄

contained R(C̄i) and R(C̄j) for i 6= j then P̄ ∩ K[X] would contain R(C̄i) ∩
K[X] = R(Ci) and R(C̄j) ∩ K[X] = R(Cj). Since P̄ ∩ K[X] is a prime
component of R(A) and the decomposition R(A) = R(C1) ∩ . . . ∩ R(Cr) is
irredundant this is not possible. Therefore R(Ā) = R(C̄1) ∩ . . . ∩ R(C̄r) is
irredundant.

The radical ideals R(C̄i)KA
are zero dimensional and have no prime divi-

sor in common. They are thus comaximal: R(C̄i) +R(C̄j) = KA[L(A)]. By
the Chinese remainder theorem (Theorem 2.4) we have that

KA[L(A)]/R(Ā) ∼= KA[L(A)]/R(C̄1)× . . .×KA[L(A)]/R(C̄r)

The converse property is in fact also true. IfR(Ā) = R(C̄1)∩. . .∩R(C̄r) is
an irredundant characteristic decomposition in KA[L(A)] then it can be lifted
to the irredundant characteristic decomposition R(A) = R(C1)∩ . . .∩R(Cr)
in K[X] where a Ci is obtained from C̄i by cleaning the denominators and
the factors in K[T(A)] (see [28]).

7 Radical ideals defined by triangular sets

In this section, we generalize to triangular sets the following properties for
p ∈ K[x]:

– q = p

gcd(p, ∂p
∂x )

is squarefree and
√

(p) = (q) (Theorem 7.1).

– p is squarefree iff gcd(p, ∂p
∂x ) = 1 (Corollary 7.3).

– (p) : ( ∂p
∂x )∞ is radical (Theorem 7.5).

Some of these results can be found in [34, 8, 9, 44, 39, 17, 2, 28]. They can
be proved by applying the Jacobian criterion for regularity (see [23, Chapter
16] and [47, Chapter 5]).

Let p be an element of K[X]. The separant of p is the derivative of p
w.r.t. its leader: sep(p) = ∂p

∂lead(p)
. Thus if x = lead(p) and we can write

p = adx
d + . . . + a1x + a0 then sep(p) = dadx

d−1 + . . . + a1. For a triangular
set A in K[X] we denote SA the set formed up by the separants of the elements
of A and HA the set of the initials and separants of the elements of A.

Theorem 7.1. Let A be a triangular set in K[X]. Let s be the product
of the separants of the elements of A. R(A) = I(A) : s. In other words√

(A) :I∞A = {p ∈ K[X] | s p ∈ (A) :I∞A }.

Proof. As seen in Theorem 4.4, I(A) and R(A) have no zero divisor in
K[T(A)]. It follows that I(A)K = I(A)KA

∩ K[X] and R(A)K = R(A)KA
∩

K[X].
Consider A as a triangular set of KA[L(A)]. The Jacobian ideal of (A)

is generated by s. By [47, Theorem 5.4.2.], (A)KA
: s =

√
(A)KA

. Thus
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I(A)KA
:s = R(A)KA

. Taking the intersection with K[X] we have the equality
announced.

This gives us a way to construct R(A) that will be used in Section 9. It
also gives a criterion for I(A) to be radical: I(A) is radical if and only if no
separant of the elements of A is a zero divisor modulo I(A). This criterion
motivates the following definition and gives the corollary after it.

Definition 7.2. A regular chain C in K[X] is squarefree if SC ∩ Zd(C) = ∅
i.e. no separant of C is a zero divisor modulo I(C).

Corollary 7.3. If C is a regular chain of K[X] then (C) : I∞C is radical if
and only if C is squarefree.

Note nonetheless that the radical of a characterizable ideal is not always
characterizable. The example below is taken from [2, Section 4.5].

Example 7.4. In K[x, y] consider A = x2 − xM y2 − x. A is a regular chain
of K[x, y]. We have I(A) = (A). A Gröbner basis of R(A) =

√
(A) for

a lexicographical term oder satisfying x < y is given by G = {x2 − x, (x −
1) y, y2−x}. We can extract from it the characteristic set B = x2−xM (x−1) y
of R(A). It is not a regular chain. Thus R(A) is not characterizable.

The following theorem is central in constructive differential algebra. It was
first enunciated in [8] and named there after one of the coauthors, D. Lazard.
The second part of the statement appeared already in [33]. It shows that we
have similar dimension properties whether we saturate by the initials or by
the separants.

Theorem 7.5. Let A be a triangular set of K[X]. (A) :S∞A is a radical ideal.
If it is non trivial, (A) : S∞A is unmixed dimensional and L(A) is the set of
leaders of the characteristic set of any associated prime of (A) :S∞A .

Proof. The principal ideal theorem [23, Theorem 10.2] implies that no asso-
ciated prime of (A) has codimension bigger than card(A). The product s of
the separants of A is a maximal minor of the Jacobian matrix ∂A

∂X . Let P be a
prime ideal that does not contain s. The rank of the Jacobian matrix modulo
P is maximal and equal to card(A). By [23, Theorem 16.9] the localization
of K[X]/(A) at P is an integral ring and the codimension of (A)P is card(A).
Thus P contains a single primary component of (A) and that component is
prime and of codimension card(A).

(A) :S∞A is the intersection of the primary components of (A) the radical
of which does not contain s. From what precedes, these components have to
be prime and of codimension card(A). Therefore (A) :S∞A is the intersection
of prime ideals and so is radical.

We are left to show that L(A) ⊂ L(C) for any characteristic set C of P .
For any x ∈ L(A), sep(Ax) /∈ P . Thus one of the coefficients of a positive
power of x in Ax does not belong to P . As any characteristic set of P must
reduce Ax to zero, it must contain an element with leader x.
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The theorem and its corollary is obviously true if we replace SA by any
set H that contains SA. The case H = HA is of special use in differential
algebra (see [30]). The relationship between (A) : I∞A , (A) :S∞A and (A) :H∞

A

for regular chains is made explicit below.

Proposition 7.6. If A is a regular chain in K[X] then (A) :H∞
A = (A) :S∞A .

If A is a squarefree regular chain then (A) :I∞A = (A) :S∞A .

Proof. Assume A is a regular chain and a ∈ A. In K(T(A))[L(A)], (A) = (A) :
I∞A (Proposition 5.18). Any prime ideal of K[X] that contains A and init(a),
for some a ∈ A, must contain an element in K[T(A)]. This is the case of no
associated prime of (A) : S∞A . Thus init(a) is not a zero divisor of (A) : S∞A
and the equality of ideals (A) : H∞

A = (A) : S∞A follows. If A is a squarefree
regular chain we furthermore have that (A) :I∞A = (A) :H∞

A .

8 Kalkbrener’s pseudo-gcd and splitting algorithm

In Section 3.2 we saw that computing a pgcd over K[λ]/ 〈c〉 relied on a
splitting algorithm for K[λ]/ 〈c〉. In Section 2.4 we saw how to write the
splitting algorithm for K[λ]/ 〈c〉 in terms of a gcd over K. We shall show
how to generalize this process to compute a pgcd over the product of fields
R(C) = Q (K[X]/R(C)) = KC [L(C)]/R(C) associated to a regular chain C.

The algorithms are presented in [31, 32] in a very synthetic and highly
recursive way. Improvements in view of an efficient implementation are pre-
sented in [2]. The present presentation owes to the presentation of Aubry: the
recursive calls are limited so that one sees better where the work is done. We
shall give complete proofs that lead to a sharper description of the outputs.

The two procedures we shall describe, pgcd and split, work in interaction
and recursively. Basically, pgcd(K[X][x], ∗, ∗) calls split(K[X], ∗, ∗) which in
turn calls pgcd(K[X], ∗, ∗).

The input of split consist of a regular chain C and a polynomial f . It then
returns a pair of set (Z,U) s.t. R(C) =

⋂
A∈Z∪U R(A) is an irredundant

characteristic decomposition and f ∈ I(A), ∀A ∈ Z while f /∈ Zd(A), ∀A ∈
U . We thus have a splitting R(C) ∼= RZ × RU where RZ =

∏
A∈Z R(A)

and RU =
∏

A∈U R(A) so that the projection of f on RZ is zero while the
projection of f on RU is a unit.

As for pgcd, it computes a pseudo-gcd over some product of field R(C)
defined by a regular chain. The pgcd computed has additional properties.
In fact the output description of these algorithms are sharper in this paper
than in [31]. This nicely avoids extraneous complications in the proofs and
the application to characteristic decomposition. We shall also make explicit
that no redundancy nor multiplicities are introduced in the computations. If
we start with a squarefree regular chain, the output regular chains will all be
squarefree. Also, it may happen that the output consists of squarefree regular
chains even if the input regular chain is not squarefree.
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Termination and correctness: One will easily check that if X = ∅,
split(K, ∅, f) decides if f = 0 or not and pgcd(K[x], ∅, F ) computes the gcd
of (F ) over K. The proof of pgcd and split is inductive. Assuming that
pgcd(K[X≤y], ∗, ∗) is correct and terminates, for all y ∈ X, we shall prove
that split(K[X], ∗, ∗) is correct. Assuming that split(K[X], ∗, ∗) is correct, we
shall prove that pgcd(K[X][x], ∗, ∗) is correct.

An intermediate algorithm relatively-prime, that is a direct application of
pgcd, generalizes the recursion presented at the end of Section 2.4 in the case
c is not squarefree. It is used in the splitting algorithm split.

Conventions: We shall describe accurately the output of the algorithms
and their properties. Correctness of the algorithms and their outputs will
be proved by exhibiting invariants for the loops of the algorithms. These
invariants are also useful to understand what goes on in the algorithm. We
shall need to name precisely one property of the output of an algorithm.
For that purpose we number the output properties. We will refer to the ith

property of the output of an algorithm, say pgcd, by pgcd.i.
The algorithms are described in Maple style but we use parentheses to

denote ordered tuples. We make use of sets S to stack the data awaiting more
computations. The command pop chooses one of those, removes it from the
set and returns it. The set C, U , Z contains the data for which computation
is completed.

8.1 Pseudo-gcd algorithm

This algorithm is no different than the one given in Section 3.2 only more
specific. The product of fields are replaced by regular chains defining them
and we use a more specific output of the splitting algorithm.

Algorithm 8.1. pgcd
Input:

– K[X][x] a ring of polynomials.
– C a regular chain in K[X]
– F a subset of K[X][x] s.t. F 6⊂ {0}.

Output: A set of pairs {(A1, g1), . . . , (Ar, gr)} such that

1. R(C) = R(A1) ∩ . . . ∩ R(Ar) is an irredundant characteristic decompo-
sition.

2. I(C) ⊂ I(Ai), 1 ≤ i ≤ r.
3. (F ) = (gi) in Q(K[X]/I(Ai))[x].
4. gi ∈ (F ) + I(Ai).
5. gi = 0 or lcoeff(gi, x) does not belong to Zd(Ai).

C := ∅;
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S := { (C, F ) } ;
while S 6= ∅ do

(B, G) := pop( S );
g := an element of G of lowest degree in x;
G := G \ {g};
(Z,U) := split(K[X], B, lcoeff(g, x));
if Z 6= ∅ then

G′ := G ∪ {tail(g, x)};
if G′ ⊂ {0} then
C := C ∪ {(A, 0) | A ∈ Z} ;

else
S := S ∪ {(A,G′ \ {0}) | A ∈ Z} ;

fi;
fi
if U 6= ∅ then

G′ := {srem(f, g, x) | f ∈ G};
if G′ ⊂ {0} then
C := C ∪ {(A, g) | A ∈ U};

else
S := S ∪ {(A, G′ ∪ {g}) | A ∈ U};

fi;
fi;

od;
return ( C ) ;
It is also possible (recommended) to reduce the sets G′ by A, or only some

element of A, before inserting the pairs [A,G′] in S.

Termination: The algorithm can be seen as constructing a tree with root
(C,F ). Each node has a finite number of sons. The sons of a node (B,G) are
some (A,G′) where either G′ ⊂ {0}, in which case it is a leaf, or the sum of
the degrees in x of the elements of G′ is lower than for G. A path in the tree
thus gives a sequence of strictly decreasing positive integers. Any path must
be finite and therefore the tree is finite. If split (K[X], ∗, ∗) terminates, pgcd
(K[X][x], ∗, ∗) terminates.

Correctness Assuming the correctness of split (K[X], ∗, ∗) we shall show
that the while loop has the following invariants.

I1 R(C) =
⋂

(A,g)∈C

R(A) ∩
⋂

(A,G)∈S

R(A) is an irredundant characteristic de-

composition.
I2 I(C) ⊂ I(B) for all (B,G) ∈ S,
I2’ I(C) ⊂ I(A) for all (A, g) ∈ C,
I3 (F ) = (G) in Q(K[X]/I(A))[x] for all (A,G) ∈ S
I3’ (F ) = (g) in Q(K[X]/I(A))[x] for all (A, g) ∈ C
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I4 G ⊂ (F ) + I(A), for all (A,G) ∈ S
I4’ g ∈ (F ) + I(A), for all (A, g) ∈ C

The invariants are easily checked to be true before the loop. That I1 and I2
are preserved comes from Output 1 and 2 of split. I2’ is a direct consequence
of I2.

I3 is preserved because, if the selected g ∈ G is such that

– lcoeff(g, x) = 0 in K[X]/I(B) then g = tail(g, x) in K[X]/I(B).
– init(g) /∈ Zd(B) so that (f, g) = (srem(f, g), g) in Q(K[X]/I(B))[x], by

Proposition 3.4.

I3’ is a direct consequence of I3.
The set G in the algorithm starts from F and evolves by pseudo-division

by an element in G or by setting to zero an element that belongs to I(A). I4
is thus preserved and I4’ is a consequence of it.

8.2 Useful properties for splitting

This section contains the ingredients for the proof of the splitting algorithm.
We first give the simple splits that can always be done on radical ideals and
two properties to play with characteristic decompositions. We then give two
additional properties of the outputs of the pgcd algorithm.

Proposition 8.2. Let F be a non empty subset of K[X]. Then

– 〈(F ) + (a b)〉 = 〈(F ) + (a)〉 ∩ 〈(F ) + (b)〉 for any a, b ∈ K[X].
– 〈F 〉 = 〈F 〉 :H∞ ∩

⋂
h∈H 〈(F ) + (h)〉 for any finite subset H of K[X].

Proposition 8.3. Let C M c be a regular chain in K[X][x] s.t. lead(c) = x.
Consider b ∈ K[X][x] s.t. deg(b, x) = deg(c, x) and h ∈ K[X], h /∈ Zd(C) s.t.
h c ≡ b mod I(C). Then I(C M c) = I(C M b).

Proof. Let us note hc = init(c) and hb = init(b). Note that hb ≡ h hc

mod I(C). Therefore hb /∈ Zd(C) and C M b is a regular chain. I(C M b) =
(I(C)+(b)) :h∞b = (I(C)+(h c)) : (hhc)∞. We have c ∈ (I(C)+(h c)) : (hhc)∞

and (I(C) + (h c)) : (hhc)∞ ⊂ I(C M c) since h /∈ Zd(C M c). The equality fol-
lows.

Proposition 8.4. Let C M c be a regular chain. Assume R(C) = R(C1) ∩
. . .∩R(Cr) is an irredundant characteristic decomposition. Then R(C M c) =
R(C1 M c) ∩ . . . ∩R(Cr M c) is an irredundant characteristic decomposition.

Proof. Since the decomposition is irredundant, Zd(C) = Zd(C1)∪. . .∪Zd(Cr).
Thus init(c) /∈ Zd(Ci), 1 ≤ i ≤ r, so that C1 M c, . . . , Cr M c are regular chains.

Obviously R(C M c) ⊂ R(Ci M c), for 1 ≤ i ≤ r. Let P be a minimal prime
of R(C M c). P ∩K[X] is a minimal prime of R(C) (Proposition 4.5). By the
irredundancy of the decomposition ofR(C), there exists a unique i, 1 ≤ i ≤ r,
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such that P ∩ K[X] contains R(Ci). P contains thus a unique R(Ci M c) =
(R(Ci), c) : init(c)∞. Given the dimension of the minimal primes of R(Ci M c)
and R(C M c) (Proposition 4.4), P is a minimal prime of R(Ci M c). We have

R(C M c) ⊂ R(C1 M c) ∩ . . . ∩R(Cr M c) ⊂
⋂

P a minimal prime of R(C M c)

P

We thus have proved that R(C M c) = R(C1 M c) ∩ . . . ∩ R(Cr M c) is an
irredundant characteristic decomposition.

Iterating the process we obtain the following result.

Corollary 8.5. Let A M B be a regular chain and assume R(A) = R(A1) ∩
. . .∩R(Ar) is an irredundant characteristic decomposition. ThenR(A M B) =
R(A1 M B) ∩ . . .∩ R(Ar M B) is an irredundant characteristic decomposition.

Proposition 8.6. Assume the pair (B, g) belongs to the output of pgcd
(K[X][x], C, F ). If deg(g, x) > 0 then B M g is a regular chain and ((F ) +
I(B)) :h∞ = I(B M g), where h = init(g).

Proof. By pgcd.5, init(g) = lcoeff(g, x) /∈ Zd(B). Therefore B M g is a regular
chain. From pgcd.3, (F ) = (g) in Q(K[X]/I(B))[x]. From Proposition 3.2
we have that for all f ∈ F there exists k ∈ h∞ and q ∈ K[X][x] such
that k f = q g mod I(B). Therefore F ⊂ (I(B) + (g)) : h∞. From pgcd.4,
(g) ⊂ (F ) + I(B). As I(B M g) = (I(B) + (g)) :h∞, the equality follows.

Proposition 8.7. Let C M c be a regular chain inK[X][x] such that lead(c) =
x and f ∈ K[X][x] such that deg(f, x) > 0. Assume the pair (B, g) belongs
to the output of pgcd(K[X][x], C, {f, c}). Then B M c is a regular chain, g 6= 0
and

– if deg(g, x) = 0 then f /∈ Zd(B M c) so that I(B M c) :f∞ = I(B M c).
– if deg(g, x) > 0 then

1. R(B M c) :f∞ = 〈R(B) + (q)〉 : (f hq)∞

2. I(B M c) ⊂ (I(B) + (q)) :h∞q
where q = squo(c, g, x) and hq = lcoeff(q, x) /∈ Zd(B).

Proof. B M c is a regular chain by kpgcd.1 and Proposition 8.4. By pgcd.3,
g 6= 0 since c can not be zero modulo I(B).

From pgcd.4, there exists a ∈ K[X][x] such that g = a f mod I(B M c).
If f belongs to Zd(B M c) so does g. If deg(g, x) = 0 then g = lcoeff(g, x) /∈
Zd(B M c) by pgcd.5. This proves the first point.

If deg(g, x) > 0, B M g is a regular chain and c ∈ I(B M g), as seen
in Proposition 8.6. Let us write hg = init(g). There exists h ∈ h∞g such
that h c ≡ q g mod I(B) where q = squo(c, g, x). We have h init(c) ≡ hq hg

mod I(B) and therefore hq /∈ Zd(B).
By Proposition 8.3 and Lemma 4.3, I(B M c) = I(B M q g) = (I(B) + (q g)) :

(hq hg)∞. We first have the inclusion property I(B M c) ⊂ (I(B) + (q)) :h∞q ,
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since the latter ideal is equal to K[X][x] when deg(q, x) = 0 and equal to
I(B M q) when deg(q, x) > 0. Then, by Proposition 8.2 〈I(B) + (q g)〉 =
〈I(B) + (q)〉 ∩ 〈I(B) + (g)〉 so that R(B M c) = 〈I(B) + (q)〉 : (hq hg)∞ ∩
R(B M g) and consequently R(B M c) : f∞ = 〈I(B) + (q)〉 : (f hq hg)∞. Rea-
soning on the degree of q again we conclude 〈I(B) + (q)〉 : (f hq hg)∞ =
〈I(B) + (q)〉 : (f hq)∞.

8.3 A sub-algorithm of the split

The relatively-prime algorithm presented is a sub-algorithm of split. It gener-
alizes the recursion at the end of Section 2.2 when dealing with non square-
free polynomials. Its role is to compute an irredundant decomposition of the
saturation of a characterisable ideal by a polynomial. The call of split to
relatively-prime requires in fact to compute saturations of ideals of K[X][x] of
the type 〈I(C) + (c)〉 : lcoeff(c, x)∞ as it is possible that deg(c, x) = 0.

Algorithm 8.8. relatively-prime
Input:

– K[X][x] a ring of polynomials.
– C a regular chain of K[X]
– c ∈ K[X][x] such that lcoeff(c, x) /∈ Zd(C)
– f ∈ K[X][x], deg(f, x) > 0

Output: A set C̄ of regular chains in K[X][x] such that C̄ is empty if (I(C)+
(c)) : lcoeff(c, x)∞ :f∞ = K[X][x] and otherwise

1. R(C M c) :f∞ =
⋂

A∈C̄R(A) is an irredundant characteristic decomposi-
tion

2. I(C M c) ⊂ I(A), ∀A ∈ C̄

C := ∅;
S := {(C, c)};
while S 6= ∅ do

(A, a) := pop(S);
if deg(a, x) 6= 0 then

G := pgcd (K[X][x], A, {a, f});
C := C ∪ {(B, a) | (B, b) ∈ G and deg(b, x) = 0};
S := S ∪ {(B, squo(a, b, x)) | (B, b) ∈ G and deg(b, x) > 0};

fi;
od;
return ( {A M a | (A, a) ∈ C );

Note that if deg(c, x) = 0 then (R(C) + (c)) : lcoeff(c, x)∞ = K[X][x] and
Krelatively-prime returns an empty set.
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Termination: The degree in x is lower in squo(a, b, x) than in a, ∀(B, b) ∈
G0. Termination is proved thanks to the same analogy to a tree as for pgcd.

Correctness We shall check that the following properties are invariants of
the while loop. The correctness then follows.

I0
⋂

(A,a)∈C∪SR(A) is an irredundant characteristic decomposition.
I1 (I(C) + (c)) : lcoeff(c, x)∞ ⊂ (I(A) + (a)) : lcoeff(a, x)∞, for all (A, a) ∈ S
I1’ I(C M c) ⊂ I(A M a), for all (A, a) ∈ C
I2 lcoeff(a, x) /∈ Zd(A), for all (A, a) ∈ S
I2’ A M a is a regular chain for all (A, a) ∈ C
I3 f /∈ Zd(A M a), for all (A, a) ∈ C.
I4 〈I(C) + (c)〉 : (f lcoeff(c, x))∞ =

⋂
(A,a)∈S

〈I(A) + (a)〉 : (f lcoeff(a, x))∞ ∩⋂
(A,a)∈C

R(A M a)

The invariants are satisfied before the while loop. Assume they are now
true at the beginning of an iteration. If deg(a, x) = 0 then a = lcoeff(a, x)
and thus 1 ∈ 〈I(A) + (a)〉 : lcoeff(a, x)∞. Dropping this component does not
affect I4. Nor does it affect I0, I1, I2, I2’ and I3.

Let us consider the case deg(a, x) > 0. This case can only happen when
the input is such that deg(c, x) > 0. By induction hypothesis on I2, A M a is
a regular chain.

By pgcd.1 and Proposition 8.4, R(A) =
⋂

(B,b)∈GR(B) and R(A M a) =⋂
(B,b)∈GR(B M a) are irredundant characteristic decompositions. I0 will be

preserved. From pgcd.2, I(A) ⊂ I(B).
Let (B, b) be an element of G. Note first that b 6= 0 since a /∈ Zd(A).

If deg(b, x) = 0, then f /∈ Zd(B M a) by Proposition 8.7. The pair (B, a)
is put in C so that I2’ and I3 are preserved. From pgcd.2 we can say that
I(A M a) ⊂ I(B M a) and thus I1’ is preserved by induction hypothesis on I1.

If deg(b, x) > 0, by Proposition 8.7, I(B M a) ⊂ (I(B) + (q)) : h∞ab and
R(B M a) : f∞ = 〈R(B) + (qab)〉 : (f hab)∞, where qab = squo(a, b, x) and
hab = lcoeff(qab, x) /∈ Zd(B). On the one hand I1 and I2 are preserved and
on the other hand we can write

R(A M a) :f∞ =
⋂

(B,b)∈GR(B M a) :f∞

=
⋂

(B, b) ∈ G
deg(b, x) = 0

R(B M a) ∩
⋂

(B, b) ∈ G
deg(b, x) > 0

(R(B) + (qab)) : (f hab)∞ .

That insures that I4 is preserved.

8.4 Splitting algorithm

In Section 2.4 we saw a way of splitting a product of field K[x]/ 〈c〉 according
to a polynomial in K[x]. The process relied on gcd computations over K.
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The split algorithm we describe here is an extension to the product of field
K(T(C))[L(C)] where C is a regular chain in K[X]. It relies essentially on a
pgcd algorithm and Gauss lemma Theorem 2.3 .

The algorithm split has the side effect of decreasing multiplicities. Take the
simple case where we examine the splitting of K[x]/ 〈c〉, where c = x(x + 1)r

according to the polynomial f = (x + 1)e where e < r. We will obtain
K[x]/ 〈c〉 = K[x]/ 〈g0〉 × K[x]/ 〈x〉 where g0 = (x + 1)e if e < r and g1 = x.

Algorithm 8.9. split
Input:

– K[X] a polynomial ring
– C a regular chain of K[X]
– f a polynomial in K[X]

Output: A pair (Z,U) of sets of regular chains in K[X] such that

1. R(C) =
⋂

A∈Z∪U
R(A) is an irredundant characteristic decomposition.

2. I(C) ⊂ I(A), ∀A ∈ Z ∪ U ,
3. f ∈ I(A), ∀A ∈ Z.
4. f /∈ Zd(A), ∀A ∈ U .

if f = 0 then
return( ({C}, ∅) );

elif f ∈ K then
return((∅, {C}) );

fi;
x := lead(f);
if x /∈ L(C) then

F := the set of coefficients of f , seen as a polynomial in x;
U := ∅; Z = ∅;
S := { (C<x, F ) };
while S 6= ∅ do

(B,E) := pop (S);
g := pop(E);
(Z, U) := split (K[X<x], B, g);
U := U ∪ U ;
if E = ∅ then
Z := Z ∪Z;

else
S := S ∪{(A,E) | A ∈ Z};

fi;
od;

else
c := the element of C with leader x;
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G := pgcd(K[X<x][x], C<x, {f, c});
Z := {A M a | (A, a) ∈ G, deg(a, x) > 0};
U := {A M c | ∃a, (A, a) ∈ G, deg(a, x) = 0};
U := U ∪

⋃
(A, a) ∈ G

deg(a, x) > 0

relatively-prime(K[X][x], A, squo(c, a, x), f);

fi;
Z := {A M C>x | A ∈ Z};
U := {A M C>x | A ∈ U};
return( (Z, U) );
In the case Cx = 0, we use Gauss lemma. Consider for instance C =

x (x + 1) (x + 2) as a regular chain in K[x, y] and f = x y2 + (x + 1) y + 1. To
decide if f is not a zero divisor one needs to decide if one its coefficients is not
a zero divisor. A simple inspection leads us to the fact f /∈ Zd(C) since one of
its coefficient belongs to K. Therefore (∅, C) is a valid output. [31] and [2] use
a weakened version of Gauss lemma. The successive initials of f are inspected.
For the example presented here, split would be recursively called for x and
then for x + 1. The output would therefore be (∅, {C1, C2, C3}) leading to
more components and therefore redundancies in the computations.

Termination Termination follows simply from termination of split(K[X<y], ∗, ∗)
and of pgcd(K[X<y][y], ∗, ∗) for any y ∈ X.

Correctness We shall assume that split(K[X<y], ∗, ∗]) and pgcd(K[X<y][y], ∗, ∗])
is correct for any y ∈ X and prove correctness for split(K[X], ∗, ∗]). For that
we need to prove that after the conditional branching if x /∈ L(C) then [. . .]
else [. . .] we have:

– R(C≤x) =
⋂

A∈U∪Z R(A) is an irredundant characteristic decomposition.
– f ≡ 0 mod I(A), ∀A ∈ Z
– f /∈ Zd(A), ∀A ∈ U .

Indeed Proposition 5.8 and 8.4 allow then to conclude. There are two different
cases according to whether or not x = lead(f) appears as a leader of an
element of C.

The case x /∈ L(C)
Then K[X][x]/I(C≤x) = (K[X]/I(C<x))[x]. Thus, according to Gauss

lemma (Theorem 2.3), f ∈ Zd(C≤x) if and only if F , the set of coefficients of
f considered as a polynomial in x, is included in Zd(C<x). The while loop
inspects each coefficient in turn (in any order). It has the following invariants:

I0 R(C<x) =
⋂

(A,E)∈S R(A) ∩
⋂

A∈U∪Z R(A) is an irredundant character-
istic decomposition

I1 I(C<x) ⊂ I(A) for all A ∈ Z ∪ U and all (A,E) ∈ S
I2 F \ E ⊂ I(A), for all (A,E) ∈ S
I2’ F 6⊂ Zd(A), for all A ∈ U
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I2” F ⊂ I(A), for A ∈ Z

These invariants are obviously satisfied before the while loop. At each
iteration I0 and I1 are kept true because of split.1 and split.2 on K[X<x]. I2 is
easily seen to be kept true since S is augmented with the components modulo
which the element of F treated is 0. I2’ and I2” are consequences of I2 given
how are augmented Z and U .

The case x ∈ L(C)
Thanks to pgcd.1, pgcd.2 and Proposition 8.4 we have that R(C≤x) =⋂

(A,a)∈GR(A M c) is an irredundant characteristic decomposition and I(C≤x) ⊂
I(A M c), ∀(A, a) ∈ G. For any pair (A, a) ∈ G, a 6= 0 because c 6= 0
mod I(A).

For (A, a) ∈ G such that deg(a, x) = 0, f /∈ Zd(A M c) by Proposition 8.7.
That justifies the initialization of U .

For (A, a) with deg(a, x) > 0, ha = init(a) = lcoeff(a, x) does not belong
to Zd(A), by pgcd.5. By pgcd.3, f ∈ I(A M a) which justifies the value given
to Z. Let hc = init(c). We have R(A M c) = R(A M c) :h∞a = 〈I(A) + (c, f)〉 :
(hcha)∞ ∩ R(A M c) : f∞ by Lemma 4.3 and Proposition 8.2. This decom-
position is irredundant if 1 /∈ R(A M c) : f∞. Now 〈I(A) + (c, f)〉 : (ha)∞ =
R(A M a) by Proposition 8.6. Since hc /∈ Zd(A M a) the previous decomposi-
tion can be written R(A M c) = R(A M a)∩R(A M c) :f∞. By Proposition 8.7,
R(A M c) : f∞ = 〈I(A) + (q)〉 : (f hq)∞ and I(A M c) ⊂ (I(A) + (q)) : h∞q
where q = squo(c, a, x) and hq = lcoeff(q, x). The output properties of
relatively-prime allow to conclude.

9 Characteristic decomposition algorithm

A pseudo-gcd algorithm with respect to a characterizable ideal given by a
regular chain can be applied to compute a characteristic decomposition of
the radical ideal generated by a finite family of polynomials. After describing
and proving the algorithm, we shall discuss the membership test it gives to
the radical ideal as well as how to refine the characteristic decomposition
obtained.

In the description of this algorithm again, S is a set containing the data
awaiting more computations, while C is a set of data for which the compu-
tation is completed. An element (F̂ , F̌ , C) of S, where F̂ , F̌ are subsets of
K[X] and C is a regular chain, represents the radical ideal

〈
(F̂ ) + I(C)

〉
.

F̌ correspond to the already considered polynomials of F , in the sense that
F̌ ⊂ I(C).

Algorithm 9.1. decompose
Input:

– K[X] a polynomial ring
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– F a nonempty set of polynomials in K[X]

Output: A set C of regular chains such that

– C is empty if 〈F 〉 = K[X].
– 〈F 〉 =

⋂
C∈C

R(C) otherwise.

C := ∅;
S := {(F, ∅, ∅)};
while S 6= ∅ do

(F̂ , F̌ , C) := pop (S);
if F̂ ⊂ {0} then
C := C ∪ {C}

elif F̂ ∩ K 6= ∅
x := min{y ∈ X | F̂ ∩ K[X≤y] 6= ∅};
Fx := F̂ ∩ K[X≤x];
G := pgcd (K[X<x][x], C, Fx);
S0 := {(F̂ \ Fx, F̌ ∪ Fx, B) | (B, 0) ∈ G};
S1 := {(F̂ ∪ F̌ ∪B ∪ {g}, ∅, ∅) | (B, g) ∈ G, deg(g, x) = 0, g 6= 0};
S2 := {(F̂ \ Fx, F̌ ∪ Fx, B M g) | (B, g) ∈ G, deg(g, x) > 0};
S′2 := {(F̂ ∪ F̌ ∪B ∪ {init(g)}, ∅, ∅) | (B, g) ∈ G, deg(g, x) > 0};
S := S ∪S0 ∪ S1 ∪ S2 ∪ S′2

fi;
od;
return( C );

Note the following difference with the versions of [31, 2]: the regular chains
computed up to a point are reintroduced in the components of S1 and S′2
where the computation basically starts over. Computations are then easier if
there is already a triangular set to start with.

Termination We can visualize the algorithm as constructing a tree with root
(F, ∅, ∅). A node is given by a 3-tuple (F̂ , F̌ , C). A son of a node (F̂ , F̌ , C)
is an element of the constructed sets S0, S1, S2 or S′2. A leaf is an element
(∅, ∗, ∗).

For convenience, we shall introduce a dummy variable x0 that we assume
to be lower than all the variables of X. We write X̄ = X ∪ {x0}. We extend
each 3-tuple (F̂ , F̌ , C) to a 4-tuple (F̂ , F̌ , C, y) where y is such that C ⊂
K[X̄≤y] and Ê ∩ K[X̄≤y] = ∅. The root is now (F, ∅, ∅, x0).

A son (F̂ , F̌ , C, y) of a node (Ê, Ě, B, x) falls into one of the two following
categories

Type 1: It is such that F̂ ∪ F̌ = Ê ∪ Ě and y > x. This is the case of the
4-tuples in S0 and S2.
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Type 2: F̌ = ∅, C = ∅ and y = x0. This is the case of the 4-tuples in
S1 and S′2. Their main property is that the ideal generated by the set
(Ê∪ Ě)∩K[X̄<y] = Ě∩K[X̄<y] is strictly included in the ideal generated
by the set (F̂ ∪ F̌ ) ∩ K[X̄<y] = F̂ ∩ K[X̄<y]. Indeed we introduce in F̂ g
or init(g) and we shall see in the correctness part of the proof that they
do not belong to (Ě) ⊂ I(B). We also have Ê ∪ Ě ⊂ F̂ ∪ F̌ .

Assume that there is an infinite path in the tree. Since the set X̄ is
finite, there will be on this path an infinite sequence of nodes (F̂i, ∅, ∅, x0)
of type 2 with a father having the same y as 4th component. This sequence
defines a strictly increasing sequence of ideals in K[X̄<y], namely the ideals
(F̂i ∩ K[X̄<y]). This contradicts the fact that K[X̄<y] is Noetherian.

Correctness We shall show that the while loop has the following invariants.

I0 F ⊂ F̂ ∪ F̌ and F̌ ⊂ I(C), for all (F̂ , F̌ , C) ∈ S
I1 〈F 〉 =

⋂
(F̂ ,F̌ ,C)∈S

〈
(F̂ ) + I(C)

〉
∩
⋂

C∈C
R(C)

We first give a couple of easy properties that are used implicitly in the
proof.

Proposition 9.2. Let I and J be ideals in a ring K[X].
√

I + J =
√

I +
√

J .

Proposition 9.3. Let I0, I1, . . . , Ir be ideals in a ringK[X]. Then
√

I0 +
⋂r

j=1 Ij =⋂r
k=1

√
I0 + Ik.

I0 and I1 are obviously true before the while loop. Assume that they are
true at the beginning of a new iteration treating the tuple (F̂ , F̌ , C). If F̂ ⊂
{0} then

〈
(F̂ ) + I(C)

〉
= R(C). If F̂ ∩ K \ {0} then

〈
(F̂ ) + I(C)

〉
= K[X]

and the component can be dropped. We assume from now on that F̂ ∩K = ∅.
By pgcd.1 and pgcd.2, F̌ ⊂ I(C) ⊂ I(B) and〈

(F̂ ) + I(C)
〉

=
⋂

(B,g)∈G

〈
(F̂ ) + I(B)

〉
. (1)

Take (B, g) ∈ G. There are three cases according to whether g = 0,
deg(g, x) = 0 or deg(g, x) > 0. We examine these three cases separately.

If g = 0, we know that Fx ⊂ I(B) by pgcd.3. Thus〈
(F̂ ) + I(B)

〉
=
〈
(F̂ \ Fx) + I(B)

〉
(2)

If deg(g, x) = 0 but g 6= 0, from pgcd.4, g ∈ (Fx) + I(B). By induction
hypothesis on I0 we thus obtain
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〈F 〉 ⊂
〈
(F̂ ∪ F̌ ) + (g) + (B)

〉
⊂
〈
(F̂ ) + I(B)

〉
(3)

If deg(g, x) > 0, let hg = init(g) = lcoeff(g, x). Thanks to Proposition 8.2〈
(F̂ ) + I(B)

〉
=
〈
(F̂ \ Fx) + (Fx) + I(B)

〉
=
〈
(F̂ \ Fx) + 〈(Fx) + I(B)〉 :h∞g

〉
∩
〈
(F̂ \ Fx) + 〈(Fx) + I(B) + (hg)〉

〉
.

(4)
By Proposition 8.6, B M g is a regular chain and ((Fx) + I(B)) : h∞g =

I(B M g). Equation (4) becomes〈
(F̂ ) + I(B)

〉
=
〈
(F̂ \ Fx) + I(B M g)

〉
∩
〈
(F̂ ) + I(B) + (hg)

〉
(5)

By induction hypothesis on I0, F ⊂ F̂∪F̌ and with pgcd.2, F̌ ⊂ I(C) ⊂ I(B).
Thus

〈F 〉 ⊂
〈
(F̂ ∪ F̌ ) + (B) + (hg)

〉
⊂
〈
(F̂ ) + I(B) + (hg)

〉
. (6)

S is the set deprived from the tuple {(F̂ , F̌ , C)}. With the induction
hypothesis on I1 we can write

〈F 〉 =
⋂

(Ê,Ě,D)∈S

〈
(Ê) + I(D)

〉
∩
〈
(F̂ ) + I(C)

〉
With (1), (2) and (5) we can rewrite this equation as

〈F 〉 =
⋂

(Ê,Ě,D)∈S

〈
(Ê) + I(D)

〉
∩
⋂

(B,0)∈G

〈
(F̂ \ Fx) + I(B)

〉
∩

⋂
(B, g) ∈ G

deg(g, x) = 0

〈
(F̂ ) + I(B)

〉

∩
⋂

(B, g) ∈ G
deg(g, x) > 0

(〈
(F̂ \ Fx) + (B M g) :I∞B M g

〉
∩
〈
(F̂ ) + I(B) + (hg)

〉)

Intersecting both sides of this latter equation by
〈
(F̂ ∪ F̌ ) + (g) + (B)

〉
, for

all (B, g) ∈ G with deg(g, x) = 0, g 6= 0, and
〈
(F̂ ∪ F̌ ) + (B) + (hg)

〉
for all

(B, g) ∈ G with deg(g, x) > 0, we obtain, thanks to (3) and (6),

〈F 〉 =
⋂

(Ê,Ě,D)∈S

〈
(Ê) + I(D)

〉
∩
⋂

(B,0)∈G

〈
(F̂ \ Fx) + I(B)

〉
∩

⋂
(B, g) ∈ G

deg(g, x) = 0

〈
(F̂ ∪ F̌ ) + (g) + (B)

〉

∩
⋂

(B, g) ∈ G
deg(g, x) > 0

(〈
(F̂ \ Fx) + I(B M g)

〉
∩
〈
(F̂ ∪ F̌ ) + (B) + (hg)

〉)

This justifies that the elements pushed on the stack preserve the invariants
I0 and I1.
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Membership test With a characteristic decomposition, as computed by
decompose, it is possible to test membership to the radical ideal generated
by a finite set of polynomials. This is explained below. Nonetheless, since the
decomposition is not always irredundant, it is not possible to give sufficient
or necessary conditions for f to be invertible or a zero divisor modulo 〈F 〉.

Consider a finite set of polynomials F in K[X] and compute its charac-
teristic decomposition

〈F 〉 = R(C1) ∩ . . . ∩ R(Cr).

For an element f of K[X], let (Zi,Ui) be the output of split(K[X], Ci, f). For
f to belong to 〈F 〉 it is necessary and sufficient that all Ui be empty.

If in the characteristic decomposition all the regular chains Ci are square-
free, the test is simpler. In this case a necessary and sufficient condition for
f to belong to 〈F 〉 is that srem(f, Ci) = 0 for all 1 ≤ i ≤ r. In the next
paragraph we show how to obtain a squarefree decomposition.

Refinement to squarefree regular chains It is possible to refine the
output of decompose so that all the components are squarefree regular chains.
In which case we have a decomposition that can be written

〈F 〉 = I(C1) ∩ . . . ∩ I(Cr).

One way to proceed is to apply the following algorithm to each component
of the output of decompose.

Algorithm 9.4. sqrfree-decomposition
Input:

– K[X] a ring of polynomials.
– C a regular chain of K[X]

Output: A non empty set C of squarefree regular chains in K[X][x] such
that R(C) =

⋂
A∈C I(A) is an irredundant characteristic decomposition

C := ∅;
S := {(C, ∅)};
while S 6= ∅ do

(B̂, B̌) := pop(S);
if B̂ = ∅ then
C := C ∪ {C};

else
x := the lowest variable of L(B̂);
b := the element of B̂ with leader x;
G := pgcd (K[X][x], B̌, {b, sep(b)});
S := S ∪ {(B̂>x, A M squo(c, a, x)) | (A, a) ∈ G};
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fi;
od;
return ( C);
The main ingredient to prove that the following properties are invariants

of the while loop is Theorem 7.1.

I1 B̌ is a squarefree regular chain, for all (B̂, B̌) ∈ S
I1’ B is a squarefree regular chain, for all B ∈ C
I2 R(C) =

⋂
(B̂,B̌)∈S

R(B̌ M B̂) ∩
⋂

B∈C
I(B) is an irredundant characteristic de-

composition.
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