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Summary. This is the second in a series of two tutorial articles devoted to
triangulation-decomposition algorithms. The value of these notes resides in the
uniform presentation of triangulation-decomposition of polynomial and differential
radical ideals with detailed proofs of all the presented results.We emphasize the
study of the mathematical objects manipulated by the algorithms and show their
properties independently of those. We also detail a selection of algorithms, one
for each task. The present article deals with differential systems. It uses results
presented in the first article on polynomial systems but can be read independently.
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1 Introduction

Given a system of partial differential equations we wish to compute a rep-
resentation that is equivalent but for which we can analyze the solution set.
The first essential problem arising is whether the system admits any solution,
analytic or in terms of formal power series. The second central problem is to
describe the arbitrariness coming into the solution set i.e. how many initial
conditions can be chosen to ensure the existence and uniqueness of a solu-
tion. Those problems were addressed in the late nineteenth century by Cartan
and Riquier with different viewpoints [18, 58]. We will not attempt here any

1 Available at http://www.inria.fr/cafe/Evelyne.Hubert/Publi/sncsd.pdf.
2 Thanks go to Christian Aistleitner (RISC, Austria) and Moritz Minzlaff (IAKS,

Germany) for pointing out typos.
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historical review but wish to report on recent algorithmic development in
differential algebra in the line of the work of Ritt and Kolchin [61, 41], that
is partly based on the work of Riquier. Few bridges have been established be-
tween the different algebraic approaches and their algorithmic developments.
W. Seiler gives a review of the different algebraic and algorithmic approaches
in [68] and B. Malgrange advocates some mutual interaction in [46]. The ar-
ticle by A. Buium and P. J. Cassidy [15] gives an excellent account of the
emergence and development of differential algebra and the collections of sur-
veys and tutorials [40, 30] show the implications of differential algebra and
the work of J. F. Ritt and E. Kolchin with diverse branches of mathematics.
In particular the reader shall find the tutorial [69], that was communicated
to the author late in the preparation of these notes, complementary to the
present one.

Differential algebra is an extension of polynomial algebra aimed at the
analysis of systems of ordinary or partial differential equations that are poly-
nomially nonlinear. To a differential equation we associate a differential poly-
nomial and to a differential system we associate a radical differential ideal.
Questions about the solution set of the differential system are best expressed
in terms of that radical differential ideal. There are differential analogues to
the Nullstellensatz, the Hilbert basis theorem and the decomposition into
prime ideals. The latter point gives light to the old problem of singular solu-
tion of a single differential equation: the radical differential ideal of a single
differential polynomial may split into several prime differential ideals. One of
those describes the general solution and the others the singular solutions.

Loosely speaking, a triangulation-decomposition algorithm takes as input
a system of differential equations and outputs a finite set of differential sys-
tems with specific shape and properties. The set of solutions of the original
system is equal to the union of the nonsingular solutions of the output sys-
tems. The output systems are given by coherent differential triangular sets
of differential polynomials. The notion of differential triangular sets relies on
the definition of a ranking that is a total order on the derivatives compatible
with derivation. For any ranking, existence and uniqueness of formal power
series solutions are secured for coherent differential triangular systems [64]
but convergence of these power series depends on the ranking in use [43]. Also,
for so called orderly ranking, we can compute the differential dimension poly-
nomial [41] of a coherent differential triangular set. It has some resemblance
with the Hilbert polynomial and measures the arbitrariness coming into the
nonsingular solutions i.e. the number of arbitrary functions. Triangulation-
decomposition algorithms also belong to the class of differential elimination
algorithm. For a system of differential equations Σ = 0 and an appropriate
choice of ranking we can answer the following typical questions:

– is a differential equation (not apparent in Σ = 0) satisfied by all the solu-
tions of the system Σ = 0?
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– what are the differential equations satisfied by the solutions of Σ = 0
in a subset of the dependent variables? If Σ is a differential system in
the unknown functions y1, . . . , yn, one might be interested in knowing the
equations governing the behavior of the component y1 independently of
the others.

– what are the lower order differential equations satisfied by the solutions
of Σ = 0? In particular, one might inquire if the solutions of the system
are constrained by purely algebraic equations i.e. differential equations of
order zero.

– what are the ordinary differential equations in one of the independent vari-
ables satisfied by the solution set of Σ = 0? If Σ = 0 is a differential system
where t1, . . . , tm are the independent variables, finding the ordinary differ-
ential equations in t1 satisfied by the solutions might be used to solve
explicitly the system.

In Section 8 we give examples on how those questions arise in some applica-
tions. The reader might want to look at that section for motivation.

All those questions require in fact, a way or another, a membership test to
the radical differential ideal generated by the set of differential polynomials
Σ. We consider thus that we have a good representation for the radical differ-
ential ideal generated by a finite set of differential polynomials if it provides
a membership test. We shall seek a representation of that radical differen-
tial ideal as an intersection of characterizable differential ideals. In practice,
characterizable differential ideals are defined by regular differential chains,
i.e. a special kind of coherent differential triangular sets, that allow testing
membership through differential reduction. That final decomposition is called
a characteristic decomposition. To compute the characteristic decomposition
of the radical differential ideal generated by a finite set of differential polyno-
mials we shall proceed as follow in this paper: First compute a decomposition
into differential ideals defined by a regular differential systems, i.e. a system
consisting of a coherent differential triangular set of equations and some in-
equations. Then, a characteristic decomposition of each of the found regular
differential ideals can be computed by purely algebraic means, i.e. without
performing any differentiation [33]. For the decomposition into regular dif-
ferential ideals we expose the Rosenfeld-Gröbner algorithm by Boulier et al.
taken from [10]. Other alternatives are the factorization free versions of the
algorithm of Ritt and Kolchin [41, IV.9] proposed in [33] and [13]. Rosenfeld-
Gröbner is essentially different from those as the splitting scheme owes to the
elimination theory of Seidenberg [67]. For the decomposition of regular differ-
ential ideals into characterizable differential ideals we apply the pseudo-gcd
algorithm of Kalkbrener [38, 34]. There are also known alternatives [33, 11].

Ritt’s approach was essentially constructive and already in [59] he gave
a triangulation-decomposition algorithm for finitely generated radical differ-
ential ideals in the case of ordinary differential equations. The components
of the output there were prime differential ideals instead of the wider class
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of characterizable ideals. Later Ritt gave a triangulation-decomposition algo-
rithm for partial differential equations based on Riquier’s notion of passivity
[58, 37, 61] and Kolchin gave a triangulation-decomposition algorithm based
on Rosenfeld’s notion of coherence [62, 41]. Algorithmic aspects of differen-
tial algebra have drawn attention again around 1990 in view of applications
to theorem proving, control theory, analysis of over determined differential
systems and computation of Lie symmetries [76, 47, 27, 56, 57]. For want
of effectiveness, the primality of the decomposition that requires factoriza-
tion in towers of extension was to be removed. A key point for factorization
free triangulation-decomposition algorithms was revealed in [9]. It is a new
application of a lemma by Rosenfeld [62]. Rosenfeld’s lemma establishes a
bridge between differential algebra and polynomial algebra through coherent
autoreduced sets and by generalization through regular differential systems,
defined in [9]. Gröbner basis approaches to the problem of representation of
differential ideals have been studied in [16, 53, 47]. Those approaches have
practical interests and theoretical difficulties as differential Gröbner bases
can be infinite.

This paper is organized as follows.
In Section 2 the fundamental definitions and results in differential algebra

are reviewed. We introduce radical differential ideals and their decomposition
into prime differential ideals. We state the differential basis theorem and dis-
cuss the differential Nullstellensatz. This section is all based on the reference
books [61, 41].

In Section 3 we define differential rankings and show that they are well
orders. We then define the central objects that are the differential triangular
sets and give the algorithm of reduction by them. We also introduce differ-
ential characteristic sets.

Section 4 introduces coherence for differential triangular sets and proves
Rosenfeld’s lemma. Rosenfeld’s lemma allows us to lift results about ideals
defined by triangular sets in polynomial algebra to results about differen-
tial ideals defined by regular differential systems. These are the structure
theorems on which effective algorithms rely. They first appeared in [9, 10].

Section 5 introduces characterizable differential ideals and differential reg-
ular chains as a way of constructing all such differential ideals. We show the
fundamental principle that allows to compute a characteristic decomposition
of a regular differential ideals by purely algebraic means. This result appeared
in [33].

Section 6 presents the Rosenfeld-Gröbner algorithm of [10] to compute a
decomposition into differential ideals defined by regular differential systems.
The presentation is basically the original one. We nonetheless left out the
delicate implementation of the analogue of the second Buchberger criterion.

Section 7 then gives an algorithm based on Kalkbrener’s pseudo-gcd to
refine the decomposition into a characteristic decomposition.
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We give in Section 8 a couple of by now classical examples of applications
of differential elimination algorithms. These include solving ordinary differen-
tial systems, index reduction of differential-algebraic equations, observability
in control theory and symmetry analysis. Small examples computed with
the maple diffalg package [8] are presented. Many of these applications ap-
peared and were given successful achievements with other algorithms and
related software that are cited in the text.

For this paper we take the risk of introducing a new notation for the
radical differential ideal generated by a set Σ. The classical notation {Σ}
can indeed induce confusion between sets and radical differential ideals. We
suggest the notation JΣK, given that the differential ideal generated by Σ is
[Σ].

The algorithms presented are described by pseudo-code in the maple
style.

2 Differential algebra

Consider the differential system

y2
ss − 2 ytyst = y2

t − 1, y2
s + y2

t = 1

where y is a function of s and t and subscripts indicate derivation w.r.t. these
variables. The differential system is defined by the differential polynomials
p = y2

ss − 2 ytyst − y2
t + 1 and q = y2

s + y2
t − 1. An analytic solution of the

system is a common zero3. A common zero of p and q must be a zero of any
derivative of p or q and of any linear combination of those. For instance it
is a zero of r = p + q + δs(q) = y2

ss + 2 ysyss + y2
s , where δs indicates the

derivation according to s. Note that r = (yss + ys)2. Therefore a common
zero of p and q is a zero of yss+ys. The set of all the differential and algebraic
consequences of p and q is the radical differential ideal generated by p and q.
It has the same zero set as p and q and is in fact the biggest set having this
property.

We start by giving the formal definitions and properties of differential
rings and differential ideals. We then introduce the ring of differential poly-
nomials together with the fundamental results.

2.1 Differential rings and ideals

All rings R that we consider are commutative and contain the field Q of
rational numbers. A derivation δ on R is a map from R to R such that for
all a, b ∈ R
3 A precise definition of zero will appear later. It is nonetheless appropriate to

think analytic or meromorphic solution of the associated system when one reads
zero of a set of polynomial.
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δ(a+ b) = δ(a) + δ(b) δ(a b) = a δ(b) + δ(a) b

Example 2.1. On the polynomial ring Q[s, t] we can define the usual deriva-
tions δs = ∂

∂s and δt = ∂
∂t so that δs(s) = 1 and δs(t) = 0 and similarly

for δt. These two derivations commute: δs δt = δt δs. We could also consider
the Euler derivations δ̄s = s ∂

∂s and δ̄t = t ∂∂t so that δ̄s(s) = s, δ̄s(t) = 0
and similarly for δ̄t. For all examples in this paper we consider the usual
derivations δs and δt. They extend uniquely to Q(s, t).

Let ∆ = {δ1, . . . , δm} be a set of pairwise commuting derivations on a ring
R that are linearly independent over R. We note Θ the free commutative
monoid with a unit generated by ∆. An element θ of Θ is a derivation
operator. It can be written θ = δe11 . . . δem

m for some (e1, . . . , em) ∈ Nm. Its
order is then ord(θ) = e1 + . . . + em. The only derivation operator of order
zero is the identity. We note Θr, r ∈ N, the set of derivation operators of
order r or lower and Θ+ the set of derivation operators of positive order.

Endowed with a set ∆ of commuting derivations, a ring (or a field) R
becomes a differential ring (or a differential field). An element c of R is a
constant if δc = 0 for all δ ∈ ∆. When ∆ consists of a single derivation δ
we speak of an ordinary differential ring. If ∆ has more than one element
we have a partial differential ring. From now on we shall speak of differential
ring assuming that the set ∆ = {δ1, . . . , δm} of derivations has been fixed.

In a differential ring R, an ideal I of R is a differential ideal if it is stable
under derivation, that is δ(a) ∈ I, for all a ∈ I and δ ∈ ∆. A differential ideal
I is radical if ae ∈ I, for e ∈ N \ {0}, implies a ∈ I. It is prime if whenever a
product ab belongs to I at least one of the factor, a or b, belongs to I.

Given a set of elements Σ in a differential ring R, we note [Σ] the differ-
ential ideal generated by Σ i.e. the intersection of all the differential ideals
containing Σ. [Σ] is in fact the ideal generated by the elements of Σ together
with all their derivatives: [Σ] = (ΘΣ). JΣK denotes the radical differential
ideal generated by Σ, i.e. the intersection of all radical differential ideals con-
taining Σ. Because we assumed that Q ⊂ R, JΣK is the radical of [Σ] i.e. the
set {q ∈ R | ∃e ∈ N, qe ∈ [Σ]}.

Let H be a subset of R. We denote by H∞ the minimal subset of R
that contains 1 and H and is stable by multiplication and division i.e. a, b ∈
H∞ ⇔ ab ∈ H∞. When H consists of a unique element h we write h∞

instead of {h}∞. For a differential ideal I we define the saturation of I by a
subset H of R as I :H∞ = {q ∈ R | ∃h ∈ H∞ s.t. h q ∈ I}. I ⊂ I :H∞ and
I :H∞ is easily seen to be a differential ideal with Proposition 2.2 below. If
I is a prime differential ideal I :H∞ is either equal to I or F JY K according
to whether H ∩ I is empty or not.

Proposition 2.2. Let a, b be elements of the differential ring R. For any θ ∈
Θe, a

e+1 θb belongs to the ideal generated by the set {ψ(a b)|ψ ∈ Θ,ψ divides θ}.

Thus ae+1 θ(b) ∈ [a b], for all θ ∈ Θe and φ(a)ψ(b) ∈ JabK, for all φ, ψ ∈ Θ.
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Proof. This is trivially true if ord(θ) = 0. Assume the property is true for
all θ of order e or less. Let θ be a derivation operator of order e + 1. We
can write θ = δθ̄ for some δ ∈ ∆ and θ̄ ∈ Θe. By induction hypothesis
ae+1θ̄(b) =

∑
ψ|θ̄ αψψ(a b) for some αψ ∈ R. Thus

ae+2δθ̄(b) = a
(
δ

(
ae+1θ̄(b)

)
− (e+ 1)aeδ(a)θ̄(b)

)
= a

∑
ψ|θ̄

(δ(αψ)ψ(a b) + αψδψ(ab))− (e+ 1)δ(a)
∑
ψ|θ̄

αψψ(a b).

The conclusion follows.

2.2 Differential polynomial rings

Let F be a differential field for the derivations ∆ = {δ1, . . . , δm}. It is
assumed that F contains Q. Given a set of differential indeterminates
Y = {y1, . . . , yn}, we construct the ring of differential polynomials, F JY K
that is a ring in the infinitely many variables ΘY = {θy, y ∈ Y, θ ∈ Θ}
called the derivatives. This is naturally a differential ring for ∆. A differen-
tial polynomial p corresponds to a differential equation p = 0.

Example 2.3. The ordinary differential equation y′
2−t y′+y = 0 is modeled

by the differential polynomial q = (δty)
2−t δty+y in the ordinary differential

polynomial ring Q(t) JyK where the derivation on Q(t) is the usual one, i.e.
δt = d

dt .
Let us now look at a partial differential ring. Consider F = Q(s, t) en-

dowed with the derivations δs and δt of the previous example and Y = {y}.
The differential polynomial p = δsy δty+ s δsy+ t δty−y represent the differ-
ential equation ys yt+s ys+ t ys−y = 0 where we took the standard notation
ys = ∂y

∂s , yt = ∂y
∂t . In the examples we shall in fact use this notation for

differential polynomials so that p shall be written ys yt + s ys + t ys − y.

The analogue of the Hilbert basis theorem for polynomial rings is given
by the basis or Ritt-Raudenbush theorem. The most general proof is given
in [41]. The proof for ordinary differential ring is given in [61, 39].

Theorem 2.4. If J is any radical differential ideal in F JY K there exists a
finite subset Σ of F JY K s.t. J = JΣK.

This is equivalent to the fact that any increasing sequence of radical dif-
ferential ideals is stationary. The result does not hold for differential ideals.

Theorem 2.5. Any radical differential ideal J in F JY K is the intersection of
a finite number of prime differential ideals. When minimal, this decomposition
is unique.
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The decomposition is minimal if none of the components contains another
one. The prime differential ideals coming into the minimal decomposition are
called the essential prime components of J .

A n-tuple ξ = (ξ1, . . . , ξn) with components in a differential field extension
F ′ of F is a zero of a differential polynomial p ∈ F Jy1, . . . , ynK if p vanishes
when we replace the yi by the ξi.

Example 2.6. We considered in Example 2.3 the differential polynomial p =
yt

2− t yt + y in Q(t) JyK. The elements 1
4 t

2 and a(t− a) of Q(a, t), where a is
any constant (it could be transcendental), are zeros of p. In a matching way,
the minimal prime decomposition of JpK is given by

JpK = Jp, yttK ∩
q
4 y − t2

y
.

The zero of the second component has to be 1
4 t

2. The other zero, a (t − a),
is a zero of the first component.

A zero of a differential polynomial is also a zero of any of its derivatives.
If ξ is a common zero to a set of differential polynomials Σ, it is a zero of
any linear combination over F JY K of the elements of Σ and their derivatives.
This amounts to say that ξ is a zero of [Σ]. One can see it is also a zero of
JΣK since any element q of JΣK is such that qe ∈ [Σ] for some e ∈ N \ {0}.
One can inquire if there is a bigger set in F JY K that admits the same zeros
as Σ. The answer is given by the differential Nullstellensatz.

To any prime differential ideal P we can associate the differential field that
is the quotient field of the integral differential ring F JY K /P . The canonical
image of (y1, . . . , yn) on that field is a zero of P . It is in fact a generic zero,
i.e. every differential polynomial that vanishes on that zero belongs to P . If
P contains JΣK, that image is also a zero of JΣK. That abstract construction
of zeros allows us to state the differential Nullstellensatz, known also as the
theorem of zeros.

Theorem 2.7. Let Σ be a subset of F JY K.

– Σ admits a zero iff 1 /∈ JΣK
– a differential polynomial of F JY K vanishes on all the zeros ofΣ iff it belongs

to JΣK.

Indeed, if g ∈ F JY K vanishes on all zeros of Σ it must vanish in particular
on the generic zeros of the essential prime components of JΣK and therefore it
belongs to JΣK. In addition to this abstract setting, Ritt details the analytic
case, i.e. the case where F is a field of meromorphic functions in a region. If
g does not belong to a prime differential ideal P , an analytic zero of P can
be constructed so that it does not make g vanish. In the partial differential
case, this relies on the Riquier’s existence theorem [58].

Instead of trying to study directly the solutions of the differential system
Σ = 0 we shall inspect JΣK. Our goal is to give an adequate representation
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of JΣK. This representation shall allow us to test membership to JΣK and to
answer question about the zero set of Σ.

We shall discuss now systems of equations and inequations like Σ =
0,H 6= 0 where Σ and H are two finite but non empty set of differential
polynomials. Its best differential ideal representation is JΣK : H∞. Let us
note Z(Σ/H) the subset of the zeros of Σ that are not zeros of any element
of H. A differential polynomial p vanishes on Z(Σ/H) iff p ∈ JΣK : H∞.
Indeed, if h is the product the element of H then h p vanishes on all the zeros
of Σ so that h p ∈ JΣK. Note that if J is a radical differential ideal of F JY K,
J :H∞ is the intersection of the essential prime components of J that have an
empty intersection with H. The generic zeros of the essential components of
JΣK :H∞ are elements of Z(Σ/H). Note nonetheless that a zero of JΣK :H∞

can have an of H vanish. In the ordinary and analytic case, Ritt proves that
those zeros are adherent to Z(Σ/H) [61].

Example 2.8. In the ordinary differential polynomial ring Q(t) JyK, consider
the differential polynomial p = y2

t − 4 y3. The common zero to p and h = yt
is ξ = 0. You can nonetheless show [60] that JpK :h∞ = JpK so that ξ = 0 is a

zero of JpK :h∞. A general zero of p is given by c2

(c t−1)2 so that 0 is analytically

embedded in a family of zeros of p for which h does not vanish.

3 The tools for algorithms

This section defines the objects we manipulate for algorithms. We introduce
differential rankings that are orders on the derivatives that are compatible
with derivations. They provide well orders. Then it is possible to define con-
sistently leaders and differential triangular sets in an analogous way to what
is done in the polynomial case [34]. We give a reduction algorithm by differen-
tial triangular sets. A differential ranking induces a pre-order on differential
triangular set and this allows to define differential characteristic set and prove
their existence. We introduce all these concepts to set up algorithms. These
tools are nonetheless fundamental in showing the Ritt-Raudenbush theorem
of previous section.

In polynomial algebra, ideals defined by triangular sets have good struc-
tural properties. In differential algebra this happens if we add a condition,
namely coherence. This is studied in next section.

In this section, and the following, we have a fixed differential polynomial
ring F JY K = F Jy1, . . . , ynK with derivations ∆ = {δ1, . . . , δm}. The set of
derivation operators is denoted Θ.

3.1 Differential ranking

Definition 3.1. A differential ranking, or d-ranking, on a set of differential
indeterminates Y is a total order on the set of derivatives ΘY that satisfies
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for all u, v ∈ ΘY and all δ ∈ ∆ the two conditions

u ≤ δu, u ≤ v ⇒ δu ≤ δv

This of course implies that for any θ ∈ Θ we have u ≤ θu and u ≤ v ⇒
θu ≤ θv. If Y = {y1, . . . , yn} and the derivations are ∆ = {δ1, . . . , δm}, any
derivative of ΘY can be written as δe11 . . . δem

m yi and is thus determined by a
(m+1)-tuple (i, e1, . . . , em) in Nn×Nm, where Nn = {1, . . . , n}. Consequently,
a d-ranking is a total order on Nn × Nm that satisfies for any i, j ∈ Nn and
e, f, g ∈ Nm (i, e) ≤ (i, e + g) and (i, e) ≤ (j, f) ⇒ (i, e + g) ≤ (j, f + g).
The restriction of this order to {i} × Nm, for some i ∈ Nn, is an extension
of the direct product order on Nm. Conversely, if there is a single differential
indeterminate y, any order on Nm that is an extension of the direct product
order of Nm, noted �Nm , provides a d-ranking in a natural way. Recall that
a relation on a set M is well founded if every non empty subset of M has a
minimal element for this relation. This is equivalent to the fact that there is
no infinite decreasing sequence in M . See for instance [5, Chapter 4]. A well
founded order is a well-order.

Proposition 3.2. A d-ranking is a well order.

The essential ingredients for that is the first defining property of a d-
ranking and Dickson’s lemma.

Proof. Assume we have an infinite decreasing sequence of derivatives in ΘY.
Since Y is finite, we can extract from it an infinite subsequence of derivatives
{θky}k∈N of a single differential indeterminate y ∈ Y that is strictly decreas-
ing. The infinite sequence {θky}k∈N can be viewed as an infinite sequence
of Nm. By Dickson’s lemma [5, Corollary 4.48], there exists a subsequence
{θki

y}i∈N such that θki
y �Nm θkj

y for all i < j. This implies that θki
y ≤ θkj

y
for all i < j. This contradicts our assumption that the original sequence is
strictly decreasing.

Study and classification of d-rankings are examined in [17, 63]. We intro-
duce here only the most commonly used d-rankings. In Section 8 we shall see
that a d-ranking is chosen according to the kind of properties on the solution
set of a differential system we want to exhibit. A d-ranking is orderly if it
satisfies ψy < φx, for x, y ∈ Y and φ, ψ ∈ Θ, as soon as the order of φ is
greater that the order of ψ. Let Z be a subset of Y . A d-ranking on Y elimi-
nates Z if φy < ψz for any y ∈ Y \Z, z ∈ Z, ψ, φ ∈ Θ. We write Y \Z � Z.
A pure elimination d-ranking is such that yσ(1) � yσ(2) � . . . � yσ(n) for
some permutation σ of Nn.

Example 3.3. Consider an ordinary differential polynomial ring Q(t) JY K,
with derivation δt. If there is a single differential indeterminate, Y = {y},
there is only one possible d-ranking: y < yt < ytt < . . .. If Y = {y, z}, an
orderly d-ranking is given by y < z < yt < zt < ytt < . . .. An elimination
d-ranking is given by y < yt < ytt < . . . < z < zt < ztt < . . ..
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Example 3.4. Assume we have two derivations, δs and δt, and a single dif-
ferential indeterminate Y = {y}. The lexicographic order on N2 induces the
d-ranking y < ys < yss < . . . < yt < yst < ysst < . . .. An example of orderly
d-ranking is: y < ys < yt < yss < yst < ytt < . . ..

From now on, when we speak of the differential polynomial ring F JY K we
assume that we are given a differential ranking on Y . For u ∈ ΘY, we note
ΘY<u the set of derivatives that rank lower than u. Similarly ΘY≤u denotes
the set of derivatives that are equal to or lower than u. These sets are finite
when we have an orderly ranking but this needs not be the case for other
d-rankings.

Let p be a differential polynomial of F JY K that is not in F . The leader
and the initial of p are respectively the highest ranking derivative appearing
in p and the coefficient of its highest power in p. We shall denote them as
lead(p) and init(p) respectively. The separant of p is the formal derivative of
p w.r.t. its leader, i.e. ∂p

∂lead(p)
. It is denoted by sep(p).

If we take here u = lead(p) we can write

p = ad u
d + ad−1 u

d−1 + · · ·+ a0,

where ai ∈ F [ΘY<u], ad 6= 0. Then init(p) = ad and sep(p) = d ad u
d−1 +(d−

1) ad−1u
d−2 + · · ·+ a1. We define furthermore the rank of p, rank(p), to be

the term ud and tail(p) = p− init(p)rank(p) that is ad−1 u
d−1 + · · ·+a0 in the

above write up.
For δ ∈ ∆, the derivatives appearing in δ(p) consists of derivatives v

appearing in p and of their derivatives δv. The second defining property of
d-ranking allows us thus to state that δ lead(p) = lead(δp) for any δ ∈ ∆.
Furthermore, from the definition of the separant, we can write

δ(p) = sep(p) δ(lead(p)) +
∑
v∈ΘY

∂p

∂v
δv.

Thus δ(p) has degree one in its leader, δ(lead(p)) and sep(p) is the initial of
δ(p). By induction, for any θ ∈ Θ+, θlead(p) and sep(p) are respectively the
leader and the initial of θp and θp has degree one in θlead(p).

For two elements p, q ∈ F JY K, we say that p has higher rank (or ranks
higher) than q, and write rank(q) < rank(p), if either

– q ∈ F and p /∈ F
– lead(q) ranks lower than lead(p)
– lead(q) = lead(p) = u and deg(q, u) < deg(p, u).

The d-ranking on the differential indeterminates thus induces a pre-order4

on F JY K.
4 We take the convention that a pre-order is a relation that is reflexive, transitive

and connex. Therefore the difference with an order is that a ≤ b and b ≤ a does
not imply a = b.
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A differential polynomial q is partially reduced w.r.t. p if no proper deriva-
tive of lead(p) appears in q; q is reduced w.r.t. p if q is partially reduced w.r.t.
to p and the degree of q in lead(p) is strictly less than the degree of p in
lead(p).

Example 3.5. In Q(s, t){y} endowed with a d-ranking such that y < ys <
yt < yss < yst < ytt,

– q = yss − yt is partially reduced with respect to p = ytt + ys but not w.r.t.
p2 = ys + y

– q = (yt)3 + ys is partially reduced w.r.t. p = y2
t + y2

s but not reduced.

Let F be a finite subset of F JY K and u a derivative of ΘY. We note ΘF
the set of differential polynomials consisting of the element of F together with
all their derivatives. ΘF<u (respectively ΘF≤u) denotes the set consisting of
all elements of F together with all their derivatives the leaders of which are
of lower (respectively lower or equal) rank than u. In other words ΘF<u =
ΘF ∩F [ΘY<u] and ΘF≤u = ΘF ∩F [ΘY≤u]. ΘF<u and ΘF≤u need not be
finite. The following property follows directly from Proposition 2.2.

Proposition 3.6. Let F and H be finite subsets of F JY K and u ∈ ΘY. If
p ∈ (ΘF<u) :H∞ then θp ∈ (ΘF<θu) :H∞ for any θ ∈ Θ.

3.2 Differential triangular sets and differential reduction

In the ordinary differential case and w.r.t to an elimination ranking, the
chains of [61] coincide with the autoreduced set of [41]. The differential chains
defined here are slightly less restrictive but still allow to give the Ritt-Kolchin
definition and properties of characteristic set of differential ideals. An inter-
mediate step in defining differential chains is the notion of differential trian-
gular sets from [9] and reduction by these. In the algorithm of Section 6 the
additional notion of weak differential triangular set arises.

Definition 3.7. A subset A of F JY K is a weak differential triangular set, if

– no element of A belongs to F
– for any two distinct elements a, b of A lead(a) is not a derivative of lead(b).

It is a differential triangular set, or d-triangular set for short, if further-
more any element of A is partially reduced w.r.t. the other ones.

It is an autoreduced set if no element of A belongs to F and each element
of A is reduced w.r.t. all the others.

An autoreduced set is a (weak) d-triangular set.

Example 3.8. With the d-ranking y < ys < yt < yss < yst < ytt < . . .
the subset {ytt − y2

ss, ys − y} is a weak d-triangular, {ytt − y2
s , ys − y} is a

d-triangular set and {ytt, ys} is an autoreduced set.
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Proposition 3.9. A weak d-triangular set is finite.

Proof. This is of course another application of Dickson’s lemma. Assume
for contradiction that a weak d-triangular set is infinite. Take {ul}l∈N the
sequence of the leaders of this infinite weak d-triangular set. Since Y is finite,
there must be an infinite subsequence {ulk}k∈N such that ulk = θky for a
y ∈ Y . {θky}k∈N can be viewed as an infinite sequence of Nm. By Dickson’s
lemma, there exists a subsequence {θkiy}i∈N such that θkiy �Nm θkj

y for
all i < j. This means that θkjy is a derivative of θkiy. This contradicts the
definition.

Let a1, a2, . . . , ar be the elements of a weak d-triangular set A in-
dexed such that lead(a1) < lead(a2) < . . . < lead(ar). We write A =
a1 M a2 M . . . M ar. We can also use the M notation to construct weak d-
triangular sets by mixing differential polynomials a and weak d-triangular
sets A,B in the following ways: aMA (respectively AM a) denotes the weak
d-triangular set A ∪ {a} if the leader of a ranks lower (respectively higher)
than the leader of any element of A; AMB denotes the weak d-triangular set
A ∪ B if the leader of any element of A ranks lower than the leader of any
element of B and A ∪B forms a weak d-triangular set.

We denote L(A) = lead(A), IA = init(A) and SA = sep(A) the sets of
leaders, initials and separants of the elements of A. Also HA = IA∪SA is the
set of the initials and the separants of A.

For u ∈ L(A), Au denotes the element of A having u as leader. For
u ∈ ΘY, A<u (respectively A≤u) denotes the elements of A with leader
ranking lower than u (respectively lower or equal to u). A>u denotes the
elements of A with leader ranking higher than u. A<u and A≤u do not include
any derivative of the elements of A contrary to ΘA<u = ΘA∩F [ΘY<u] and
ΘA≤u = ΘA ∩ F [ΘY≤u]. Note that ΘA<u and ΘA≤u need not be finite nor
triangular.

Example 3.10. In Q(s, t) JyK endowed with the d-ranking s.t. y < ys < yt <
yss < ytt < . . . consider the d-triangular set A = ys − syM yt + y. Then
ΘA≤ytt = {ys − sy, yt + y, yss − sys − y, yst − syt, yst + ys, ytt + yt}.

When A is the empty set we take the convention that [A] = JAK = [0].
A differential polynomial is said to be (partially) reduced w.r.t. a weak

d-triangular set A when it is (partially) reduced w.r.t. each element of A.
Given an element q ∈ F JY K we can compute s ∈ S∞A and pd-red(q, A) that
is partially reduced w.r.t. A such that s q ≡ pd-red(q, A) mod [A]. Similarly,
we can compute h ∈ H∞

A and d-red(q, A) that is reduced w.r.t. A such that
h q ≡ d-red(q, A) mod [A]. We give examples of algorithms for differential
reduction and partial differential reduction. In the partial differential case, it
is neither enough to reduce successively by the elements of A starting with
the highest ranking one nor starting with the lowest ranking one. This is
illustrated in the next example.



14 Evelyne Hubert

Example 3.11. In Q(s, t){y} endowed with the ranking y < ys < yt < yss <
yst < ytt < . . . consider the differential polynomials a1 = yss−yt, a2 = y2

t−ys,
p = yst and q = ysss. A = a1 M a2 is an autoreduced set. On the one hand
d-red(p, a2) = p and d-red(p, a1) = yss that is not reduced w.r.t. A. On the
other hand d-red(q, a1) = q and d-red(q, a2) = yst that is not reduced w.r.t.
A.

Algorithm 3.12. pd-red .
Input: q ∈ F JY K, A a weak d-triangular set of F JY K.
Output: q̄ ∈ F JY K s.t.
– q̄ is partially reduced w.r.t. A
– ∃s ∈ S∞A s.t. s q ≡ q̄ mod (ΘA≤u) where u = lead(q)
– rank(q̄) ≤ rank(q)
q̄ := q;
while q̄ is not partially reduced w.r.t. A do
v := the highest ranking element of Θ+L(A) that appears in q̄.
a := any element of {b ∈ A | v is a derivative of lead(b)};
θ := the element of Θ s.t. θlead(a) = v;
q̃ := srem(q̄, θa, v);
q̄ := q̃;

od;
return(q̄);

Contrary to the algorithm proposed in [41, I.9], this algorithm taken from
[10] is not completely deterministic in the sense that at each step there may
be a choice among the elements of A by which one can reduce. This freedom
is an advantage in the sense we can make criteria to choose elements with
lower degree or smaller coefficients in order to limit expression swell.

By definition of weak d-triangular sets, Θ+L(A) ∩ L(A) = ∅. Therefore
θ needs to be in Θ+. Consequently θa is of degree one in v with initial
sep(a). The pseudo-division relationship obtained is s̃q̄ ≡ q̃ mod (θa) for
some s̃ ∈ sep(a)∞. Furthermore q̃ is free of v, and the derivatives appearing in
q̃ consist of derivatives that were in q̄ or derivatives lower than v. The highest
ranking element of Θ+lead(A) that appears in q̃ is of lower rank than v. The
sequence of the v’s appearing in the while loop is thus strictly decreasing. In
virtue of Proposition 3.2, the algorithm terminates. Note that the first v to be
selected has to rank lower than u = lead(p). Thus the differential polynomials
used for pseudo-division belong to ΘA≤u. The final relationship s q ≡ q̄
mod (ΘA≤u), for some s ∈ S∞A , follows from the intermediate pseudo-division
relationships.

The algorithm to compute a full reduction is no different. For a derivative
u ∈ ΘY occurring in q̄, we shall say that the differential polynomial q̄ ∈ F JY K
is reduced w.r.t. A at u if u is not a proper derivative of an element of L(A)
or, if u belongs to L(A), the degree of q in u is lower than the degree of Au
in u.
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Algorithm 3.13. d-red .
Input: q ∈ F JY K, A a weak d-triangular set of F JY K.
Output: q̄ ∈ F JY K s.t.

– q̄ reduced w.r.t. A
– ∃h ∈ H∞

A s.t. h q ≡ q̄ mod (ΘA≤u) where u = lead(q)
– rank(q̄) ≤ rank(q)

q̄ := q;
while q̄ is not reduced w.r.t. A do
v := the highest ranking derivative u ∈ ΘL(A) in q̄ s.t. q̄ is not reduced
w.r.t. A at u;
a := any element of {b ∈ A | v is a derivative of lead(b)};
θ := the element of Θ s.t. θlead(a) = v;
q̃ := srem(q̄, θa, v);
q̄ := q̃;

od;
return(q̄);

The full reduction algorithm of [41, I.9] by an autoreduced set first pro-
ceed by a partial reduction then an algebraic reduction. That strategy is not
possible when we reduce by a weak d-triangular set.

Note that q̃ is reduced w.r.t. to A at v and that the other derivatives
appearing in q̃ consist of derivatives that were in q̄ or derivatives lower than
v. The sequence of the v’s appearing in the while loop is therefore strictly
decreasing and thus the algorithm terminates (Proposition 3.2). According to
whether v ∈ lead(A) or v ∈ Θ+lead(A), we have a pseudo-division relationship
h̃q̄ ≡ q̃ mod (θa), where h ∈ sep(a)∞ or h ∈ init(a)∞. The final relationship
h q ≡ q̄ mod [A], for some h ∈ H∞

A follows from these intermediate pseudo-
division relationships.

3.3 Differential characteristic sets

In order to introduce and show the existence of differential characteristic sets
we define a pre-order on d-triangular sets. This pre-order is also of use in
proving the termination of algorithms.

Definition 3.14. Let A = a0 M . . . M ar and B = b0 M . . . M bs be two weak
d-triangular sets. We say that A has lower rank than B and write rank(A) <
rank(B) if there exists k, 0 ≤ k ≤ r, s, such that rank(ai) = rank(bi) for all
1 ≤ i ≤ k and either k = s < r or rank(ak) < rank(bk).

If A = BMC then rank(A) < rank(B) reflecting the inclusion of differen-
tial ideals [B] ⊂ [A]. In particular, if B is the empty set and A is not then
rank(A) < rank(B).
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Proposition 3.15. The pre-order on weak d-triangular set is well-founded.

Proof. Assume we have an infinite sequence of weak d-triangular sets {Aj}j∈N
that is strictly decreasing. We shall construct from it an infinite autoreduced
set of derivatives. Since this is not possible by Proposition 3.9, the result is
proved by contradiction.

Let a(1)
j be the element of lowest rank in Aj . The sequence {rank(a(1)

j )}j∈N
is decreasing and thus must be stationary after a certain j1 ∈ N. Let u1 =
lead(a(1)

j ) = u1 for j ≥ j1. For j > j1, Aj must have at least two elements.

Let a(2)
j be the second lowest ranked element in Aj , for j > j1. The sequence

{rank(a(2)
j )}j>j1 is decreasing and therefore must become stationary after a

j2 > j1. Let u2 = lead(a(2)
j ) for j ≥ j2. Because u1 and u2 are the leaders

of the two lowest elements of Aj2 they form an autoreduced set. Continuing
this way, we construct an infinite autoreduced set of derivatives {un}n∈N.

For the same reason as in the polynomial case we need to introduce specific
d-triangular sets in order to define differential characteristic sets.

Definition 3.16. A differential triangular set A is a differential chain if for
all x ∈ L(A) red(Ax, A<x) has the same rank as Ax.

Note that owing to the definition of d-triangular sets, Ax is partially
reduced w.r.t. A and therefore only algebraic reduction is needed to reduce Ax
by A<x. Basically this definition says that we can associate an autoreduced
set to a differential chain and the same discussion than in the polynomial
case applies.

The definition of a differential characteristic set of a differential ideal
is no different than the definition of a characteristic set of an ideal in the
polynomial case and the equivalence between the different definitions is shown
similarly.

Definition 3.17. Let I be a differential ideal in F JY K. A differential chain
A contained in I is a differential characteristic set of I if one of the following
equivalent conditions holds:

1. A is of minimal rank among the differential chains contained in I.

2. there is no non zero element of I reduced w.r.t. A.

3. ∀q ∈ I, d-red(q, A) = 0.

The existence of a differential characteristic set for any differential ideal
is secured by the first definition and by Proposition 3.15. The first definition
also secures that any two characteristic sets of a differential ideal have the
same rank.

Note that if d-red(p,A) = 0, for p ∈ F JY K and A a weak d-triangular set,
then p ∈ [A] :H∞

A . If A is a differential characteristic set of a differential ideal
I we thus have A ⊂ I ⊂ [A] :H∞

A .
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Proposition 3.18. If C is a differential characteristic set of a prime differ-
ential ideal P then P = [C] :H∞

C = [C] :S∞C .

To prove that P = [C] :H∞
C it is sufficient to note that no initial and no

separant of C can belong to P and therefore if d-red(p, C) = 0 then p ∈ P . The
fact that P = [C] : S∞C will be proved more generally in Section 5. Indeed,
recent algorithmic improvement in differential algebra owes to the idea of
using a wider class of differential ideals than prime differential ideals. We
define in Section 5 a less restrictive class of differential ideals that have those
properties of prime differential ideals exhibited in the proposition above.

4 Regular differential systems

A necessary and sufficient condition for the existence of a solution to a system
of differential equations such as

∂y

∂s
= f(s, t),

∂y

∂t
= g(s, t)

is that
∂f

∂t
=

∂g

∂s
. Coherence is a property that generalizes this condition

for systems given by d-triangular sets. Coherence implies formal integrability
and is a cousin concept of Riquier’s passivity [58, 37]. Riquier-Janet approach
is discussed in [2]. Informally speaking, the approach through coherence is
to the approach through passivity what Gröbner bases are to involutive or
Riquier bases.

The theorem that F. Boulier named Rosenfeld’s lemma [6], appeared in
[62]. A generalization of use for specialization in positive characteristic ap-
pears in [41, III.8]. As for algorithms, in characteristic zero, Kolchin applied
this theorem only in the special case of prime differential ideals [41, IV-9] to
compute prime characteristic decompositions.

F. Boulier and coauthors [9] showed the fundamental relevance of this the-
orem for effective algorithms to compute representation of radical differential
ideals that allow a membership test. Since then, several generalization were
shown. The original theorem applies to ideals [A] :H∞

A defined by a coherent
autoreduced set A. We give the version of [10] that applies to differential
ideals [A] :H∞ defined by a regular differential system (A,H). The proof is
nonetheless no different than the original one. The approach of E. Mansfield
[47] does not go through d-triangular sets explicitly. [52] gives a generalization
of Rosenfeld’s lemma that applies in this context.

As a general principle Rosenfeld’s lemma makes the bridge between dif-
ferential algebras and polynomial algebras through ideals that are defined
by coherent sets of differential polynomials. In virtue of this principle, many
a property of ideals defined by d-triangular sets can be lifted to differential
ideals defined by coherent d-triangular sets.
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In this section we first define the coherence of a d-triangular set and give
a finite test for it. We then prove Rosenfeld lemma and give the structure
theorem for differential ideals defined by regular differential systems.

4.1 Coherence

We define coherence of a d-triangular set A away from a set H. Classically
coherence of A is away from HA. In Section 6, H will be the set of differen-
tial polynomials by which it has been allowed to premultiply for reduction
and therefore are intrinsically assumed not to vanish identically. H can thus
involve separants or initials of elements that are no longer in A.

Testing coherence from its definition is an impossible task since it imposes
infinitely many conditions. We give the usual finite test that is analogous
to the construction of S-polynomials in the Gröbner bases theory. These
analogues to the S-polynomial we call the ∆-polynomials5. Inspired by the
Gröbner bases theory, an analogue to the second Buchberger criterion was
given in [10]. We present this criterion but the real difficulty of it is in its
implementation.

The ideals (A) :H∞, where A is a weak d-triangular set and H is a finite
set, we shall encounter can be understood as living in the polynomial ring
F [ΘY] but also as living in F [X] where X is a subset of derivatives that
include all the ones present in the differential polynomials of A and H. If V
is a finite set of derivatives such that A,H ⊂ F [V ] and I is the ideal (A) :H∞

considered in F [V ] then, since F [V ] is Noehterian,

– I is finitely generated: there exists a finite set G ⊂ F [V ] such that I = (G)
– I admits a primary decomposition in F [V ] say I = Q1 ∩ . . . ∩Qr.

If X is any set of derivatives such that V ⊂ X and Ie, Qe1, . . . , Q
e
2 are the

extension of I,Q1, . . . Qr to F [X], then Ie ∩ F [V ] = I and Qe1 ∩ F [V ] =
Q1, . . . , Q

e
r ∩ F [V ] = Qr. The point is that the polynomial ring in which

(A) :H∞ is considered is not very relevant. Since A and H are finite sets,
(A) : H∞ is finitely generated, admits a primary decomposition and any
computations on (A) :H∞ can be made in a polynomial ring with finitely
many variables.

Two derivatives u and v have a common derivative if there exist ψ, φ ∈ Θ
such that ψu = φv. This happens when u and v are the derivative of the same
differential indeterminate. Assume u = δe11 . . . δem

m y and v = δf11 . . . δfm
m y.

Then any δg11 . . . δgm
m y with gi ≥ max(ei, fi) is a common derivative of u and

v. If we take gi = max(ei, fi) we obtain the lowest common derivative of u
and v and that is noted lcd(u, v).

Definition 4.1. Let A be a weak d-triangular set in F JY K and H a subset
of F JY K. A is said to be coherent away from H (or H-coherent for short) if:

5 Though the analogy goes this way today, it is worth recalling that this construc-
tion of ∆-polynomial dates from 1959’s paper of Rosenfeld.
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– SA ⊂ H∞

– whenever a, b ∈ A are such that lead(a) and lead(b) have a common deriva-
tive, say v = ψ (lead(a)) = φ (lead(b)), φ, ψ ∈ Θ, then

sep(b)ψ(a)− sep(a)φ(b) ∈ (ΘA<v) :H∞.

Note that the leader of sep(b)ψ(a) − sep(a)φ(b) is lower than v and ob-
viously sep(b)ψ(a) − sep(a)φ(b) ∈ [A] :H∞. What is required here is that
sep(b)ψ(a)− sep(a)φ(b) can be obtained algebraically over the derivatives of
the element of A with leader lower than v.

Testing coherence can be done in fact with finitely many tests. For each
pair of differential polynomial a and b in the weak d-triangular set it is
sufficient to look at the differential polynomial corresponding to the lowest
common derivative between lead(a) and lead(b).

Definition 4.2. Let a and b be differential polynomials in F JY K. We note
∆(a, b) the ∆-polynomial of a and b that is defined as follow. If lead(a) and
lead(b) have no common derivative, then ∆(a, b) = 0. Otherwise let ψ, φ ∈ Θ
be s.t. lcd(lead(a), lead(b)) = ψ (lead(a)) = φ (lead(b)) . Then

∆(a, b) = sep(b)ψ(a)− sep(a)φ(b)

We could in fact replace sep(a) and sep(b) by their respective quotients
with gcd(sep(a), sep(b)) to limit expression swell when we compute the ∆-
polynomials.

Proposition 4.3. Let A be a weak d-triangular set and H a subset of F JY K,
SA ⊂ H. If for all a, b ∈ A we have ∆(a, b) ∈ (ΘA<v) : H∞, where v =
lcd(lead(a), lead(b)), then A is H-coherent.

Proof. Note first that for any h, p ∈ F JY K and θ ∈ Θ, θ(hp) ≡ hθ(p)
mod (γ(p) | γ divides θ, γ 6= θ). Assume that v = lcd(lead(a), lead(b)) =
ψ(lead(a)) = φ(lead(b)) for some ψ, φ ∈ Θ. Then ∆(a, b) = sep(b)ψ(a) −
sep(a)φ(b). Any other common derivative of lead(a) and lead(b) can be writ-
ten θv for some θ ∈ Θ. By the first remark θ (∆(a, b)) ≡ sep(b) θψ(a) −
sep(a) θφ(b) mod (γψ(a), γφ(b) | γ divides θ, γ 6= θ). According to the hy-
potheses and Proposition 3.6, θ (∆(a, b)) ∈ (ΘA<θv) : H∞. It follows that
sep(b) θψ(a)− sep(a) θφ(b) ∈ (ΘA<θv) :H∞.

The simplest test for coherence is thus the following. It gives only a suf-
ficient condition as shows the example.

Proposition 4.4. A weak d-triangular set A in F JY K is HA-coherent if
d-red(∆(a, b), A) = 0, for all a, b ∈ A.

Example 4.5. With the orderly d-ranking y < yt < ys < . . . consider the
d-triangular set A = aM b where a = y2

t − t2 and b = (yt − t) ys − 2 t + t s.
Then ∆(b, a) = 2 ytδt(b)− (yt− t)δs(a) = 2 yt (ys ytt− ys+ s− 2) is such that
d-red(∆(a, b), A) = (2 − s)(yt + t). Nonetheless, ∆(a, b) ∈

(
ΘA<yst

)
:H∞

A =
(δtb, a, b) : (yt(yt − t))∞ since yt + t ∈ (A) :H∞

A .
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Note that a differential characteristic set C of a differential ideal I must
be HC-coherent. Indeed ∆(a, b) ∈ [C] ⊂ I for all a, b ∈ C. Thus ∆(a, b) is
reduced to zero by C as prescribed by Definition 3.17.

We proceed to give the analogue of the second Buchberger criterion intro-
duced in [10]. This allows to check coherence by forming less ∆-polynomials.
To that end, let us introduce a notation for lowest common derivation oper-
ators. Assume φ, ψ ∈ Θ can be written φ = δe11 . . . δem

m and ψ = δf11 . . . δfm
m .

We define the lowest common derivation operator of φ and ψ to be φ�ψ =
δg11 . . . δgm

m where gi = max(ei, fi). In order to get familiar with that notation
in use for the rest of the section, note that if lead(a) = φy and lead(b) = ψy
for some y ∈ Y and φ, ψ ∈ Θ then

∆(a, b) = sep(b)
φ�ψ
φ

(a)− sep(a)
φ�ψ
ψ

(b)

and the coherence condition is that

∆(a, b) ∈
(
ΘA<φ�ψy

)
:H∞.

Theorem 4.6. Let A be a weak d-triangular set andH a subset of F JY K that
contains the separants of A. Let p, q, r ∈ A be s.t. lead(p) = φy, lead(q) = ψy
and lead(r) = θy for some y ∈ Y and φ, ψ, θ ∈ Θ. If the three following
conditions are satisfied

1. θ divides φ�ψ
2. ∆(r, p) ∈ (ΘA<θ�φy) :H∞

3. ∆(r, q) ∈ (ΘA<θ�ψy) :H∞

then ∆(p, q) ∈ (ΘA<φ�ψy) :H∞

Proof. Note first the easy equivalence φ�θ divides φ�ψ ⇔ θ divides φ�ψ ⇔
ψ�θ divides φ�ψ. By application of Proposition 3.6 to the hypotheses we ob-
tain:

φ�ψ
φ�θ

(∆(r, p)) ∈ (ΘA<φ�ψ y) :H∞,
φ�ψ
ψ�θ

(∆(r, p)) ∈ (ΘA<φ�ψ y) :H∞.

Since for all γ ∈ Θ we have γ(hp) ≡ hγ(p) mod (β(p) | β divides γ, β 6= γ)
we can write from the above memberships

sp
φ�ψ
θ

(r)− sr
φ�ψ
φ

(p) ∈ (ΘA<φ�ψ y) :H∞,

sp
φ�ψ
θ

(r)− sr
φ�ψ
ψ

(q) ∈ (ΘA<φ�ψ y) :H∞.

Multiplying the differential polynomials by sq and sp respectively and sub-
tracting one to the other, we get sr∆(p, q) ∈ (ΘA<φ�ψ y) :H∞. As sr ∈ H,
the conclusion follows.
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4.2 Rosenfeld’s lemma

To apply Rosenfeld lemma to H-coherent d-triangular sets we need some
additional reduction hypothesis on the pair (A,H). These properties were
encapsulated in the name regular differential systems in [9, 10].

Definition 4.7. A pair (A,H) is a regular differential system if

– A is a d-triangular set
– H is a set of nonzero differential polynomials partially reduced w.r.t. A
– SA ⊂ H∞

– for all a, b ∈ A, ∆(a, b) ∈ (ΘA<v) :H∞ where v = lcd(lead(a), lead(b)).

Note that the fact that A is a d-triangular set implies that the separants
of A are partially reduced w.r.t. A.

It is practical to define regular differential ideals as differential ideals of
the type [A] :H∞ where (A,H) is a regular differential system.

Theorem 4.8. Let (A,H) be a regular differential system in F JY K. A dif-
ferential polynomial that is partially reduced w.r.t. A belongs to [A] :H∞ if
and only if it belongs to (A) :H∞.

Proof. For a ∈ A we note ua and sa respectively the leader and the separant
of a. Let us consider p ∈ [A] : H∞. There thus exists a finite subset D of
Θ+ ×A s.t. for some h ∈ H∞ we can write

h p =
∑

(θ,a)∈D⊂Θ+×A

αθ,a θ(a) +
∑
a∈A

αa a (1)

for some αa, αθ,a ∈ F JY K. For each equation of type (1) we consider v to
be the highest ranking derivative of Θ+L(A) that appears effectively in the
right hand side.

Assume that p is partially reduced w.r.t. A. If the set D is empty then
p ∈ (A) :H∞. Assume, for contradiction, that there is no relation of type (1)
with an empty D for p. Among all the possible relationships (1) that can be
written, we consider one for which v is minimal.

Consider E = {(θ, a) ∈ D | θ(ua) = v} and single out any (θ̄, ā) of E. As
A is H-coherent, for all (θ, a) of E we have sā θ(a) ≡ sa θ̄(ā) mod (ΘA<v) :
H∞. Thus

sā h p ≡

 ∑
(θ,a)∈E

sa αθ,a

 θ̄(ā)+
∑

(θ,a)∈D\E

sāαθ,a θa+
∑
a∈A

sāαa a mod (ΘA<v) :H∞

(2)
so that we can find k ∈ H∞ s.t.

sāk p = βθ̄,ā θ̄(ā) +
∑

(θ, a) ∈ Θ × A,
θ(ua) < v

βθ,a θa+
∑
a∈A

βa a (3)
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for some βa, βθ,a ∈ F JY K.
We proceed now to eliminate v from the coefficients βθ̄,ā. We make use

of the fact that sā v = θ̄(ā) − tail(θ̄(ā)). Recall that tail(θ̄(ā)) contains only
derivatives lower than v. Multiplying both sides of (3) by sdā, where d is the
degree of v in the right hand side, and replacing sā v by θ̄(ā)− tail(θ̄(ā)) we
can rewrite the relationship obtained as

sā
d+1k p = γd θ̄(ā)d + . . .+ γ1 θ̄(ā) + γ0 (4)

where γ0, γ1, . . . , γd no longer contain v and γ0 ∈ (ΘA<v). The only occur-
rences of v in that right hand side is through θ̄(ā). Because p and the elements
of H are partially reduced w.r.t. A, v does not appear in the left hand side.
The coefficients γi, for 1 ≤ i ≤ d must be zero. We have thus exhibited a re-
lationship like (1) with a v lower than what we started from. This contradicts
our hypotheses.

In Section 6.4 we will see that for a weak d-triangular set B that is
K-coherent, we can compute a regular differential system (A,H) such that
L(A) = L(B) and [B] :K∞ = [A] :H∞. Some of the consequences of Rosenfeld
lemma we shall see can therefore be applied to coherent weak d-triangular
sets. But Rosenfeld lemma does not, as shows this example.

Example 4.9. In Q(s, t) JyK endowed with the d-ranking y < ys < yt < yss <
yst < ytt < . . . consider the weak d-triangular set A = ys M ytt − yss that is
1-coherent. ytt is partially reduced w.r.t. A and belongs to [A]. Nonetheless
ytt does not belong to (A).

There is a number of corollaries that immediately derives from Rosen-
feld’s lemma. The first one provides a membership test to regular differential
ideals. The second one conveys the fact that a regular differential system is
formally integrable (outside the union of the zeros of the elements of H).
These corollaries are in fact simple consequences of the property: A differ-
ential polynomial that is partially reduced w.r.t. A belongs to [A] :H∞ if and
only if it belongs to (A) :H∞. We saw that coherence, i.e. the fact that (A,H)
is a regular differential system, is a sufficient condition to get that property.
It is not a necessary condition as discussed in [69].

Corollary 4.10. Let (A,H) be a regular differential system. Then p ∈ [A] :
H∞ iff pd-red(p,A) ∈ (A) :H∞.

Corollary 4.11. Let (A,H) be a regular differential system and u ∈ ΘY
ranking higher than all the leaders of the elements of A. Then [A] :H∞ ∩
F [ΘY≤u] = (ΘA≤u) :H∞.

This trivially implies that if v > u, (ΘA≤v) :H∞ ∩ F [ΘY≤u] = (ΘA≤u) :
H∞. If we have an orderly d-ranking and v(n) is the highest derivative of
order n, then ΘA≤v(n) is the prolongation of A at order n. The property
implies that projection of the prolongation does not introduce new conditions:
(ΘA≤v(n+r)) :H∞ ∩ F [ΘnY ] = (ΘA<v(n)) :H∞. A procedure to compute a
power series solution according to any d-ranking is described in [64, 43].
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4.3 Regular differential ideals

Rosenfeld lemma allows us to lift the properties of the polynomial ideal (A) :
H∞ to the differential ideal [A] : H∞ when (A,H) is a regular differential
system. The first result in this line, Theorem 4.12, states that [A] : H∞

is radical. This is the key to effective algorithm. Theorem 4.13 shows that
we can inspect on the d-triangular set some properties of the essential prime
components of the regular differential ideal defined. Theorem 4.12 is the direct
lift of Lazard lemma and was first given in [9]. Theorem 4.13 appeared in [10]
and we give the proof of [33].

Theorem 4.12. Let (A,H) be a regular differential system of F JY K. Then
[A] :H∞ is a radical differential ideal.

Proof. Assume pe belongs to [A] :H∞ and let p̄ = pd-red(p,A). p̄e belongs to
[A] :H∞ and is partially reduced w.r.t. A so that it belongs to (A) :H∞. By
[34, Theorem 7.5] (A) :S∞A is radical. So is (A) :H∞ since SA ⊂ H∞. Thus
p̄ belongs to (A) :H∞ and therefore p belongs to [A] :H∞. It follows that
[A] :H∞ is radical.

Theorem 4.13. Let (A,H) be a regular differential system of F JY K such
that 1 /∈ (A) :H∞. C is a characteristic set of an associated prime of (A) :H∞

iff C is a differential characteristic set of an essential prime component of
[A] :H∞. Then L(C) = L(A).

There is therefore a one-to-one correspondence between the minimal
primes of (A) :H∞ and the essential prime components of [A] :H∞.

Proof. Since we assume 1 /∈ (A) : H∞, 1 /∈ [A] : H∞ by Theorem 4.8 and
[A] :H∞ is radical by Theorem 4.12.

Let X to be the set of the derivatives that are partially reduced w.r.t. A.
Then A,H ⊂ F [X]. Assume the minimal prime decomposition of [A] :H∞ is
[A] :H∞ =

⋂r
i=1 Pi. By Theorem 4.8, [A] :H∞∩F [X] =

⋂r
i=1 (Pi ∩ F [X]) =

(A) :H∞. All the P̃i = Pi ∩ F [X] are prime ideals in F [X] and therefore the
minimal primes of (A) :H∞ are to be taken among these P̃i. We shall show
first that all the P̃i are minimal primes of (A) :H∞.

P̃i must contain at least one minimal prime P̄i of (A) : H∞. Let p̄ be
an element of F [X] that belongs to P̃i but does not belong to (A) : H∞

and therefore does not belong to [A] : H∞ by Theorem 4.8. There exists
q ∈ F JY K , q /∈ Pi such that q p̄ ∈ [A] :H∞. Let q̄ = pd-red(q, A) so that
there exists s ∈ S∞A such that s q ≡ q̄ mod [A]. We have that q̄ /∈ (A) :H∞

otherwise q would belong to [A] :H∞ and therefore to Pi. Nonetheless, q̄ p̄
belongs to [A] :H∞ and thus to (A) :H∞ since it is partially reduced w.r.t. A.
This says that p̄ belongs to a minimal prime of (A) :H∞. Thus P̃i is contained
in the union of minimal primes of (A) :H∞. By the prime avoidance theorem
[28, Lemma 3.3] P̃i must be contained in one of the minimal primes, say P̄ ′i ,
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of (A) :H∞. Thus P̄i ⊂ P̃i ⊂ P̄ ′i . We must have P̄ ′i = P̄i and therefore P̃i is
a minimal prime of (A) :H∞.

If C̃i is the characteristic set of a minimal prime P̃i = Pi ∩ F [X] of
(A) : H∞, we saw in [34, Theorem 7.5] that L(Ci) = L(A). Thus C̃i is
a d-triangular set. Let p be an element of Pi and p̄ = d-red(p, C̃i). Then
p̄ ∈ Pi ∩ F [X] = P̃i. Ci being a characteristic set of P̃i, p̄ must be zero.
Therefore C̃i is a differential characteristic set of Pi.

As all differential characteristic sets of Pi have the same rank, if Ci is
another differential characteristic set of Pi, it is included in F [X]. Pi does
not contain any non-zero element reduced w.r.t. Ci and so neither does P̃i =
Pi ∩ F [X]. Ci is a characteristic set of P̃i.

5 Characterizable differential ideals

If A is a d-triangular set and p is a differential polynomial s.t. d-red(p,A) = 0
then p ∈ [A] : H∞

A . What Ritt and Kolchin used in their developments is
the fact that if A is the characteristic of a prime differential ideal P then
P = [A] : H∞

A = [A] : S∞A and d-red(p,A) = 0 ⇔ p ∈ [A] : H∞
A . Recent

algorithmic improvement in differential algebra owes to the idea of using
a wider class of differential ideals and d-triangular set. We shall introduce
differential regular chains [43] and show that they are the d-triangular sets
A for which p ∈ [A] : H∞

A ⇔ d-red(p,A) = 0 and then [A] : H∞
A = [A] :

S∞A . They define characterizable differential ideals that are particular cases
of regular differential ideals. Contrary to regular differential ideals though,
characterizable differential ideals can be defined intrinsically. They are the
best thing after prime differential ideals.

We proceed to define the characteristic decomposition of a radical differ-
ential ideal as the representation of this ideal into an intersection of charac-
terizable differential ideals.

We finally show that the characteristic decomposition of a regular dif-
ferential ideal can be trivially lifted from a characteristic decomposition in
polynomial algebra [33]. The remarkable thing is that it is independent of the
algorithm used to compute the algebraic characteristic decomposition. That
is the last main theorem on which is based the complete algorithm to com-
pute characteristic decompositions for finitely generated radical differential
ideals.

5.1 Differential regular chains

Definition 5.1. A differential ideal I is characterizable if for a differential
characteristic set C of I we have I = [C] :H∞

C . C is said to characterize I.

Membership to a characterizable differential ideal can thus be tested by
a simple differential reduction: if I is characterized by C then p ∈ I ⇔
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d-red(p, C) = 0. Prime differential ideals are characterizable for any d-
ranking. Characterizable differential ideals that are not prime do exist, but
that depends on the d-ranking.

We need nonetheless to determine when a d-triangular set A characterizes
[A] :H∞

A . The criterion was provided in [33].

Theorem 5.2. Let A be a d-triangular set of F JY K. A is a differential charac-
teristic set of [A] :H∞

A if and only if A isHA-coherent and A is a characteristic
set of (A) :H∞

A .

Proof. We claim that if A is a differential characteristic set of [A] : H∞
A

then A must be HA-coherent. For any a, b ∈ A, ∆(a, b) ∈ [A] ⊂ [A] :H∞
A .

Therefore d-red(∆(a, b), A) = 0 so that ∆(a, b) ∈ (ΘA<v) :H∞
A , where v =

lcd(lead(a), lead(b)). Now if A is a differential characteristic set of [A] :H∞
A ,

[A] :H∞
A has no non-zero element reduced w.r.t. A. It is then obviously also

the case for (A) :H∞
A .

Conversely, assume A is HA-coherent and a characteristic set of (A) :H∞
A .

If there would exist a non-zero differential polynomial p in [A] :H∞
A reduced

w.r.t. A then, by Rosenfeld’s lemma (Theorem 4.8) it would belong to (A) :
H∞
A . It cannot be so since A is a characteristic set of (A) :H∞

A . Thus A is a
differential characteristic set of [A] :H∞

A .

By application of Theorem 4.12 and Theorem 4.13, a characterizable dif-
ferential ideal [C] :H∞

C is radical and the characteristic sets of its essential
prime components have the same set of leaders as C.

Together with the results seen in [34, Section 5 and 7], we can give now
a characterization of practical use in terms of regular chains.

Corollary 5.3. Let A be a d-triangular set of F JY K. A is a differential
characteristic set of [A] :H∞

A iff the two following conditions are satisfied:

– A is HA-coherent
– A is a squarefree regular chain.

Proof. If A is a squarefree regular chain then A is a characteristic set of
(A) : I∞A and (A) : H∞

A = (A) : I∞A [34, Theorem 5.13 and Theorem 7.1].
Conversely, if A is a characteristic set of (A) : H∞

A then any element of
p ∈ (A) :H∞

A is such that red(p,A) = 0 and therefore p ∈ (A) : I∞A . Thus
(A) :H∞

A = (A) :I∞A so that A is a squarefree regular chain.We can conclude
thanks to Theorem 5.2.

It is reasonable to call a d-triangular set satisfying the two conditions
of the preceding corollary a differential regular chain so that we can state
the previous corollary in an analogous way to the polynomial counterpart
seen in [34, Theorem 5.13]: A differential triangular set A is a differential
characteristic set of [A] :H∞

A iff it is a differential regular chain.
We saw in [34] that when A is a squarefree regular chain then (A) :I∞A =

(A) :H∞
A = (A) :S∞A . This has the following implication which is used in [13].
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Corollary 5.4. If A is a differential regular chain then [A] :H∞
A = [A] :S∞A .

Proof. Let p ∈ [A] :H∞
A . Then pd-red(p,A) belongs to (A) :H∞

A . Since (A) :
H∞
A = (A) :S∞A , pd-red(p,A) belongs to (A) :S∞A and therefore p ∈ [A] :S∞A .

5.2 Characteristic decomposition

Let J be a radical differential ideal of F JY K. We call a characteristic de-
composition of J a representation of J as an intersection of characterizable
differential ideals, called components of J . Such a characteristic decomposi-
tion of J exists: J is the intersection of prime differential ideals and prime
differential ideals are characterizable.

Given a finite set Σ of differential polynomials of F JY K, computing a
characteristic decomposition of JΣK means finding the characteristic sets of
its components. In other words, given Σ, we want to compute differential
regular chains C1, . . . , Cr such that JΣK = ∩ri=1[Ci] : S∞Ci

. This provides
naturally a membership test to JΣK:

p ∈ JΣK ⇔ d-red(p, Ci) = 0 ∀i, 1 ≤ i ≤ r.

According to the d-ranking chosen this allows also to exhibit diverse proper-
ties of JΣK or equivalently of the zeros of Σ. As an example, assume we want
to know if the zeros of Σ are zeros of differential polynomials in only a subset
Z of the differential indeterminates Y . Compute a characteristic decomposi-
tion according to an elimination ranking Z � Y \ Z. If there exists such a
differential polynomial in Z, it must reduce to zero by the differential regular
chains in the decomposition. That is possible only if there is a differential
polynomial in all the differential regular chains that has a leader in ΘZ. In
view of the d-ranking, all the derivatives of this differential polynomial must
be in ΘZ. We can thus read on the differential regular chains the answer.

A characteristic decomposition of a radical differential ideal J is irredun-
dant if associating each component in the decomposition with the set of its
essential prime components yields a partition of the set of the essential prime
components of J . In other words, consider a characteristic decomposition of
J , J = ∩ri=1[Ci] :S

∞
Ci

. This decomposition is irredundant if any prime differ-
ential ideal that contains two distinct components [Ci] :S∞Ci

is not an essential
prime component of J .

5.3 Characteristic decomposition of regular differential ideals

We present now the theorem on which is based the last step of the character-
istic decomposition algorithm. It shows that the characteristic decomposition
of a regular differential ideal can be achieved algebraically, i.e. without per-
forming any derivations. The result was presented in [33].
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Theorem 5.5. If (A,H) is a regular differential system and (A) : H∞ =
∩ri=1 (Ci) :I∞Ci

is an irredundant characteristic decomposition then each Ci is
a differential regular chain and [A] :H∞ = ∩ri=1 [Ci] : S∞Ci

is an irredundant
characteristic decomposition.

Proof. From [34, Theorem 7.5], (A) :H∞ is radical as SA ⊂ H and therefore
all the components (Ci) : I∞Ci

in the irredundant decomposition are radical
ideals. It follows that each Ci is a squarefree regular chains and (Ci) : I∞Ci

=
(Ci) :H∞

Ci
.

Let Bi,j , 1 ≤ j ≤ ri, be characteristic sets for the minimal primes of (Ci) :
I∞Ci

so that (Ci) :I∞Ci
= ∩ri

j=1 (Bij) :I∞Bij
is an irredundant prime characteristic

decomposition. Thus (A) : H∞ =
⋂
i,j(Bij) : I∞Bij

is an irredundant prime
characteristic decomposition. By Theorem 4.13, [A] :H∞ =

⋂
i,j [Bij ] :H

∞
Bij

is an irredundant prime characteristic decomposition and L(Bij) = L(A) =
L(Ci). In particular Ci is a d-triangular set.

We prove now that Ci is HCi-coherent. Let a, b ∈ Ci. Since a and b
belong to ∩ri

j=1 [Bij ] : H∞
Bij

, so does ∆(a, b) and d-red(∆(a, b), Ci). Since
d-red(∆(a, b), Ci) is partially reduced w.r.t. all the Bij it must belong to
∩ri
j=1 (Bij) :H∞

Bij
= (Ci) :H∞

Ci
in virtue of Theorem 4.8. Now, Ci is a charac-

teristic set of (Ci) :H∞
Ci

so that d-red(∆(a, b), Ci) , that is reduced w.r.t. Ci,
must be zero. Ci is thus HCi-coherent.

We thus have proved that Ci is a differential regular chain. By Theo-
rem 4.13 and Corollary 5.4 [Ci] :S∞Ci

= [Ci] :H∞
Ci

= ∩ri
j=1 [Bij ] :H∞

Bij
is an ir-

redundant prime decomposition. We can conclude that [A] :H∞ = ∩ri=1 [Ci] :
S∞Ci

is an irredundant characteristic decomposition.

6 The Rosenfeld Gröbner algorithm

We saw that Rosenfeld’s lemma was a link between differential algebra and
polynomial algebra and is therefore the key to effective algorithms in differ-
ential algebra. Boulier et al. gave a first algorithm called Rosenfeld-Gröbner
in [9]. For a finite set of differential polynomials, the algorithm computes
in a factorization free way a representation of the radical differential ideal
generated that allows to test membership. The radical differential ideal is
represented as an intersection of regular differential ideals. Each regular dif-
ferential ideal was given by a regular differential system (A,H) together with
a Gröbner basis of the polynomial ideal (A) :H∞, hence the Gröbner part of
the name. The membership test was thus into two parts: first a differential
reduction by A and a membership test to (A) :H∞ by mean of the computed
Gröbner basis.

The algorithm for the decomposition into regular differential ideals was
greatly improved in [10]. That is the algorithm we reproduce here less the
application of the differential analogue of Buchberger second criterion. The
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full algorithm was implemented by F. Boulier in the diffalg package of maple
[8].

The splitting strategy of the Rosenfeld-Gröbner algorithm owes to the
differential elimination scheme of Seidenberg [67]. Alternative effective algo-
rithms evolving from the Ritt and Kolchin algorithm [41, IV.9] were presented
in [33] and [13]. The algorithm of [33] was the first to implement the present
strategy that is, first compute a decomposition into regular differential ideals
then refine it into a characteristic decomposition by purely algebraic means.
The algorithm of [13] is closer to Ritt and Kolchin’s algorithm. It inter-
twines purely algebraic and differential computations recursively to compute
a characteristic decomposition. Doing so one is able to compute a zero de-
composition and that is finer than the radical differential ideal decomposition
under study here.

6.1 Philosophy and data representation

The input to the algorithm are two finite sets F and S of differential polyno-
mials. The output is a finite set of regular differential systems, {(A1,H1), . . . , (Ar,Hr)},
such that

JF K :S∞ = [A1] :H∞
1 ∩ . . . ∩ [Ar] :H∞

r

Before we obtain regular differential systems we work with RG-quadruples
that we process towards being regular differential systems.

Definition 6.1. A RG-quadruple T is defined by a sequence of four finite
subsets G,D,A,H of F JY K such that

– A is a weak d-triangular set
– HA ⊂ H.
– D is a set of ∆-polynomials
– for all a, b ∈ A either∆(a, b) = 0 or∆(a, b) ∈ D or∆(a, b) ∈

(
Θ(A ∪G)<u

)
:

H∞
u , where u = lcd(lead(a), lead(b)) andHu = HA<u

∪ (H\HA)∩F [ΘY<u].

To a RG-quadruple noted T = (G,D,A,H) we associate the radical differ-
ential ideal J (T ) = JG ∪D ∪AK :H∞.

The weak d-triangular set A consists of the processed differential polyno-
mials, while G is the set of differential polynomials to be processed. Rosenfeld-
Gröbner starts with only one RG-quadruple, namely (F, ∅, ∅, S). Each step of
the Rosenfeld-Gröbner algorithm consists in processing one step further a RG-
quadruple (G,D,A,H). An element of G∪D is taken out and reduced w.r.t.
A. If the element does not reduce to an element of F , we insert it into A.
This is the role of the algorithm update presented in Section 6.5. New ∆-
polynomials are added to D and the separant and the initial of the new
element are added to H. To keep the decomposition correct, we need to in-
troduce new RG-quadruples containing the separant and the initial of the
new element.
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A RG-quadruple is nearly processed when it is of the type (∅, ∅, A,H). It
is the role of auto-partial-reduce in Section 6.4. to make the final step of taking
(A,H) to a regular system (B,K) so that JAK :H∞ = [B] :K∞. A regular
differential system (A,H) can be considered as a RG-quadruple (∅, ∅, A,H).
At all time the intersection of the differential ideals defined by the present
RG-quadruples is equal to JF K :S∞.

The coherence condition in the definition of a RG-quadruple is seemingly
difficult and the reason for that precision is dictated by the proof of the
last part of the algorithm auto-partial-reduce. Basically, the ∆-polynomial
between two elements of A is either awaiting treatment, and it belongs to D,
or it has been reduced to zero by A. It could also have been discarded by
some criterion.

First are presented the lemmas that allow to show the termination of
the algorithm, then the lemmas that allow the splittings. The algorithm is
afterwards divided in three parts.

6.2 Finiteness lemmas

We shall introduce a partial order on RG-quadruples that is a refinement of
the pre-order on d-triangular sets. This order is used to prove the termination
of the algorithm.

Definition 6.2. Let E and F be two finite subsets of F JY K. We say that
F precedes E w.r.t. ≺s if F is obtained from E by replacing only one of its
element by a finite number of elements of strictly lower rank. In other words

F ≺s E ⇔ ∃p ∈ E s.t. F =
{
E \ {p} ∪ {p1, . . . pk}, where rank(pi) < rank(p)
or E \ {p}

Proposition 6.3. The partial order ≺s on finite sets of F JY K is well
founded.

Proof. Let {Ei}i∈N be a strictly decreasing sequence of subsets of F JY K. It
can be represented by a finite number of trees. The roots of these trees are
the elements of E1. At each i, we transform one leaf, i.e. one element p of Ei,
into a node. The descendants of this node are the differential polynomials of
lower ranks p1, . . . , pk, k ∈ N, by which p is replaced. A final leaf correspond
to the sheer elimination of a polynomial. Therefore, the paths in the trees
consist of strictly decreasing sequences of differential polynomials. The trees
must have finite depth and thus the sequence {Ei}i∈N must be finite.

Definition 6.4. Let T = (G,D,A,H) and T̄ = (Ḡ, D̄, Ā, H̄) be quadruples.
We say that T ≺t T̄ if either

– rank(A) < rank(Ā)
– rank(A) = rank(Ā) and G ∪D ≺s Ḡ ∪ D̄
Proposition 6.5. The partial order ≺t on RG-quadruple is well founded.

Proof. It follows immediately from Proposition 3.15 and Proposition 6.3.
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6.3 Splitting

At each step of the algorithm we want to replace a differential polynomial
by its reduction by a weak d-triangular set. This implies premultiplying by
initials and separants and intrinsically assuming that we are seeking zeros
where those do not vanish. We need to look for the zeros where the separants
and the initials vanish, by introducing a branch split.

Let Σ and H be finite subset of differential polynomials. The first type
of split expresses that the zero set of Σ can be decomposed into the union of
the set of zeros of Σ that make no element of H vanish with the set of zeros
common to Σ and an element of H. This split is used in Ritt-Kolchin style
of algorithm [41, 33, 13]. The second kind of split introduced in [67] and used
in Rosenfeld-Gröbner algorithm [9, 10] is somewhat finer.

Proposition 6.6. Let Σ be a non-empty subset of a differential ring R.

– JΣ ∪ {ab}K = JΣ ∪ {a}K ∩ JΣ ∪ {b}K for all a, b ∈ R.
– JΣK = JΣK :H∞ ∩

q
Σ ∪

{∏
h∈H h

}y
for all finite subset H of R.

Proof. As JΣ ∪ {ab}K ⊂ JΣ ∪ {a}K , JΣ ∪ {b}K, the first inclusion is trivial. Let
p ∈ JΣ ∪ {a}K∩JΣ ∪ {b}K. There exist e, f ∈ N∗ s.t. pe = q+α and pf = r+β
where q, r ∈ [Σ] while α ∈ [a] and β ∈ [b]. Thus pe+f = (q + α)r + βq + αβ.
By Proposition 2.2, αβ ∈ JabK so that p ∈ JΣ ∪ {ab}K.

Consider h̄ the product of the elements of H. We have JΣK : H∞ =
JΣK : h̄∞. Let p ∈ JΣK : h̄∞ ∩

q
Σ ∪ {h̄}

y
. On the one hand there exists

e ∈ N∗ s.t. pe = q +
∑
θ∈Θ αθθ(h̄) where q ∈ [Σ] and {αθ}θ is a family of

elements of F JY K with finite support. Then pe+1 = qp +
∑
θ∈Θ αθp θ(h̄) so

that pe+1− qp ∈
q
h̄p

y
by Proposition 2.2. On the other hand

q
h̄p

y
⊂ JΣK. It

follows that pe+1 and therefore p belongs to JΣK.

If H = {h1, h2} we can thus write JΣK = JΣK : H∞ ∩ JΣ ∪ {h1}K ∩
JΣ ∪ {h2}K. Informally speaking, if we note Z(Σ) the set of zeros of Σ and
Z(Σ/H) the subset of zeros of Σ that do not make any element of H vanish,
we can write Z(Σ) = Z(Σ/{h1, h2})∪Z(Σ ∪{h1})∪Z(Σ ∪{h2}). We could
also make the following decomposition that introduces less redundancies:
Z(Σ) = Z(Σ/{h1, h2})∪Z(Σ∪{h1}/{h2})∪Z(Σ∪{h2}). In terms of radical
differential ideals it translates into JΣK = JΣK : {h1, h2}∞ ∩ JΣ ∪ {h1}K :
h2

∞ ∩ JΣ ∪ {h2}K. We give and prove the formal and general property that
is used in Rosenfeld-Gröbner algorithm.

Proposition 6.7. Let Σ be a non-empty subset of R.

– JΣ ∪ {
∏r
i=1 ai}K =

⋂r−1
i=1 JΣ ∪ {ai}K :{ai+1, . . . , ar}∞ ∩ JΣ ∪ {ar}K for any

a1, . . . , ar ∈ R.

– JΣK = JΣK :H∞ ∩
⋂

1≤i<r

JΣ ∪ {hi}K :{hi+1, . . . , hr}∞ ∩ JΣ ∪ {hr}K for any

H = {h1, . . . , hr} ⊂ F JY K.
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Proof. The result is trivial for r = 1. Assume this is true up to r − 1, for
r ≥ 2. We have

JΣ ∪ {a1 . . . ar}K = JΣ ∪ {a1}K ∩ JΣ ∪ {a2 . . . ar}K
= JΣ ∪ {a1}K :{a2, . . . , ar}∞ ∩ JΣ ∪ {a1} ∪ {a2 . . . ar}K ∩ JΣ ∪ {a2 . . . ar}K .

by application of Proposition 6.6. Noting that the last component is included
in the middle component, we can remove this latter so that JΣ ∪ {a1 . . . ar}K =
JΣ ∪ {a1}K :{a2, . . . , ar}∞∩JΣ ∪ {a2 . . . ar}K . We obtain the result by apply-
ing the induction hypothesis on JΣ ∪ {a2 . . . ar}K. The second point follows
immediately since JΣK = JΣK :H∞ ∩ JΣ ∪ {h1 . . . hr}K by Proposition 6.6.

6.4 Computing regular systems equivalent to weak coherent
d-triangular sets

We are going to give the last bit of the algorithm. For a pair (A,H) s.t.
(∅, ∅, A,H) is a RG-quadruple we compute a pair (B,K) that is a regular
differential system with the property that [A] :H∞ = [B] :K∞. The algorithm
consists simply in making partial reductions of the elements of A and H, but
the proof is quite involved.

Algorithm 6.8. auto-partial-reduce
Input: Two finite subsets A and H s.t. (∅, ∅, A,H) is a RG-quadruple
Output:

– the empty set if it is detected that 1 ∈ [A] :H∞.
– a set with a single regular differential system (B,K) with L(A) = L(B),
HB ⊂ K and [A] :H∞ = [B] :K∞

B := ∅;
for u ∈ L(A) increasingly do
b := pd-red(Au, B);
if rank(b) = rank(Au) then
B := BM b;

else
return(∅);

fi;
od;
K := HB ∪ {pd-red(h,B) |h ∈ H \HA};
if 0 ∈ K then

return(∅);
else

return({(B,K)});
fi;
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Correctness

In the proof we use implicitly the following lemma that is immediate to
establish.

Lemma 6.9. Let H and K be two subsets and I a (differential) ideal in a
(differential) ring R. If H∞K ⊂ H∞ + I then I :H∞ = I : (H ∪K)∞

The condition H∞K ⊂ H∞ + I means that for all k ∈ K there exists h
and h̄ in H∞ s.t. h k = h̄+ p for some p ∈ I.

We shall prove first that after the for loop, either 1 ∈ [A] :S∞A or for any
u ∈ L(A) we have:

I0 rank(A≤u) = rank(B≤u) and Bu is partially reduced w.r.t. B<u.
I1 S∞B<u

HA≤u
⊂ H∞

B≤u
+ (ΘB<u)

I2 HB≤u
⊂ H∞

A≤u
+ (ΘB<u)

I3 (ΘA≤u) :H∞
A≤u

= (ΘB≤u) :H∞
B≤u

The properties are true for the lowest u ∈ L(A) since then Au = Bu. Let
us assume that the properties I0, I1, I2, I3 hold for all v ∈ L(A) with v < u,
that is as we start a new iteration for u.

Note that induction hypothesis I3 implies that (ΘA<u) :H∞
A<u

= (ΘB<u) :
H∞
B<u

in virtue of Proposition 3.6 and induction hypothesis I1 and I2.
By induction hypothesis I0, L(B<u) = L(A<u) and thus u /∈ ΘL(B<u) as

A is a weak d-triangular set. The reduction of Au by B<u is in fact a reduction
on the coefficients of Au seen as a polynomial in u. If rank(b) 6= rank(Au) then
init(Au) belongs to (ΘB<u) :S∞B<u

and thus to (ΘA≤u) :H∞
A≤u

by I3 so that
1 ∈ [A] : H∞

A . Otherwise rank(b) = rank(Au), so that I0 is preserved, and
there exists s ∈ S∞B<u

such that

sAu ≡ Bu mod (ΘB<u)
s sep(Au) ≡ sep(Bu) mod (ΘB<u)
s init(Au) ≡ init(Bu) mod (ΘB<u)

From the latter equations, we see immediately that I1 and I2 are kept true.
From the pseudo-division relationship sAu ≡ Bu mod (ΘB<u) and the

induction hypothesis I3 we see that (ΘA<u) :H∞
A<u

+(Au) ⊂
(
(Bu) + (ΘB<u) :H∞

B<u

)
:

H∞
B<u

so that, by Lemma 6.9 and what we just have seen (property I1)
(ΘA≤u) : H∞

A≤u
⊂ (ΘB≤u) : H∞

B≤u
. Similarly the pseudo-division relation-

ship, induction hypothesis I3 and property I2 just shown give the converse
inclusion. Thus (ΘA≤u) :H∞

A≤u
= (ΘB≤u) :H∞

B≤u
so that I3 is preserved.

I0, I1, I2 and I3 are thus proved for all u ∈ L(A) unless we found that
1 ∈ [A] :H∞. They imply that B is a d-triangular set and (ΘA<v) :H∞

A<v
=

(ΘB<v) :H∞
B<v

for all v ∈ ΘY and [A] :H∞
A = [B] :H∞

B .
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Consider H̄ = H \HA and for v ∈ ΘY, write H̄v = H̄∩F [ΘY<v]. We shall
show now first that (ΘA<v) : (HA<v ∪ H̄v)∞ ⊂ (ΘB<v) :K∞ for all v ∈ ΘY
and [A] :H∞ = [B] :K∞. We shall prove then that (B,K) is a regular system.

By construction S∞B<v
H̄v ⊂ K∞+(ΘB<v) thus (ΘA<v) : (HA<v

∪H̄v)∞ =
(ΘB<v) : (HB<v ∪ H̄v)∞ ⊂ (ΘB<v) :K∞.

The latter inclusion implies that [A] :H∞ ⊂ [B] :K∞. For the converse
inclusion, we saw that HB ⊂ H∞

A + [B] and thus K ⊂ H∞ + [A] :H∞
A so

that [B] :K∞ = [A] : (HA ∪K \HB)∞ ⊂ [A] :H∞. We thus have the desired
equality [A] :H∞ = [B] :K∞.

Let u, v ∈ L(B) have common derivatives. We want to show that
∆(Bu, Bv) ∈ (ΘB<w) :K∞, where w = lcd(u, v). By construction there ex-
ists su ∈ S∞B<u

s.t. Bu ≡ suAu mod (ΘB<u) and sep(Bu) ≡ su sep(Au)
mod (ΘB<u). Thus Bu ≡ suAu mod (ΘA<u) : H∞

A<u
and sep(Bu) ≡

su sep(Au) mod (ΘA<u) :H∞
A<u

. Similarly there exists sv ∈ S∞B<v
s.t. Bv ≡

sv Av mod (ΘA<v) :H∞
A<v

and sep(Bv) ≡ sv sep(Av) mod (ΘA<v) :H∞
A<v

.
Take ψ, φ ∈ Θ s.t. w = lcd(u, v) = φu = ψv. Since φ(suAu) ≡ suφ(Au)

mod (ΘA<φu) and similarly for ψ(svAv) we can write:

∆(Bu, Bv) = sep(Bv)φ(Bu)− sep(Bu)ψ(Bv)
≡ svsep(Av)φ(suAu)− susep(Au)ψ(svAv) mod (ΘA<w) :H∞

A<w

≡ susv∆(Au, Av) mod (ΘA<w) :H∞
A<w

From the hypothesis on (A,H), ∆(Au, Av) ∈ (ΘA<w) : (HA<w
∪ H̄w)∞. Thus

∆(Bu, Bv) ∈ (ΘB<w) :K∞ so that (B,K) is a regular differential system.
Let us note here the difficulty encountered with a lighter coherence con-

dition for RG-quadruples. Assume that the hypothesis on (A,H) had been
∆(Au, Av) ∈ (ΘA<w) :H∞ for all u, v ∈ L(A). We could then not conclude
that ∆(Bu, Bv) ∈ (ΘB<w) : K∞ as the element of H could have required
reduction by some element of ΘB with leader bigger than w.

6.5 A simple updating of RG-quadruple

At each step we need to augment the weak d-triangular set of a RG-quadruple
with a new differential polynomial. We need to do it so as to preserve a RG-
quadruple structure. The sub-algorithm update we present in this section is
meant for that. It is in this procedure that the analogue of second Buchberger
criterion (Theorem 4.6) should be applied to prune the set of ∆-polynomials.
As in the polynomial case, this is a rather delicate matter [5, 10, 7] and only
a simple version of the update algorithm is given.

Algorithm 6.10. update
Input:

- a 4-tuple (G,D,A,H) of finite sets of F JY K
- p ∈ F JY K reduced w.r.t. A s.t. (G ∪ {p}, D,A,H) is a RG-quadruple
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Output: T̄ = (Ḡ, D̄, Ā, H̄) a RG-quadruple such that
- Ā ≺ A
- J

(
Ḡ, D̄, Ā, H̄

)
= J (G ∪ {p}, D,A,H) :{sep(p), init(p)}∞

u := lead(p) ;
GA := {a ∈ A | lead(a) ∈ Θu};
Ā := A \GA;
Ḡ := G ∪GA ;
D̄ := D ∪ {∆(p, a) | a ∈ Ā} \ {0} ;
H̄ = H ∪ {sep(p), init(p)};
return( (Ḡ, D̄, Ā<u M pM Ā>u, H̄) );

(Ḡ, D̄, Ā<u M pM Ā>u, H̄) is a RG-quadruple since:
- p is reduced w.r.t. A and therefore w.r.t. Ā so that Ā<u M pM Ā>u is a

weak d-triangular set.
- H̄ contains all the initials and separants of Ā<u M pM Ā>u
- Ā ∪ Ḡ = A ∪ G. Thus if a, b are elements of Ā, they are elements of A

so that, by hypothesis on the input, either ∆(a, b) = 0 or ∆(a, b) ∈ D or
∆(a, b) ∈

(
Θ(A ∪G ∪ {p})<v

)
:H∞

v where v = lcd(lead(a), lead(b)) and
Hv = HA<v ∪ (H \HA)∩F [ΘY<v]. Now D ⊂ D̄ and Hv ⊂ HĀ<v

∪ (H \
HĀ ∩ F [ΘY<v]).

- the ∆-polynomials of elements of Ā with p are added to D̄.
Because p is reduced w.r.t.A, rank(Ā<u M p) < rank(A≤u) so that rank(A<u M pM Ā>u) <
rank(A).

Furthermore the equality of differential ideals requested is immediate from
the facts that G ∪ A = Ḡ ∪ Ā and all the ∆(p, a) introduced in D̄ belong to
[Ā].

As it stands in this presentation, we could remove from D̄ the ∆-
polynomials involving elements of GA.

6.6 Core of the algorithm

After giving the algorithm we shall write down the invariants of the while
loop that help understanding the algorithm. In the algorithm description,
the set S contains the RG-quadruples that are still to be processed while A
contains the regular differential systems already obtained.

Algorithm 6.11. Rosenfeld-Gröbner
Input: F,K finite subsets of F JY K
Output: A set A of regular differential systems s.t.

– A is empty if it has been detected that 1 ∈ JF K :K∞

– JF K :K∞ =
⋂

(A,H)∈A

[A] :H∞ otherwise

– HA ⊂ H for all (A,H) ∈ A
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S := {(F, ∅, ∅,K)} ;
A := ∅ ;
while S 6= ∅ do

(G,D,A,H) := an element of S ;
S̄ := S \ {(G,D,A,H)}
if G ∪D = ∅ then
A := A ∪ auto-partial-reduce (A,H);

else
p := an element of G ∪D ;
Ḡ, D̄ := G \ {p}, D \ {p};
p̄ := d-red(p, A) ;
if p̄=0 then
S̄ := S̄ ∪ {(Ḡ, D̄, A,H)} ;

elif p̄ /∈ F then
p̄i := p̄− init(p̄) rank(p̄);
p̄s := deg(p̄, lead(p̄)) p̄− lead(p̄) sep(p̄);
S̄ := S̄ ∪

{
update (Ḡ, D̄, A, H, p̄),

(Ḡ ∪ {p̄s, sep(p̄)}, D̄, A, H ∪ {init(p̄)}),
(Ḡ ∪ {p̄i, init(p̄)}, D̄, A, H)

}
;

fi;
fi;
S := S̄

od;
return( A );

Correctness

We shall prove that the following properties are invariants of the while loop.

I0 All elements of S are RG-quadruple
I1 All elements of A are regular differential systems
I2 JF K :K∞ =

⋂
T∈S

J (T ) ∩
⋂

(A,H)∈A

[A] :H∞

These properties are trivially satisfied before the while loop. Assume
they are true at the beginning of a new iteration. A RG-quadruple T =
(G,D,A,H) is selected.

When G ∪D = ∅
I0 is trivially preserved. The output of auto-partial-reduce is the empty set

only if 1 ∈ JAK :H∞. Otherwise, the output of auto-partial-reduce is the set
{(B,K)} where (B,K) is a regular differential system s.t. [A] :H∞ = [B] :
K∞. By Theorem 4.12, [B] :K∞ is radical and therefore J (T ) = JAK :H∞ =
[B] :K∞. I1 and I2 are thus preserved.

If G ∪D is not empty
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I1 is trivially preserved. There exists h ∈ H∞
A≤u

s.t. h p ≡ p̄ mod (ΘA≤u)
where u = lead(p). Consequently J (T ) =

q
Ḡ ∪ D̄ ∪ {p̄} ∪A

y
: H∞ since

HA ⊂ H.
We check that for all a, b ∈ A we have that either ∆(a, b) = 0 or ∆(a, b) ∈

D̄ or ∆(a, b) ∈
(
Θ(A ∪ Ḡ ∪ {p̄})<v

)
:H∞

v , where v = lcd(lead(a), lead(b)) and
Hv = HA<v

∪ (H \ HA) ∩ F [ΘY<v]. If p was taken in D and p = ∆(a, b)
then u = lead(p) is lower than v = lcd(lead(a), lead(b)) and thus ∆(a, b) ∈
(ΘA<v ∪ {p̄}) : H∞

A<v
. Nothing changes for other elements of D. If p was

taken in G, we have to note that θp ∈
(
Θ(A ∪ {p̄})≤θu

)
: H∞

A≤u
so that(

Θ(A ∪G)<v
)
:H∞

v ⊂
(
Θ(A ∪ Ḡ ∪ {p̄})<v

)
:H∞

v for all v ∈ ΘY.
If p̄ = 0, (Ḡ, D̄, A,H) is thus a RG-quadruple by induction hypothesis on

I0 and we have J (T ) = J
(
Ḡ, D̄, A,H

)
. Therefore I0 and I2 are preserved.

If p̄ ∈ F , p̄ 6= 0, then 1 ∈ J (T ) so that this component can be dropped.
Otherwise, let us write s̄ = sep(p̄) and ı̄ = init(p̄). By Proposition 6.7

J (T ) =
q
Ḡ ∪ D̄ ∪ {p̄} ∪A

y
:H∞

=
q
Ḡ ∪ D̄ ∪ {p̄} ∪A

y
: (H ∪ {̄ı, s̄})∞

∩
q
Ḡ ∪ D̄ ∪ {p̄, s̄} ∪A

y
: (H ∪ {̄ı})∞ ∩

q
Ḡ ∪ D̄ ∪ {p̄, ı̄} ∪A

y
:H∞

(Ḡ, D̄, A,H) and p̄ satisfy the input specifications of update (Algo-
rithm 6.10). Then, by the output properties of that latter,

q
Ḡ ∪ D̄ ∪ {p̄} ∪A

y
:

(H ∪{̄ı, s̄})∞ = J
(
update(Ḡ, D̄, A,H, p̄)

)
and update(Ḡ, D̄, A,H, p̄) is a RG-

quadruple. Since [p̄, s̄] = [p̄s, s̄] and [p̄, ı̄] = [p̄i, ı̄] we can replace p̄ by respec-
tively p̄s and p̄i in the last two components of the above decomposition. We do
that to ensure that the corresponding RG-quadruples, (Ḡ ∪ {p̄i, ı̄}, D̄, A,H)
and (G ∪ {p̄s, s̄}, D̄, A,H ∪ {init(p̄)}), are lower than (G,D,A,H) for the
partial order of Definition 6.4. I0 is preserved and so is I2 since we proved
that

J (G,D,A,H) = J
(
update(Ḡ, D̄, A,H, p̄)

)
∩J

(
Ḡ ∪ {p̄s, s̄}, D̄, A,H ∪ {̄ı}

)
∩ J

(
Ḡ ∪ {p̄i, ı̄}, D̄, A,H

)
Termination

The algorithm proceeds by constructing a tree where the nodes are RG-
quadruples, the root being (F, ∅, ∅,K). The final leafs are RG-quadruples of
the type (∅, ∅, A,H) or RG-quadruples that define differential ideals con-
taining 1. At each iteration, we give to a RG-quadruple T = (G,D,A,H)
in S that is not a final leaf one or three descendants according to whether
p̄ = 0 or not. These descendant are RG-quadruples that precede T w.r.t. ≺q
(Definition 6.4) so that each path in the tree describes a decreasing sequence
of RG-quadruples. By Proposition 6.5 it must be finite.
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Improvements

In order to detect earlier inconsistencies, it is recommended to partially re-
duce the sets H in a RG-quadruple by the weak d-triangular set A. Also, it
is worth noting that there is no theoretical need for the initials to appear
in the output regular differential systems. One can consider adding them
to the sets H and splitting according to them only when they are used for
premultiplication in a reduction.

If the differential polynomial p̄ has multiple factors, it has common fac-
tors with its separant and then inconsistencies and redundancies will appear
in the computations. In the implementation it is worth making a partial fac-
torization of the differential polynomial p̄ and split according to its regular
factors. A differential polynomial is said regular if it has no common factor
with its separant. We can simplify a squarefree factorization scheme to pro-
duce the regular differential polynomials p1, p2 . . . , pr s.t. p̄ = pe11 p

e2
2 . . . per

r

for some ei ∈ N. Then
q
Ḡ ∪ D̄ ∪ {p̄}

y
:H∞ =

q
Ḡ ∪ D̄ ∪ {p1}

y
: (H ∪ {p2, . . . , pr})∞

∩
q
Ḡ ∪ D̄ ∪ {p2}

y
: (H ∪ {p3, . . . , pr})∞ ∩ . . . ∩

q
Ḡ ∪ D̄ ∪ {pr}

y
:H∞

in virtue of Proposition 6.7. The related RG-quadruples can then be added
to S.

7 Characteristic decomposition algorithm

In this section we give first an algorithm to compute the irredundant char-
acteristic decomposition of a regular differential ideal. We showed in Theo-
rem 5.5 that an irredundant characteristic decomposition of a regular differen-
tial ideal [A] :H∞ could be trivially lifted from an irredundant characteristic
decomposition of (A) :H∞ taken in F [X] where X is the set of derivatives
appearing in A and H. Together with the Rosenfeld-Gröbner algorithm that
provides a full algorithm to compute a characteristic decomposition of any
finitely generated radical differential ideal. The whole decomposition might
nonetheless be redundant. If one furthermore wants a prime characteristic
decomposition, it is just a matter of computing prime characteristic decom-
position of some zero dimensional radical ideals in some polynomial algebra.
It is an open problem to make that prime characteristic decomposition min-
imal.

7.1 Characteristic decomposition for regular differential ideals

This part is purely algebraic. We describe an algorithm based on Kalkbrener’s
pseudo-gcd algorithm6 to compute the irredundant characteristic decomposi-
tion of the an ideal defined by a triangular set saturated by at least its initial
6 Late in the preparation of these notes the author was pointed out to [4] where

the same idea has been developed independently
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and separants. Alternative algorithms are given in [33] and in [11]. The algo-
rithm in [33] is based on the computation of Gröbner bases. The algorithm
in [11] evolves on the ideas of [42, 51]. The outputs of both these algorithms
consist of Gröbner chains. They work by first reducing the problem to dimen-
sion 0 by extending the coefficient field with the non leading variables and
compute an irredundant decomposition according to the ranking induced on
the leading variables. In those approaches it needs to be proved additionally
that the decomposition obtained in dimension zero can be lifted back to pos-
itive dimension. A crucial point is to prove that the triangular sets obtained
by considering the non leading variables in the coefficient field are triangu-
lar sets for the original ranking on all the variables. This was shown to be
true independently of the algorithm used in [33, Theorem 3.10]. The three
algorithms have been implemented by their respective authors.

Algorithm 7.1. Irredundant-Characteristic-Decomposition
Input:

– F [X] a ring of polynomials.
– A a triangular set of F [X]
– H a finite subset of F [X] such that SA, IA ⊂ H∞

Output: A set C of squarefree regular chains such that

– C is empty iff (A) :H∞ = (1).
– Otherwise (A) :H∞ =

⋂
C∈C

(C) :I∞C is an irredundant decomposition.

C := {∅}
for x in X increasingly do
Hx := {h | h ∈ H, lead(h) = x};
if x /∈ L(A) then

for h in Hx do

C :=
⋃
C∈C

UC where (ZC ,UC) is the output of Ksplit(F [X≤x], C, h);

od;
else

for h in Hx do

C :=
⋃
C∈C

Krelatively-prime (F [X≤x][x], C,Ax, h)

od;
fi;

od;
return(C);

Termination is not an issue here since Ksplit and Krelatively-prime are
called a finite number of time.
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Correctness

We show that the outer for loop has the following invariants.

I1 C is a squarefree regular chain, for all C ∈ C.
I2 (A≤x) :H∞

≤x =
⋂
C∈C

(C) : I∞C is an irredundant characteristic decomposi-

tion.

The invariants are satisfied before the outer for loop when C = {∅} and
A<x = ∅. Let x ∈ X and assume the invariants are satisfied for all y ∈ X<x.

If x /∈ L(A)
By induction hypothesis on I1, any C in C is a squarefree regular chain so

that the output of Ksplit(F [X≤x], C, ∗) consists of squarefree regular chains.
I1 is preserved.

If (ZC ,UC) is the output of Ksplit(F [X≤x], C, h), where C is a squarefree
regular chain, then (C) : I∞C : h∞ = ∩B∈UC

(B) : I∞B . The inner for loop thus
computes an irredundant characteristic decomposition of (C) :I∞C :H∞

x . I2 is
preserved.

If x ∈ L(A)
By induction hypothesis on I2 and because HA ⊂ H, init(Ax) ∈ H<x is

not a zero divisor modulo any (C) :I∞C for any C ∈ C. Thus C MAx is a regu-
lar chain, for any C ∈ C. The inputs of Krelatively-prime are therefore correct.
The output of Krelatively-prime(F [X≤x][x], C,Ax, h) is an irredundant char-
acteristic decomposition 〈C MAx〉 : I∞C MAx

:h∞ = 〈B1〉 : I∞B1
∩ . . . ∩ 〈Br〉 : I∞Br

so that (C MAx) : I∞C MAx
: h∞ ⊂ (Bi) : I∞Bi

. The inner loop thus computes
an irredundant characteristic decompositions of 〈C MAx〉 : I∞C MAx

: H∞
x =

〈C1〉 : I∞C1
∩ . . . ∩ 〈Cr〉 : I∞Cr

so that (C MAx) : I∞C MAx
: H∞

x ⊂ (Ci) : I∞Ci
. If

deg(Ax, x) = 1 then C MAx is a squarefree regular chain and so are the Ci.
If deg(Ax, x) > 1 then sep(Ax) belongs to Hx so that (C MAx) :I∞C MAx

:H∞
x

is radical. It follows that all the (Ci) :I∞Ci
are radical and therefore the Ci are

squarefree regular chains. I1 and I2 are preserved.

7.2 The complete algorithm

We now have all the material to present an algorithm to compute a charac-
teristic decomposition of the radical differential ideal JF K :K∞ given by two
finite set F and K of differential polynomials in F JY K.

For a regular differential system (A,H) we define XA,H to be the finite
set of derivatives appearing in A or H. They are ordered according to the
underlying d-ranking on F JY K. x

Algorithm 7.2. Differential-Characteristic-Decomposition
Input: F,K finite subsets of F JY K
Output: A set C of regular differential chains s.t.

– C is empty iff 1 ∈ JF K :K∞
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– JF K :K∞ =
⋂
C∈C

[C] :S∞C otherwise

A := Rosenfeld-Gröbner (F, K);
C :=

⋂
(A,H)∈A

Irredundant-Characteristic-Decomposition (F [XA,H ], A,H)

return( C );

If A is not the empty set, the output properties of Rosenfeld-Gröbner imply
that JF K :K∞ =

⋂
(A,H)∈A[A] :H∞ where all (A,H) ∈ A are regular differen-

tial systems. If CA,H is the output of Irredundant-Characteristic-Decomposition
(F [XA,H ], A,H), (A) :H∞ =

⋂
C∈CA,H

(C) : I∞C is an irredundant character-
istic decomposition. By Theorem 5.5 [A] : H∞ =

⋂
C∈CA,H

[C] : S∞C is an
irredundant characteristic decomposition. Thus JF K :K∞ =

⋂
C∈C [C] :S∞C is

a characteristic decomposition.
In virtue of Theorem 4.13 or Theorem 5.5, the decomposition could be

refined to a prime characteristic decomposition by purely algebraic means.
By [34, Proposition 5.18] it is in fact a matter of decomposing the radical
zero dimensional ideals (C) in F(T(C))[L(C)] into prime ideals. That can be
achieved by factorizations in towers of extensions as described in [61]. One
can alternatively use Gröbner bases techniques and factorization of univariate
polynomials [5].

Note that in general the characteristic decomposition computed is not
irredundant. In the case we have computed a prime characteristic decompo-
sition, it is possible that one component contains another one.

The generalized Ritt problem is the following: given B and C differential
characteristic sets of prime differential ideals, can we algorithmically decide
whether [B] :S∞B ⊂ [C] :S∞C . This problem is equivalent to be able to compute
a basis for a prime differential ideal defined by its differential characteristic
set. Already in the case where B and C consist each of a single differential
polynomial the problem has remained unsolved.

If one can solve the Ritt problem one can for sure eliminate the redun-
dancy in the characteristic decomposition obtained by the presented algo-
rithm. But this might not be necessary. Indeed, in the case of the radical
differential ideal generated by a single polynomial p we can remove the re-
dundancy in a characteristic decomposition. The process is described in [41,
Chapter IV] and a factorization free algorithm starting from a decomposition
into regular differential ideals is given in [32]. It is based on the component
theorem and the low power theorem, which are among Ritt’s deeper results
in differential algebra [60]. The link between this algebraic theorem and the
analysis of singular solution is extremely interesting and still bears many
open problems. For lack of space we had to discard the discussion from the
present paper.
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8 Examples of applications

In this section we give examples of typical problems where the questions men-
tioned in the introduction arise. They are answered by computing a charac-
teristic decomposition. We treat here small examples with diffalg, a maple
package. The diffalg package was developed by F. Boulier for the main library
of maple V.5. The author has contributed extensions and improvements to
the package for maple V.5.1, 6 and 7. We provide a maple worksheet online
to demonstrate how to use the package on the presented examples and more
space demanding examples [8].

The different questions in the introduction require different d-rankings.
Assume we want to know if the solution of a differential system F = 0 satisfy
some algebraic constraints. That translates into determining if the radical
differential ideal JF K contains a differential polynomial of order 0. Take an
orderly ranking and compute a characteristic decomposition of JF K. If there
exists a differential polynomial of order 0 in JF K it must reduce to zero by the
differential regular chains defining the decomposition. This is possible only if
there are differential polynomials of order 0 in all differential regular chains.
We can thus read on the output differential regular chains the answer.

Similarly, assume we want to know if there is an ordinary differential
polynomial in one of the independent variables in JF K. That translates into
determining if there is a differential polynomials where all the derivatives are
given by a power of a single derivation, say δ1. We introduce a d-ranking s.t.
e1 < f1 implies δe11 . . . δem

m y < δf11 . . . δem
m z for any y, z ∈ Y . If the radical

differential ideal JF K contains a differential polynomial with only δ1 in the
derivatives, it must reduce to zero by the regular differential chains defining
the characteristic decomposition. These regular differential chains must thus
contain such a differential polynomial.

Unfortunately, no example of application to mechanical theorem proving
in differential geometry is given. The reader can refer to [76, 23, 44, 4].

8.1 Solving systems of ordinary differential equations

The abilities of the non linear differential system solver, dsolve, were enhanced
in maple 6 by using the diffalg package. For a single differential equation, a
characteristic decomposition exhibits the differential equations for the singu-
lar solution. If they are solved, the complete set of solutions is now returned
by dsolve.

The simple idea for solving ordinary differential systems is to take ad-
vantage of the solver for single non linear differential equation [21, 22, 20].
The input system is thus decomposed with respect to an elimination ranking.
We attempt then to solve the system in close form by solving iteratively sin-
gle differential equations in a unique indeterminate. These applications were
developed by E. Cheb Terrab in collaboration with the author. We give an
example for each problem.
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Example 8.1. Consider the differential equation (y′′+y3y′)2 = (yy′)2(4 y′+
y4). That differential equation came up in Chazy’s work to extend the
Painlevé analysis to 3rd order differential equations [19, 36]. The particu-
larity of this equation is that the general solution has no movable singularity
whereas one of the singular solution has.

Let p be the differential polynomial (ytt + y3yt)2 − (yyt)2(4 yt + y4) in
Q(t) JyK. The characteristic decomposition obtained for JpK is JpK = [p] :
s∞p ∩ [q] : s∞q ∩ [y] where q = yt(4 yt + y4) and sp and sq are the respective
separants of p and q. The complete set of solutions is now found by maple
6 or 7. Given semi-explicitely they are

y(t) = 0, y(t) = a, y(t)3 =
4

3 (x+ a)
, y(t) = a tan(a3 x+ b).

Example 8.2. Let us consider the differential system

x′ = y − x2, y′ = 4 yx − 4x3, z′ = z2 − 2x2 + y

to which we associate the set of differential polynomials F = {xt−y+x2, yt−
4 yx+4x3, zt−z2 +2x2−y} in the differential ring Q(t) Jx, y, zK. We use the
elimination ranking such that x � y � z. The characteristic decomposition
computed is JF K = [C] :H∞

C where C = xtt − 2xxt M y − xt − x2 M zt − z2 +
x2 − xt. The solution of the original system is thus given by the solutions of
the differential system below that is amenable, by a chain resolution, for a
solver of differential equations.

x′′ = 2xx′, y = x′ + x2, z′ = z2 − x2 + x′.

The solutions are (x(t), y(t), z(t)) =
(
a tan(at+ b), a2 + 2 a2 tan(at+ b)2, a tan(at+ c)

)
where a, b, c are arbitrary constants.

Another way of solving regular differential systems is to use the results of
[26]. It is shown there that any regular differential system is equivalent to a
single differential equation. A method to compute that differential equation
is given.

8.2 New classes of ordinary differential equations

Another application of characteristic decomposition algorithms in the line
of solving ODE was explored by E. Cheb Terrab. The idea is to create new
classes of ordinary differential equations, say of first order, that can be solved
together with a way of recognizing whether a given ordinary differential equa-
tion is in the class.

Example 8.3. We look for the condition on the function f for the ordinary
first order differential equation dy

dx = f(x, y) to admit a group of symmetry
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the infinitesimal generator of which, ξ(x, y) ∂∂x +φ(x, y) ∂∂y , have its coefficient
satisfying

ξy + 1 = 0, xξx − y − ξ = 0, φx − 1 = 0, yφy − φ+ x = 0, φy − ξx = 0. (5)

Those equations say that ξ(x, y) = αx − y, φ = x + α y, where α is an
arbitrary constant. If f is as desired, dy

dx = f(x, y) can be transformed to

a quadrature dv
du = g(u) with the change of variables7 u = 1

2 ln(x2 + y2) −
α arctan

(
y
x

)
, v = arctan

(
y
x

)
.

The equations dy
dx = f(x, y) that admit a group of symmetry with in-

finitesimal generator ξ(x, y) ∂∂x + φ(x, y) ∂∂y are the ones that satisfy

φx + φy f − ξx f − ξy f
2 − ξ fx − φ fy = 0 (6)

We therefore consider Q(x, y) Jf, φ, ξK, endowed with derivations according
to x and y, and the set F of differential polynomials that correspond to
equations (5) and (6). To find the conditions on f we must assign a d-ranking
that eliminates ξ and φ. We choose f < fy < fx < fyy < fxy < fyy < . . . <
ξ < ξy < ξx < . . . < φ < φy < φx < . . .. The characteristic decomposition
computed is {Σ} = [C1] :H∞

C1
∩ [C2] :H∞

C2
where C1 is(

(y2 + x2)fy − x(f2 + 1)
)
fxy −

(
(y2 + x2)fx + y(f2 + 1)

)
fyy

+2 fyf(fyy + xfx)− fy(f2 + 1) + x(fx2 + fy
2)

M
(
(y2 + x2)fy − x(f2 + 1)

)2
fxx −

(
(y2 + x2)fx + y(f2 + 1)

)2
fyy

+
(
(y2 + x2)(4xf − y)fy − 2x(f2 + 1)(xf − y)

)
f2
x

+
(
(y2 + x2)(x+ 4 yf)fx + 2 y(f2 + 1)(yf + x)

)
f2
y

+(y2 + x2)(xfx3 − yfy
3)

−(f2 + 1)
(
2 (y2 + x2)fxfy + (f2 + 1)(yfy − xfx)

)
M (fyy + xfx)φ−

(
y2 + x2

)
fx − y(f2 + 1)

M (fyy + xfx) ξ +
(
y2 + x2

)
fy − x

(
f2 + 1

)
.

and C2 is

(x2 + y2) fy − x(1 + f2) M (x2 + y2) fy + y(1 + f2)
M yφy − φ+ x, M φx − 1, M y ξ − xφ+ x2 + y2.

The leaders have been underlined.
Let us be given f . If the two first differential polynomials of either C1 or

C2 vanish on f , we are able to reduce the differential equation dy
dx = f(x, y)

to a quadrature with the change of variables given above.
In the case determined by C2, the zero of the two first differential poly-

nomials is given by a formula of the type x+αy
αx−y . The solutions are given

7 [54, Chapter 2.5] details how to find this change of variables from the knowledge
of the infinitesimal generator.
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implicitly as 1
2 ln(x2 + y2) + α arctan

(
y
x

)
= c, where c is an arbitrary con-

stant.
In the case determined by C1, the two last differential polynomials allow

us to determine the right pair ξ, φ. For instance, one can check that the

function f(x, y) = y+xH(x2+y2)
x−y H(x2+y2 , where H is an arbitrary function of one

variable, makes the two first differential polynomials of C1 vanish and entails
ξ(x, y) = −y, φ(x, y) = x. The change of variables u = 1

2 ln(x2 + y2), v =
arctan

(
y
x

)
then transforms dy

dx = f(x, y) to the quadrature dv
du = H(e2u).

8.3 Differential algebraic systems

Consider implicit differential systems F (t, Y, Y ′) = 0, where Y = (y1, . . . , yn)
and F = (f1, . . . , fn) is a polynomial map. When the Jacobian w.r.t. Y ′,
is identically zero, it indicates that there are algebraic constraints on the
components of Y and classical schemes of numerical integration fail. The
difficulty of numerical integration has been measured by the differential index
and specific numerical schemes can handle low index cases [14, 31, 3].

Algorithms specifically designed to reduce a quasi-linear differential-
algebraic system to a system a priori amenable to numerical computations
were given in [70, 72]. The difficulty is that the expressions can become really
big and one is faced with their numerical evaluation. A successful study of a
sample of high order index systems was carried out in [72] and the related
software and test set are available [71]. We give here only one common exam-
ple. Interestingly, the computation could not be completed before the results
of [33] were implemented.

Example 8.4. We consider the set of differential polynomials in Q(t) Jλ, x, y, ν, u, vK

F = { xtt − 2λx+ 2 νu, ytt − 2λy + 2 νv, x2 + y2 − 1,
utt + xtt − 2 νu, vtt + ytt − 2 νv + 1, u2 + v2 − 1 }.

The defined system of ordinary differential equations describes the motion of
a double pendulum in Cartesian coordinates. The indeterminates λ, ν are the
Lagrangian multipliers used to obtain the equations. It is of course possible
to transform it into a set of differential polynomials of order one or less
by introducing new differential indeterminates, but in the present approach
it is better not to. If we are interested in knowing the trajectory of the
two masses only, we choose a d-ranking s.t. {x, y, u, v} � {λ, ν} and the d-
ranking on {x, y, u, v} is orderly. The characteristic decomposition obtained
is JF K = [C1] :S∞C1

∩ [C2] :S∞C2
where

C1 = x2 + y2 − 1 M u2 + v2 − 1
M x2u2(2 yv(yv−xu)−y2−v2−1) ytt
−(yu− xv)(x3v2

t + u3y2
t − x3u2v) + yu2y2

t + x4u2

M x3u2 vtt − x2u3(xu+ yv)ytt + x3vv2
t − u3vy2

t − x3u4

M 2u2x3y λ− x2u2(v(xv − yu) + x)ytt + x3vv2
t + u3vy2

t − x3u2(v2 + 1)
M 2 v ν − ytt − vtt − 1
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and
C2 = y2 − 1 M x M v2 − 1 M u M λ− y M 2ν − v.

The leaders have been underlined. C2 represent the equilibrium, while C1

represent the motion. It is described by two second order differential polyno-
mials together with two constraints. The solutions thus depends on only four
arbitrary constants (initial conditions) only.

8.4 Observability of control systems

The work of M. Fliess, T. Glad and coworkers showed the relevance of con-
structive differential algebra in control theory [29]. We consider systems of
the type

X ′ = F (X,U,Λ), Y = G(X,U,Λ),

where X = (x1, . . . , xn) are the state variables, U = (u1, . . . , uk) are the
control variables, Λ = (λ1, . . . , λp) are parameters and Y = (y1, . . . , yd) are
the output variables. The questions that one can answer with a characteristic
decomposition, when F and G are rational maps, are

– what are the differential equations giving Y in terms of U (the input-output
representation).

– can the sate variables be deduced from the knowledge of the output Y and
the controls U . In which case the system is observable.

– can the parameters be deduced uniquely from the knowledge of the output
Y and the controls U . In which case the system is identifiable.

The first step is to consider the set of differential polynomials C obtained
from the above equations together with the additional differential polynomi-
als λ1t, . . . , λpt and the set S of numerators coming into F and G. The answer
to the previous questions can be read from a characteristic decomposition of
JF K :S∞ w.r.t. a d-ranking s.t. U � Y � X ∪ Λ.

Example 8.5. Consider the following system with one control and one pa-
rameter:

x′1 = x1 − λu, x′2 = x2(1− x1), y = λx1.

We compute the characteristic decomposition of F = {x1t − x1 + λu, x2t −
x2(1− x1), y− λx1, λt} in Q Jx1, x2, y, λK endowed with a d-ranking s.t. u�
y � λ� {x1, x2}. We obtain JF K = [C1] :S∞C1

∩ [C2] :H∞
C2
∩ [C3] :H∞

C3
where

C1 = uytt − uyt − utyt + utyMuλ2 − yt + yM (yt − y)x1 − λuy
M (yt − y)x2t − x2(yt + y + λyu)

C2 = uM yt − yMλx1 − yMλx2t − x2(λ+ y)

C3 = yMλMx2t − x2(1− x1) Mx1t − x1
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We read from C1 that generically, the parameter λ is algebraically identifiable
and x1 is algebraically observable: for a given input and output there are
only a finite number of possibilities for their values. On the contrary x2 is
not observable. From C2 we see that when u = 0 the parameter λ is no longer
identifiable.

A number of biological models arising in the literature are examined under
variants of the characteristic decomposition algorithms in [50]. Another ap-
proach is to note that C is a characteristic set for a d-ranking U ∪Λ� X∪Y
with an orderly ranking on X ∪ Y and that [C] : S∞ is a prime differential
ideal. We can take advantage of this fact to avoid splitting when computing a
characteristic decomposition for the d-ranking U∪Y � X∪Λ. This approach
is brought to a very efficient algorithm in [12]. Also, A. Sedoglavic developed
an algorithm specific to the question of observability and identifiability [66].
The probabilistic aspect of it brings it to a polynomial time algorithm.

8.5 Symmetry analysis of partial differential equations

A source of over-determined systems of partial differential equations comes
from symmetry analysis. The determining equations of the infinitesimal gen-
erators of the Lie symmetry group of a differential equation form a set of
linear partial differential equations. Reducing this set allows to determine if
there is a symmetry, to analyze the structure of the group and apply that
knowledge to classification problems or to find a reduction of the original
equation [54]. Because the system is linear, there is a number of alternative
algorithms that can be applied. For a bibliography on the subject, the reader
is invited to check [1, 65]. We just give an example that will illustrate a way
to solve systems of partial differential systems.

Example 8.6. The determining equations for the infinitesimal generators of
the Lie symmetry group of the Burgers’ equation ut = uss − uus are given
by the set F of differential polynomials below.

F = {−τu − ξs,u, ξs,s + 2 τs − ξt,−uφs + φs,s − φt, 2 τs,u + 2uτu − φu,u,
φ − τt + uτs − 2φs,u + τs,s,−ξu,u,−ξs,−ξu,−τu,u }

We shall use a d-ranking that is induced by a lexicographical order on the
derivation variables s, t, u, i.e. a d-ranking such that

ξ < τ < φ, ξu < τu < φu < ξuu < τuu < φuu < . . .
< ξt < τt < φt < ξtu < τtu < φtu < ξtuu < . . .

in order to exhibit the ordinary differential equations in u satisfied by the ze-
ros of F . The characteristic decomposition for JF K has a single component as
the differential polynomials of F are linear. It corresponds to the differential
system:
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ξu = 0, τu = 0, φuu = 0,
ξt = −2φu, τt = φ − uφu, φtu = φt

u , φtt = 0,
ξs = 0, τs = −φu, φs = −φt

u .

Form this differential characteristic set we can determine that the symmetry
group is of dimension 5. We can even solve the determining equations, starting
with solving the ordinary differential polynomials in the above set. We find
the solution (φ(t, s, u), τ(t, s, u), ξ(t, s, u)) = (a + bs − 1/2 cu − btu, d + at +
1/2 cs+ bst, e+ ct+ bt2) where a, b, c, d, e are arbitrary constants.

When we look for classes of differential equations [55] or when we search
non-classical symmetry reduction [24], the determining equation are non-
linear. The work of E.L. Mansfield and coauthors lead, after some monster
computations with the competitor maple packages rif [57, 75] and diffgrob2
[47, 48] to new closed form solutions to physically relevant partial differential
equations [25, 49].
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position of a finitely generated perfect differential ideal. Journal of Symbolic
Computation, 31(6):631–649, 2001.

14. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial
value problems in differential-algebraic equations. North-Holland, 1989.

15. A. Buium and P. J. Cassidy. Differential algebraic geometry and differential
algebraic groups: from algebraic differential equations to diophantine geometry.
In Bass et al. [40].
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Birkhäuser, Boston, 1993.

30. L. Guo, W. F. Keigher, P. J. Cassidy, and W. Y. Sit, editors. Differential
Algebra and Related Topics. World Scientific Publishing Co. Inc., 2002.

31. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II - Stiff
and Differential- Algebraic Problems - Second Revised Edition. Springer, 1996.

32. E. Hubert. Essential components of an algebraic differential equation. Journal
of Symbolic Computation, 28(4-5):657–680, 1999.

33. E. Hubert. Factorisation free decomposition algorithms in differential algebra.
Journal of Symbolic Computation, 29(4-5):641–662, 2000.

34. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms
I: Polynomial systems. In Winkler and Langer [74], pages 1–39.

35. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms
II: Differential systems. In Winkler and Langer [74], pages 40–87.

36. E. L. Ince. Ordinary Differential Equations. Dover Publications, Inc., 1956.
37. M. Janet. Sur les systèmes d’équations aux dérivées paritelles. Gauthier-Villars,
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