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Essential Components of an Algebraic Differential
Equation
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We present an algorithm to determine the essential singular components of an algebraic
differential equation. Geometrically, this corresponds to determining the singular solu-
tions that have enveloping properties. The algorithm is practical and efficient because it
is factorization free, unlike the previous such algorithm.
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1. Introduction

We present an algorithm to determine the set of essential singular solutions of a differ-
ential equation. Essential singular solutions can be informally described as follows: the
general solution of a differential equation is usually described as a solution depending on a
number of arbitrary constants equal to the order of the differential equation. The essential
singular solutions are those that cannot be obtained by substituting numerical values to
the arbitrary constants in the general solution.† Adherence, defined in Ritt (1950, VI.2),
is the correct concept: singular solutions that are not essential are adherent to the general
solution or to one of the essential singular solutions.

For first-order differential equations, Hamburger (1893) showed that the essential sin-
gular solutions were envelopes of the family of curves given by the general solution. Ritt
gave a similar result for first-order partial differential equations (Ritt, 1945a) and for
special cases of second-order differential equations (Ritt, 1946). These analytic and geo-
metric properties may be seen as a first application for our algorithm. Nonetheless, the
concepts involved translate into algebraic definitions and properties. We shall thus work
in the frame of differential algebra. Central there is the definition of the general solution
due to Ritt (1930).

A system of algebraic differential equations can be seen as a set Σ of differential
polynomials in an appropriate differential polynomial ring. The radical differential ideal
generated by Σ can be written as the irredundant intersection of a finite number of
prime differential ideals called the components of the radical differential ideal. In the
case Σ consists of a single differential polynomial that is irreducible when considered
as a polynomial, one of these components defines the general solution. The others are
essential singular components.

For our purpose, we will extend the definition of the general component to regular
differential polynomials. Regular differential polynomials arise in a practical algorithm

†Some authors such as Murphy (1960) refer to such solutions as the singular solutions.
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dealing with differential algebraic systems. They form a wider class of differential poly-
nomials than irreducible differential polynomials.

Ritt (1950) also developed an algorithm to decompose the radical differential ideal
generated by a finite set Σ of differential polynomials into a finite intersection of prime
differential ideals. This reduction–decomposition process allows us to test when a differ-
ential algebraic system admits no solution (the triviality of the system). Furthermore,
the decomposition obtained provides a membership test to the radical differential ideal
generated by Σ. Unfortunately, the Ritt decomposition algorithm involves factorizations
in towers of algebraic extensions. This algorithm is thus impractical and we know no
implementation of it.

For a single differential polynomial, Ritt (1936, 1945b) and Levi (1942, 1945) presented
a process to discard the redundant components or, equivalently, determine the essential
singular components from a Ritt decomposition. The keystones of the method are the
component theorem and the low power theorem. The component theorem states that
any essential singular component of a differential polynomial is the general component
of an irreducible differential polynomial, even for partial differential polynomials. The
low power theorem is a necessary and sufficient condition for the general component of
an irreducible differential polynomial to be an essential singular component of another
differential polynomial.

The low power theorem and the component theorem are among the most sophisticated
theorems in differential algebra. Ritt (1936) first proved the low power theorem for ordi-
nary differential equations in one differential indeterminate and with meromorphic coef-
ficients. His proof involved complex analysis argumentation. Algebraization of the proofs
allowed the extensions of the result to abstract differential fields and to partial differential
equations. Levi (1942, 1945) brought a purely algebraic proof of the sufficiency, the core
of it being a lemma named after him. The necessity, as well as the component theorem,
are shown to rely on the leading coefficient theorem, the most general form of which was
given by Hillman (1943) and in Hillman and Mead (1962).

In this paper we give a complete algorithm to compute a minimal regular decom-
position. This type of minimal decomposition is more compact than the minimal prime
decomposition but is not unique and depends on the ranking we chose. A minimal regular
decomposition, nonetheless, contains all the information of the minimal prime decompo-
sition; to recover the latter from the former, only factorization of squarefree polynomials
are required. The process to compute a minimal regular decomposition that we propose
here requires only Ritt reduction (differentiations and pseudo-divisions) and gcd compu-
tations. Neither factorization nor Gröbner bases computations are needed. Our method
provides thus an algorithmic practicality that the method of Ritt and Levi did not have.
The process requires results in algebra† for which we will give concise proofs (Theo-
rems 3.2 and 4.8). Our process also requires extensions of the low power theorem and
the component theorem to regular differential polynomials (Theorems 4.9, 6.2 and 6.1).
Our paper is self-contained in the sense it depends only on results present in textbooks,
mainly Kolchin (1973).

The second section of this paper is devoted to set the notations and recalls the back-
ground material in differential algebra required for the following sections. The third
section discusses from a general point of view existing decomposition algorithms to rep-
resent the radical of a finitely generated differential ideal and establishes a less restrictive

†First presented in a differential algebra context by Boulier et al. (1995).
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decomposition that proves sufficient for our purpose. In the fourth section we proceed
to extend the definition of the general solution as well as the component theorem with
regards to regular differential polynomials. Section 6 presents the extension of the low
power theorem to regular differential polynomials. The necessary and sufficient condi-
tions for a regular component to be essential are read on a preparation polynomial. The
algorithm to compute this preparation polynomial is described in Section 5. It is an
appropriate modification of the preparation process given by Ritt (1936). The complete
algorithm to compute a minimal regular decomposition of the radical differential ideal
generated by a single differential polynomial will be found in Section 7 together with a
series of examples.

A note on the implementation: the algorithm presented in this paper is implemented
in Maple V. It is part of the diffalg package developed by F. Boulier and the author
during their postdoctoral stays at the Symbolic Computation Group† (Maple lab). The
package is available at http://daisy.uwaterloo.ca/~ehubert/Diffalg.

illustration on first-order ordinary differential equations

Consider the two similar differential equations p1 ≡ y′2−y = 0 and p2 ≡ y′2−y3 = 0. If
they admit a singular solution, it should satisfy ∂pi

∂y′ ≡ 2y′ = 0, i = 1, 2. Actually, for both
differential equations y(t) = 0 is the only singular solution. The general solutions of the
differential equations can be given, respectively, as ỹ1(t) = 1

4 (t− c)2 and ỹ2(t) = 4
(t−c)2 ,

where c is an arbitrary constant.
We can see the graphs of some non-singular solutions in both cases in Figure 1. In the

case of the first equation, p1 = 0, the singular solution is essential: it is an envelope of the
graphs of the non-singular solutions. On the contrary, for p2 = 0 the singular solution is
not essential and it can be seen as a limiting case of the non-singular solutions when c
tends toward infinity.

In these two examples, would it be possible to forecast the behavior of the non-singular
solutions in the vicinity of the singular solution without knowing a closed form of the
general solution? In other words, how do we determine if y(t) = 0 is an essential singular
solution or not? The answer is given by the low power theorem: p1 has a unique term of
lowest degree and this term involves no proper derivative of y, while this is not the case
in p2.

2. Differential Algebra Preliminaries and Notations

Differential algebra extends the concepts of polynomial algebra to differential equa-
tions. The purpose of this section is to give a brief overview of the material we will need
in the following sections and to specify the notations. We mostly use the definitions and
properties which are given by Kolchin (1973).

We consider differential rings (R,Θ), where R is a commutative integral domain that
contains a field isomorphic to Q, and Θ is the free commutative monoid of the derivation
operators generated by a finite set of derivations ∆. When ∆ consists of a single derivation
δ we shall speak of the ordinary differential ring R.

Let Σ be a subset of R. We denote, respectively, (Σ), [Σ] and {Σ} the ideal, the
differential ideal and the radical differential ideal generated by Σ.

†I wish to express here my gratitude to Professor G. Labahn and K. O. Geddes for their support.
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Figure 1. Non-singular solutions of y′2 − y = 0 and of y′2 − y3 = 0.

Proposition 2.1. Let Σ be a subset of the differential ring R. Let ai, 1 ≤ i ≤ r, be
elements of R. Then {

Σ,
r∏
i=1

ai

}
=

r⋂
i=1

{Σ, ai}.

For a subset I in R and an element s ∈ R we define the saturation and the quotient
of I w.r.t. s by I:s∞ = {a ∈ R|∃α ∈ Nsαa ∈ I} and I:s = {a ∈ R|sa ∈ I}. We have
I ⊂ I:s ⊂ I:s∞. If I is a differential ideal, I:s∞ is also a differential ideal. If I is a radical
differential ideal, I:s is a radical differential ideal and is equal to I:s∞.

Proposition 2.2. Let Σ be a non-empty subset of R and s an element of R. Then
{Σ} = {Σ}:s ∩ {Σ, s}.

Proposition 2.3. Let R1 and R2 be radical differential ideals and s an element of R.
Then (R1 ∩R2):s = R1:s ∩R2:s.

(R{Y },Θ) denotes the ring of differential polynomials with differential indeterminates
Y = {y1, . . . , yn} and coefficients in (R,Θ). Setwisely, R{Y } is the polynomial ring in
infinitely many indeterminates R[ΘY ] = R[{θyi, yi ∈ Y, θ ∈ Θ}].

We will consider rings F{Y } of differential polynomials the coefficients of which belong
to a differential field F of characteristic zero. For computational purposes we will typically
choose a rational function field F = K(t1, . . . , tµ) where K is a finite extension of Q. In our
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examples, we will use the following notations. For an ordinary differential ring in one or
two differential indeterminates we will mostly use Q(t){y} or Q(t){x, y}. The derivation
δ will be understood to be with respect to the independent variable t and we will use
the standard notation y′ = δy, y′′ = δ2y, . . ., y(i) = δiy. Partial differential rings will
generally involve two independent variables s and t and the corresponding derivations
will be noted δs and δt. Derivatives will be denoted with the usual subscript notation.
For instance, in Q(s, t){y}, we will note ys = δsy, yss = δ2

sy, yst = δsδty, . . ..
Any radical differential ideal R in F{Y } is the intersection of a finite set of prime

differential ideals none of which contains another (Kolchin, 1973, III.4, the basis theorem
and 0.9 Theorem 1). This unique set is the set of essential prime components of R and
forms the minimal prime decomposition of R.

A zero of a set Σ of differential polynomials in F{Y } is an n-tuple ν = (ν1, . . . , νn) in
a field extension F ′ of F , such that the differential polynomials of Σ vanish when one
replaces each yi by νi. Such a zero exists if and only if 1 /∈ {Σ} (Kolchin, 1973, IV.2, the
theorem of zero).

When A is a finite subset of F{Y }, ΘAY will denote:

— the set of derivatives occuring in A when we need a result about commutative
polynomial algebra;

— the set of derivatives that are not proper derivatives of the leaders of the elements
of A.

The ideal (A) will then denote the ideal generated by A in F [ΘAY ]. The extension and
contraction from one meaning of F [ΘAY ] to the other does not affect the ideal (A)
(Kolchin, 1973, IV.9, remark after Lemma 2).

3. Decomposition Algorithms

Describing a decomposition algorithm is a tremendous task and is out of the scope
of this paper. The fact is that we do not need to complete such an algorithm in order
to determine a minimal decomposition of the radical differential ideal generated by a
single differential polynomial in F{Y }. We shall therefore sketch the steps of a Ritt-like
algorithm in order to point out which computations are unnecessary and which type of
decomposition and notions will prove to be sufficient for our purpose. We repeat only
the definitions that are necessary for the reading of the rest of the paper. Though there
has been some efforts in Boulier et al. (1997) to generalize the definitions and results,
we shall use here, for simplicity, the more traditional material to be found in Kolchin
(1973).

A ranking over F{Y } is a total order on ΘY = {θyi, i = 1, . . . , n, θ ∈ Θ} such that for
any derivative u ∈ ΘY we have δu ≥ u, ∀δ ∈ ∆ and for any pair of derivatives u, v ∈ ΘY
with u ≥ v we have δu ≥ δv, ∀δ ∈ ∆.

Let p be a differential polynomial of F{Y }. The leader up and the initial ip of p
are, respectively, the highest ranking derivative appearing in p and the coefficient of the
highest power of this derivative in p. The separant of p is sp = ∂p

∂up
. θup and sp are,

respectively, the leader and the initial of θp when θ is a proper derivation operator (i.e.
not the identity):

p = ipu
d
p + id−1u

d−1
p + · · ·+ i0,
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θp = spθup + q, where q has no derivative equal or higher than θup.

A differential polynomial q is partially reduced w.r.t. p if no proper derivative of up
appears in q; q is reduced w.r.t. p if q is partially reduced w.r.t. to p and the degree of q
in up is strictly less then the degree of p in up.

A subset A of F{y1, . . . , yn} is called autoreduced if no element of A belongs to F and
each element of A is reduced w.r.t. all the others. Distinct elements of A have distinct
leaders and A must be finite (Kolchin, 1973, I.9). We denote by IA and SA, respectively,
the product of the initials and the separants of the elements of A; we note HA = IASA.

Given an autoreduced set A of F{y1, . . . , yn} and p there exist reduction algorithms†

involving differentiation and pseudo-division to compute p̄ partially reduced w.r.t. every
element of A such that ∃α ∈ NSαAp ≡ p̄ mod [A]. Similarly, we can compute p̄ reduced
w.r.t. every element of A such that ∃α, β ∈ NSαAI

β
Ap ≡ p̄ mod [A]. We write p−→Ap̄.

Characteristic sets can be defined as follow: an autoreduced set A is a characteristic
set of a differential ideal I if A ⊂ I and ∀p ∈ I, p−→A0. Note that:

— an autoreduced set A is not obviously a characteristic set of [A]:H∞A ;
— if A, an autoreduced set, is a characteristic of a differential ideal of F{Y }, then A

is coherent‡ (Rosenfeld, 1959, I.2; Kolchin, 1973, III.8).

What we mean by a complete decomposition algorithm can be specified as follows.

Proposition 3.1. Let Σ be a finite set of differential polynomials in F{Y }. There exist
algorithms to compute a finite number of autoreduced sets C1, . . . , Cr, such that

{Σ} =
r⋂
i=1

[Ci]:H∞Ci , (3.1)

and where Ci is a characteristic set of [Ci]:H∞Ci . We shall call such a decomposition a
characteristic decomposition of {Σ}.

The first such decomposition algorithm for ordinary differential polynomials is due
to Ritt (1950). The algorithm generalized to the partial differential case is presented in
Kolchin (1973, IV.9). The [Ci]:H∞Ci terms in the result are prime differential ideals. It
requires factorizations in towers of algebraic extensions. We do not know of any imple-
mentation of this algorithm.

Boulier et al. (1997) present an effective characteristic decomposition algorithm using
the Seidenberg (1956) elimination scheme. The algorithm is an improvement over the
one presented in Boulier et al. (1995).

None of these algorithms provide a minimal decomposition. Determining a minimal
decomposition for Σ can be thought of as eliminating the redundancy in one of these
decompositions. It is the way Ritt proceeded for determining the minimal decomposition
of the radical differential ideal generated by a single differential polynomial in F{Y }.

The first and well known part of the Ritt algorithm is the following. Let Σ be a finite
set of differential polynomials of F{Y }. With a finite number of differentiations and
arithmetic operations in F{Y }, we can compute a coherent autoreduced set A such that

†See, for instance, Kolchin (1973, I.9, Proposition 1).
‡Coherence corresponds to formal integrability or involutivity in other formalisms.
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A ⊂ [Σ] and ∀p ∈ Σ, p−→A0. Thus A ⊂ [Σ] ⊂ [A]:H∞A . For a detailed treatment we
invite the reader to refer to Kolchin (1973, IV.9, p. 168) or, for a presentation consistent
with this section, Hubert (1997, part II).

To proceed in the algorithm, Ritt, in the ordinary case, and Kolchin (1973, IV. 9)
used a particular case (Kolchin, 1973, IV.9, Lemma 2) of a theorem by Rosenfeld (1959,
I. 2), (Kolchin, 1973, III.8, Lemma 5) which allows us to decide when [A]:H∞A is prime
and A is one of its characteristic set. Boulier et al. (1995) were the first to use the
following property which allows us to proceed in the algorithm without going down
to prime differential ideals. Thanks to Rosenfeld’s lemma and its corollaries, proving
the property amounts to applying the Jacobian criterion for regularity. The form of this
commutative algebra result that we will use here has been applied in direct algorithms for
the computation of primary decomposition of ideals (Eisenbud et al., 1992; Vasconcelos,
1998).

Theorem 3.2. Let A be a coherent autoreduced set of F{Y }. [A]:H∞A is a radical dif-
ferential ideal.

Proof. Note first that for any finitely generated ideal I and any f in a polynomial ring
F [X], I:f∞ is equal to the intersection of those primary components of I with radical
not containing f (Eisenbud et al., 1992, Lemma 2.4).
SA, the product of the separants of A, is the determinant of a maximal square subma-

trix of the Jacobian matrix of the set of polynomials A in the polynomial ring F [ΘAY ].
Thus SA belongs to the Jacobian ideal of (A).

If 1 ∈ (A):H∞A , then [A]:H∞A = F{Y } and the result is trivial. Assume 1 /∈ (A):H∞A .
By the Jacobian criterion for regularity (Vasconcelos, 1998, Corollay 5.2.1, p. 127), the
primary components of (A) with radical not containing the Jacobian ideal are prime.
This is the case of all the primary components of (A) the intersection of which is equal
to (A):S∞A . Thus (A):S∞A is an intersection of prime ideals; it is radical and thus so is
((A):S∞A ):I∞A = (A):H∞A . By Rosenfeld’s lemma and its corollaries (Kolchin, 1973, III.8,
Lemmas 5 and 6), [A]:H∞A is radical.2

Thus [A] ⊂ {Σ} ⊂ [A]:H∞A and therefore {Σ}:HA = [A]:H∞A ; by Propositions 2.1
and 2.2

{Σ} = [A]:H∞A ∩
⋂
a∈A

({Σ, ia} ∩ {Σ, sa}) .

We loop over the argument for {Σ, ia} and {Σ, sa}. As these ideals contain autoreduced
sets lower (Kolchin, 1973, I.10) than A, we obtain a decomposition {Σ} =

⋂r
i=1[Ai]:H

∞
Ai

,
where the Ai are coherent autoreduced sets, in a finite number of iterations.† We ennun-
ciate this result for later reference in a defining proposition.

Proposition 3.3. Given a finite set of differential polynomials in F{Y } we can compute
a finite number of coherent autoreduced sets A1, . . . , Ar such that

{Σ} =
r⋂
i=1

[Ai]:H∞Ai .

†Because of Kolchin (1973, I.10, Proposition 3).
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The ideals [Ai]:H∞Ai are radical and are called regular components† of {Σ}. We will call
such a decomposition a regular decomposition of {Σ}.

To obtain a characteristic decomposition from a regular decomposition the following
steps shall be undertaken.

— Eliminate the components [Ai]:H∞Ai that contain 1. This can be tested by a purely
algebraic procedure thanks to Rosenfeld’s lemma (Kolchin, 1973, III.8, Lemma 5)
and, for instance, a Gröbner basis computation of (A):H∞A .

— Compute a characteristic decomposition for each regular component [Ai]:H∞Ai 6=
F{Y }, i.e. compute a decomposition [Ai]:H∞Ai =

⋂ri
j=1[Cij ]:H

∞
Cij

with the property
that Cij is a characteristic set of [Cij ]:H∞Cij . A procedure to do so, based on Gröbner
basis computations, is presented in Boulier et al. (1997). This is, in some sense,
an easier task then the work of Proposition 3.1 because regular components have
properties very close to prime ideals (Theorem 4.8).

Our goal in this paper is to determine a minimal decomposition of a radical differen-
tial ideal generated by a single differential polynomial of F{Y }. We will see that to
this end these latter computations are unnecessary. All we need to proceed is a regular
decomposition as defined in Proposition 3.3.

4. Regular Structure of a Differential Polynomial

We proceed to define singular and general solution from an algebraic point of view. The
founding work in that direction is due to Ritt (1930) who defined the general solution of
an irreducible differential polynomial. We extend here this definition and, what is more
important, the component theorem to regular differential polynomials. The reason is that
this type of differential polynomial naturally arises in effective algorithms in differential
algebra. We will then proceed to define a minimal regular decomposition of a single
differential polynomial.

4.1. singular and general components

After the work of Darboux (1870), the singular zeros of a differential polynomial in
a single differential indeterminate have been defined as the common zeros of p and the
partial derivative of p according to its highest order derivative, what we call the separant,
sp. This is nonetheless not equivalent to the original idea that a singular solution cannot
be obtained from the solution which contains a number of arbitrary constants equal to
the order of the differential polynomial.

Example 4.1. Consider the differential polynomial p = y′3 − 4tyy′ + 8y2 in Q(t){y}. If
there is any singular zero, it is a common zero of p and sp = ∂p

∂y′ = 3y′2 − 4ty. There are
actually two singular zeros: ȳ(t) ≡ 0 and ŷ(t) = 4

27 t
3.

The general zero can be given by ỹ(t) = a(t − a)2, where a is an arbitrary constant.
Contrary to ŷ, the singular zero ȳ(t) ≡ 0 is obtained from the general zero by replacing
a by a numeric value, namely a = 0.

†This name was introduced by Boulier et al. (1995).
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For partial differential polynomials or differential polynomials in several differential
indeterminates, the separant depends on the ranking. The work of Darboux (1873) sug-
gests that the singular solutions should be defined as the common zeros of p and all
its possible separants. To simplify the wording we will nonetheless adopt the following
definition, being aware it addresses a wider set of components than the ones suggested by
Darboux. But our ultimate goal will be to find the essential singular components. These
latter do not depend on the ranking.

Definition 4.2. Let p be a differential polynomial in F{Y }, endowed with a ranking.
Let sp be the separant of p. A prime differential ideal containing {p, sp} is a singular
prime component of p. Similarly, a regular differential ideal containing {p, sp} is a singular
regular component of p.

The zeros of p for which sp does not vanish, the non-singular zeros, are naturally
part of the zeros of the so called general component. Recall from Property 2.2 that
{p} = {p}:sp ∩ {p, sp}. As {p}:sp does not contain sp, the non-singular zeros must be
zeros of {p}:sp.

When p is an irreducible differential polynomial, Ritt (1945b) proved that there is a
unique essential prime component of {p} that contains no separant, whatever the ranking
is. For a given ranking, this component is {p}:sp (Kolchin, 1973, IV.6, Theorem 3).

We introduce here a more general class of differential polynomials that naturally arise
in a regular decomposition. First note the following property that we will use extensively.

Proposition 4.3. Let p be any differential polynomial in F{Y }. Let p̃ be the product of
all the simple factors of p involving up. We have p̃ = p

gcd(p,s2p) .

1. A differential polynomial q of F{Y } that is partially reduced w.r.t. p belongs to
[p]:sp∞ if and only if it is divisible by p̃.

2. [p]:sp∞ is a radical differential ideal and thus {p}:sp = [p]:sp∞.

Proof. These properties can be seen as a particular case of Rosenfeld’s lemma (Rosen-
feld, 1959) and of Theorem 3.2. Their proofs are nonetheless simpler.

1. By (Kolchin, 1973, I.11, Corollary 2) q ∈ (p):sp∞. We just observe that (p):sp∞ =
(p̃).

2. Consider q ∈ F{Y } such that ∃n ∈ N, qn ∈ [p]:sp∞. Let q−→pq̄; there exists α ∈ N
sαp q ≡ q̄ mod [p]. Then, snαp qn ≡ q̄n mod [p]. Therefore, q̃n is divisible by p̃. As p̃ is
squarefree, p̃ must divide q̄. Thus q ∈ [p]:sp∞.

2

Definition 4.4. Let F{Y } be endowed with a ranking. A differential polynomial p of
F{Y } is regular provided p does not belong to F and p has no common factors with its
separant sp. In other words, p is squarefree and has no factor independent of its leader.

In the previous propostion, p̃, when not belonging to F , is a regular differential poly-
nomial. When p is itself regular, then p̃ = p. If p is a regular differential polynomial of
F{Y }, its decomposition into irreducible factors can be written p =

∏r
k=1 pk where the
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pi are all distinct and have a common leader: up = up1 = · · · = upr . If spk and ipk are
the respective separant and initials of the irreducible factors pk, then

sp =
r∑

k=1

spk

r∏
j 6=k,j=1

pj and ip =
r∏

k=1

ipk .

Irreducible differential polynomials over F are regular differential polynomials of F{Y }.
Consider F ′ a differential field extension of F . If p is irreducible in F{Y }, p might be
reducible in F ′{Y }. It nonetheless remains regular in F ′{Y }. Regularity is a property
that is conserved through extension of the field of coefficients. If we can work only with
regular differential polynomials, we will not have to consider which field of coefficients
we work with. Only the coefficients effectively involved in the differential polynomials
will be of importance. But note that, contrary to irreducibility, regularity depends on
the ranking defined on F{Y }.

Example 4.5. In the differential ring F{u, v}, the differential polynomial p = u2 − u+
uv− v = (u+ v)(u− 1) is regular if the ranking satisfies u > v. It is not so if the ranking
is such that v > u.

Definition 4.6. LetA be a coherent autoreduced subset of F{Y } such that p ∈ [A]:H∞A .
[A]:∞A will be said to be a redundant regular component of p if none of its prime compo-
nents are essential for {p}. [A]:H∞A will be said to be an essential regular component of p
if each essential prime component of [A]:H∞A in F ′{Y } is an essential prime component
of {p} in F ′{Y }, for any differential field extension F ′ of F .

Note that a regular component of {p} can be neither essential nor redundant. In
Example 7.5 we will encounter such a case where a regular component [a]:h∞a can be
split into two regular components [a]:h∞a = [a1]:h∞a1

∩ [a2]:h∞a2
such that one of them is

redundant and the other essential.

Theorem 4.7. Let p be a regular differential polynomial in F{Y }. {p}:sp is an essential
regular component of p. Let F ′ be a differential field extension of F . Then p is a regu-
lar differential polynomial in F ′{Y }. Furthermore, if p =

∏r
i=1 pi is the decomposition

of p into irreducible factors over F ′, then {p}:sp =
⋂r
i=1{pi}:si is the minimal prime

decomposition of {p}:sp in F ′{Y }.

Proof. As gcd(p, sp) = 1 in F{Y }, we have the same equality in F ′{Y } so that we can
work indifferently over F or F ′.

For any pair pi, pj with i 6= j, pj is partially reduced w.r.t. pi and not divisible by pi.
Therefore, pj does not belong to the prime differential ideal {pi}:si for j 6= i. Thus, none
of the {pi}:si contain another one.

We proceed to prove that {p}:sp =
⋂r
i=1{pi}:si. Due to Properties 2.1 and 2.3, {p}:sp ={∏r

i=1 pi
}
:sp =

⋂r
i=1{pi}:sp. It remains to show that {pi}:sp = {pi}:si. Let q ∈ {pi}:sp.

This means that spq ∈ {pi}. The only term in spq =
(∑r

k=1 sk
∏
j 6=k pj

)
q which is not

trivially in {pi} is si
(∏

j 6=i
)
pjq. Therefore

(∏
j 6=i pj

)
q ∈ {pi}:si and since pj , for j 6= i,

does not belong to the prime differential ideal, {pi}:si, q ∈ {pi}:si. We have shown that
{pi}:sp ⊂ {pi}:si. The converse inclusion is easy to see.

Recall from Proposition 2.2 that {p} = {p}:sp ∩ {p, sp}. Any component of {p, sp}
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contains an element reduced w.r.t. up. By Proposition 4.3, no component of {p, sp} can
be contained in {pi}:si. Therefore each {pi}:si is an essential prime component of {p}:sp.
Thus {p}:sp is an essential regular component of {p}:sp.2

When p is a regular differential polynomial of F{Y }, we call {p}:sp the general com-
ponent of p. But we have to keep in mind that it depends on the ranking. In an ordinary
differential field Q(t){y}, there is only one possible ranking. If the general zeros of the
irreducible factors pi can be given in the implicit form fi(t, y, c) = 0, where c is a vector
of arbitrary constants, then

∏r
i=0 fi(t, y, c) = 0 is the general zero of p.

4.2. essential regular components

The component theorem (Ritt, 1945b)—see also Kolchin (1973, IV.14)—asserts that
any essential prime component of a differential polynomial is the general prime com-
ponent of an irreducible differential polynomial. We extend this theorem to know what
type of regular components are essential for p. This requires a very interesting result on
the regular components that we give first. This result is also used for other purposes
in Boulier et al. (1997). After the component theorem we will then be in a position to
define minimal regular decompositions of the radical differential ideal generated by a
single differential polynomial.

Theorem 4.8. Let A be an autoreduced coherent set of F{Y } such that 1 /∈ [A]:H∞A .
There is a one-to-one correspondence between the minimal primes of (A):H∞A and the
essential prime components of [A]:H∞A . Furthermore, assume Ci is a characteristic set
of a minimal prime of (A):H∞A . Then:

— the set of leaders of Ci is equal to the set of leaders of A;
— Ci is a characteristic set of an essential prime component of [A]:H∞A .

Proof. Recall that (A):H∞A and [A]:H∞A are radical (Theorem 3.2). Our proof proceeds
of four subresults.

(i) A minimal prime of (A):H∞A has a characteristic set whose set of leaders is equal
to the set of leaders of A:
By Kolchin (1973, 0.16, Corollary 4), the minimal primes of (A):H∞A admit the set
of non-leaders of A as a transcendence basis. Assume A = a1, . . . , ar so that the
leader of ai ranks less then the leader of ai+1, 1 ≤ i < r. We can apply the same
result to subsets Ak = a1, . . . , ak, 1 ≤ k ≤ r of A.
If P is a minimal prime of (A):H∞A , P ∩F [ΘAkY ] is a prime containing (Ak):H∞Ak
and therefore one of its minimal prime P̄ . P ∩ F [ΘAkY ] and P̄ have the same
dimension, and therefore are equal. P ∩F [ΘAkY ] is a minimal prime of (Ak):H∞Ak .
Thus P admits a characteristic set having the same set of leaders than A.

(ii) Let P be an essential prime component of [A]:H∞A . P ∩F [ΘAY ] is a minimal prime
of (A):H∞A .
By Rosenfeld’s lemma (Kolchin, 1973, III.8, Lemma 5), [A]:H∞A ∩ F [ΘAY ] =
(A):H∞A . P ∩ F [ΘAY ] is a prime ideal that contains (A):H∞A . It therefore con-
tains a minimal prime P̄ of (A):H∞A .
Let p be an element of P ∩F [ΘAY ] that does not belong to (A):H∞A and therefore
does not belong to [A]:H∞A . There exists q ∈ F{Y }, q /∈ P such that qp̄ ∈ [A]:H∞A .
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Let q−→Aq̄ so that there exists h ∈ H∞A such that hq ≡ q̄ mod [A]. We have that
q̄ /∈ (A):H∞A otherwise q would belong to [A]:H∞A and therefore to P . Nonetheless,
q̄p̄ belongs to [A]:H∞A and thus to (A):H∞A since it is partially reduced w.r.t. A. This
says that p̄ belongs to a minimal prime of (A):H∞A . Thus P ∩F [ΘAY ] belongs to a
union of minimal primes of (A):H∞A . By the prime avoidance theorem (Eisenbud,
1994, Lemma 3.3), P ∩ F [ΘAY ] must be contained in one of the minimal primes,
say P̄ ′, of (A):H∞A . Thus P̄ ⊂ P ∩ F [ΘAY ] ⊂ P̄ ′. P̄ ′. We must have P̄ ′ = P̄ and
therefore P ∩ F [ΘAY ] is a minimal prime of (A):H∞A .

(iii) Every minimal prime of (A):H∞A is the intersection of an essential prime component
of [A]:H∞A with F [ΘAY ]
Assume the minimal prime decomposition of [A]:H∞A is [A]:H∞A =

⋂r
i=1 Pi. By

Kolchin (1973, III.8, Lemma 5),
⋂r
i=1 (Pi ∩ F [ΘAY ]) = (A):H∞A . Therefore, all the

minimal primes of (A):H∞A are the intersection of an essential prime component of
[A]:H∞A with F [ΘAY ].

(iv) If Ci is the characteristic set of a minimal prime Pi ∩F [ΘAY ] of (A):H∞A , then Ci
is a characteristic set of Pi.
Let p be an element of Pi and p−→Ci p̄. Then p̄ ∈ Pi ∩ F [ΘAY ]. Ci being a char-
acteristic set of Pi ∩ F [ΘAY ], p̄ must be zero. Therefore Ci is a characteristic set
of Pi. (In particular Ci must be coherent!)
Furthermore: since a characteristic set of a prime differential ideal determines
uniquely this prime differential ideal, there is a unique essential prime component
of [A]:H∞A whose intersection with F [ΘAY ] is equal to (Ci):H∞Ci = Pi ∩ F [ΘAY ].

2

Theorem 4.9. Let p be a differential polynomial and A a coherent autoreduced set in
F{Y } such that p ∈ [A]:H∞A . If A has more than one element, then [A]:H∞A is a redundant
regular component of {p}.

In other words, the characteristic set of an essential regular component of {p} has a
single element. In the beginning of the proof of Proposition 4.10 we will see that this
element can be replaced by a regular differential polynomial. Thus, any essential regular
component of {p} is the general component of a regular differential polynomial.

Proof. Assume that A has more than one element. If 1 ∈ [A]:H∞A , the conclusion is
trivial. We assume in the following that 1 /∈ [A]:H∞A . Then the previous theorem tells
us that a characteristic set of any minimal prime component of [A]:H∞A has the same
number of elements as A. Therefore no essential prime component of [A]:H∞A is essential
for {p} (Kolchin, 1973, IV.14, Theorem 5); [A]:H∞A is a redundant regular component of
{p}.2

Proposition 4.10. Let p be a differential polynomial in F{Y }. From a regular decom-
position (Proposition 3.3) of {p} in F{Y } we can determine a decomposition

{p} =
r⋂
i=1

{ai}:sai

where ai is a regular differential polynomial and is a characteristic set of [ai]:s∞ai for
1 ≤ i ≤ r. We call such a decomposition a reduced regular decomposition of {p}.
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Proof. From a regular decomposition of {p}, thanks to Theorem 4.9 we can eliminate
the regular components defined by an autoreduced set with more than one element. We
are left with a decomposition

{p} =
k⋂
i=1

[bi]:h∞bi ,

where hbi is the product of the initial and the separant of bi. For each bi in this decompo-
sition we define ai = bi

gcd(bi,s2bi
)
; ai is the product of the simple factors of bi that involve

ubi . If ai /∈ F , then it is a regular differential polynomial of F{Y }.
By Proposition 4.3, bi ∈ {ai}:sai and ai ∈ {bi}:sbi . Thus {ai}:sbi ⊂ {bi}:sbi ⊂

({ai}:sai):sbi .
By Propositions 4.3 and 4.7, an element h ∈ F{Y } partially reduced w.r.t ai and

relatively prime with ai belongs to no essential prime component of {ai}:sai ; then
({ai}:sai):h = {ai}:sai . The initial of bi and ci = bi

ai
are relatively prime with ai.

sbiq ∈ {ai} ⇔ (aisci + saici)q ∈ {ai} ⇔ saiciq ∈ {ai} ⇔ q ∈ {ai}:sai because
({ai}:sai):ci = {ai}:sai as seen in the previous remark. Thus {ai}:sbi = {ai}:sai =
{bi}:sbi and {bi}:hbi = ({ai}:sai):ibi = {ai}:sai .

If ai ∈ F , then [bi]:s∞bi can be discarded from the decomposition. Changing accordingly
the indices, we obtain a decomposition as indicated in the proposition.2

Definition 4.11. Let p be a differential polynomial in F{Y }. A reduced regular decom-
position of {p}, {p} =

⋂r
i=1{ai}:sai , is a minimal regular decomposition if each {ai}:sai

is an essential regular component of {p} and the ai are pairwise relatively prime.

The minimal prime decomposition of {p} is a minimal regular decomposition. This set-
tles the question of existence of minimal regular decompositions. There exists nonetheless
minimal regular decompositions that are not prime decompositions and we will present
an algorithm to compute one of them. As for the uniqueness we have the following result
which is a trivial consequence of the definitions and the previous properties.

Proposition 4.12. Consider a minimal regular decomposition of {p} in F{Y }.

{p} =
r⋂
i=1

{ai}:sai . (4.1)

Let F ′ be a differential field extension of F . (4.1) is a minimal regular decomposition of
{p} in F ′{Y }. If ai =

∏ri
j bij is the factorization of ai, 1 ≤ i ≤ r into irreducible factors

in F ′{Y }, then

{p} =
⋂

1≤i≤r,1≤j≤ri
{bij}:sbij

is the minimal prime decomposition of {p} in F ′{Y }.

The following sections are devoted to computing a minimal regular decomposition of
any differential polynomial p in a differential polynomial ring F{Y }.
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5. Preparation Polynomial

The low power theorem decides if the general component of a differential polynomial a
is an essential component of a differential polynomial p. In the introduction we have seen
a special case where a = y. In the other cases, the necessary and sufficient condition of
the low power theorem relies on the way a makes itself visible in the algebraic structure
of p. To see this structure we rewrite p as a differential polynomial in a. This is the
purpose of the preparation process.

The preparation process was first introduced by Ritt (1936) for an ordinary irreducible
differential polynomial a. An extension is defined in Kolchin (1973, IV.13) where a is
replaced by a characteristic set of a prime ideal. We extend here the definition of the
preparation equation to a regular differential polynomial a.

If m is a differential monomial in a differential indeterminate z, m =
∏r
i=1(θiz)

αi , the
degree of m is degm =

∑d
i=1 αi. Then, for a differential polynomial a in F{Y }, m(a)

stands for m(a) =
∏r
i=1(θia)

αi .

Definition 5.1. Let p be any differential polynomial and a a regular differential poly-
nomial in F{Y }. A preparation polynomial of p w.r.t. a is an element of F{Y }{z}

p̃ =
l∑

γ=0

cγmγ

where m0, . . . ,ml are distinct differential monomials in z and c0, . . . , cl are elements of
F{Y } that do not belong to {a}:sa, such that there exists a differential polynomial c−1

in F{Y } that does not divide zero modulo {a}:sa and satisfies

c−1p =
l∑

γ=0

cγmγ(a).

The above equation is a preparation equation of p w.r.t. a.

Proposition 5.2. For any differential polynomial p and any regular differential polyno-
mial a in F{Y }, there exists a preparation polynomial of p w.r.t. a. Furthermore, such
a preparation polynomial can be computed by Algorithm 5.3.

Algorithm 5.3. Preparation-polynomial
input: p and a differential polynomials of F{Y }, a is regular.
output: - A preparation polynomial of p w.r.t. a, p̃ =

∑l
γ=0 cγmγ ∈

F{Y }{z}, where the cγ are partially reduced w.r.t. a and not di-
visible by a.
- The associated differential polynomial c−1, partially reduced
w.r.t. a and relatively prime with a.

p̃ := p; # p̃ is a polynomial in F{Y }{z}
c−1 := 1;

while p̃ is not partially reduced w.r.t. a do
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θ := the derivation operator s.t. θua is the highest ranking derivative of ua in
p̃;

e := the degree of p̃ in θua.

# seap̃ is a polynomial in saθua

# θa = saθua + t, where t is reduced w.r.t. to θua.

c−1 := c−1.s
e
a;

p̃′ := the polynomial obtained by replacing saθua by θz − t in seap̃;

# p̃′ involves only derivatives of ua of strictly lower rank than θua.

p̃ := p̃′;

od;

# Now p̃ is of the form p̃ =
∑l
γ=0 cγmγ where

# - the mγ are distinct monomials in z
# - the cγ belong to F{Y } and are partially reduced w.r.t. a

for γ from 0 to l do
e := the biggest exponent ε such that aε divides cγ ;

cγ := cγ
ae ;

mγ := zemγ ;

od;

# Now p̃ =
∑l
γ=0 cγmγ is a preparation polynomial.

end;

Proof. At each step of the while loop, the highest derivative of ua in p̃′ ranks strictly
less then the highest derivative of ua in p̃. As any decreasing sequence of derivatives is
finite (Kolchin, 1973, I.8), the while loop ends in a finite number of steps.

The polynomial p̃ obtained after the while loop is partially reduced w.r.t. a. It can be
written p̃ =

∑l
γ=0 cγmγ . We have c−1p =

∑l
γ=0 cγmγ(a) where c−1 is a suitable power

of sa. sa belongs to no essential component of {a}:sa; therefore c−1 does not divide zero
modulo {a}:sa.

After the for loop, p̃ =
∑l
γ=0 cγmγ is such that the cγ are partially reduced w.r.t. a

and not divisible by a. By Proposition 4.3 they do not belong to {a}:sa. Moreover, we
still have c−1p =

∑l
γ=0 cγmγ(a) and thus we have obtained a preparation polynomial of

p w.r.t. a in a finite number of steps.2

The preparation equation of a differential polynomial p w.r.t. a regular differential
polynomial a is not unique. First of all, it depends on the ranking chosen on F{Y } as
shown in the example below.

Example 5.4. Consider, for instance, the pair of differential polynomials in Q(s, t){y}:
p = ystyss + y2

tt and a = ys + yt.

Choose a ranking on Q(s, t){y} such that yss > yst > ytt > ys > yt > y. Then the leader
of a is ua = ys and the highest ranking derivative of ua in p̃ is δsua = yss. We have
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δsa = yss + yst. We therefore substitute yss by zs − yst in p; p̃ = yst(zs − yst) + y2
tt.

The highest ranking derivative of ua in p̃ is now δtua = yst. We have δta = yst + ytt
and we substitute yst in p̃ by zt − ytt. We obtain p̃′ = −yttzs + 2yttzt − z2

t + ztzs. The
coefficients of the monomials in z are partially reduced w.r.t. a, and not divisible by a.
This is therefore a preparation polynomial of p w.r.t. a. The corresponding preparation
equation is p = −ytt(δsa) + 2ytt(δta)− (δta)2 + (δta)(δsa).

If we had chosen a ranking such that ytt > yst > yss > yt > ys > y, we would have
obtained the following preparation equation of p w.r.t. a, p = −yss(δsa) + 2yss(δta) −
2(δta)(δsa) + (δta)2 + (δsa)2.

The preparation equation depends also on the algorithm used to compute it. In the
algorithm, we can first consider multiplying p̃, in the while loop, by a tighter power of sa
or some of its factors. It suffices to substitute θua by θz−t

sa
and to take p̃′ as the numerator

of the expression obtained while multiplying c−1 by its denominator. We can also obtain
a preparation polynomial p̃ =

∑l
γ=0 cγmγ where the cγ are reduced with respect to a.

The corresponding c−1 would then be a power product of sa and of the initial ia of a,
none of which is a divisor of zero modulo {a}:sa.

Let ρ be the minimal degree of the monomials mγ in the preparation polynomial p̃ of
p w.r.t. a. It is no loss of generality to assume that the monomials of lowest degree in z
are m0, . . . ,ml′ , where l′ ≤ l. Then a preparation congruence of p w.r.t. a is

c−1p ≡
l′∑
γ=0

cγmγ(a) mod [a]ρ+1.

It is proved in Kolchin (1973, IV.15) that when a is irreducible, the degree ρ and the set
of monomials m1, . . . ,ml′ in the preparation congruence are unique; they do not depend
on the ranking. The argument relies on a result of Hillman (1943). It can be generalized
when a is regular but this is not needed in this paper.

6. The Low Power Theorem for Regular Differential Polynomials

The sum of the terms of the lowest degree in z of a preparation polynomial of a
differential polynomial p w.r.t. a regular differential polynomial a in F{Y } such that
p ∈ {a}:sa can be of two types. Either it has a single term that does contain z but no
proper derivatives of z or it involves proper derivatives of z. We will then be in a position
to compute a divisor ã /∈ F of a such that, in the first case, {ã}:sã is an essential regular
component of {p} and in the second case {ã}:sã is a redundant component of {p}. This
is the purpose of Theorem 6.1 and Theorem 6.2 that are extensions of the sufficiency and
necessity conditions of the low power theorem (Kolchin, 1973, IV).

The reader can then foresee what will be an algorithm to determine the maximal
divisor b of a such that {b}:sb is an essential regular component of {p}, while the general
component of c = a

b is a redundant component. With the notation of the previous
paragraph, if â = a

ã /∈ F , we iterate the process with â instead of a.

Theorem 6.1. (Sufficiency) Let p be a non-zero differential polynomial and a a reg-
ular differential polynomial in F{Y }. Assume a preparation congruence of p w.r.t. a
is

c−1p ≡ caρ mod [a]ρ+1,
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where ρ > 0 and c is partially reduced w.r.t. a. Let â = gcd(a, c) and ã = a
â . Then {ã}:sã

is an essential regular component of p.

Proof. Let b be an irreducible factor of a over F ′, a differential field extension of F .
By Proposition 4.7, {b}:sb is an essential prime component of {a}:sa in F ′{Y }.

As c is partially reduced w.r.t. b, by Proposition 4.3, c belongs to {b}:sb if and only
if it is divisible by b. We shall show that if {b}:sb does not contain c, then {b}:sb is an
essential component of {p}. This will therefore be the case for any irreducible factors of
ã.

Assume {b}:sb is not an essential prime component of {p} in F ′{Y }. There thus exists
an essential prime component P of {p} in F ′{Y } that is strictly included in {b}:sb. Such
a P cannot contain a, since otherwise it would contain an essential component of a.

According to Levi’s lemma (Levi, 1942, 1945, or Kolchin, 1973, IV.11), there exists
ε, d ∈ N∗ and r ∈ [a] such that aε(cd+ r) ∈ {p} ⊂ P . P being prime, cd+ r ∈ P ⊂ {b}:sb.

As we have r ∈ [a] ⊂ {b}:sb, we are brought to the conclusion that c ∈ {b}:sb.2

Theorem 6.2. (Necessity) Let p be a differential polynomial and a a regular differen-
tial polynomial in F{Y }. Consider a preparation congruence of p w.r.t. a

c−1p ≡ c0aρ +
l∑

γ=1

cγmγ(a) mod [a]ρ+1

where ρ > 0 and the cγ , 0 < γ ≤ r, are partially reduced w.r.t. a; c0 may be zero, but we
assume that none of c1, . . . , cl are. Let ã = gcd(a, c1, . . . , cl) and â = a

ã . Then {â}:sâ is
a redundant component of p.

Proof. Let b be an irreducible factor of â. Consider all the essential components of {p}
which are contained in {b}:sb. By the component theorem (Kolchin, 1973, IV.14), they
are the general components of some irreducible differential polynomials r1, . . . , rκ.

If {b}:sb were an essential component, κ would be equal to one and r1 would be equal
to b. We are in fact going to show that this cannot be so because one of the ri involves
a proper derivative of ua and thus {ri}:sri is strictly contained in {b}:sb.

Let r0 be a differential polynomial which does not belong to {b}:sb but which belongs
to all the components of {p} not contained in {b}:sb. Thus r0r1 . . . rκ ∈ {p}.

Let ν be a generic zero (Kolchin, 1973, IV.2) of {b}:sb in an extension field F ′ of F . A
differential polynomial q vanishes on ν if and only if it belongs to {b}:sb. Thus sa(ν) 6= 0.

For a differential polynomial q in F{Y } we denote q̄, in F ′{Y }, to be the sum of the
terms of lowest degree in q(ν + y). Note that qr = q̄r̄, for any q, r ∈ F{Y }. As

a(ν + y) = sa(ν)ua + first degree terms of lower rank + higher degree terms .

ā has degree one and ua as leader.
Now, if q = c0a

ρ+
∑l
γ=1 cγmγ(a), then q̄ = c0(ν)āρ+

∑l
γ=1 cγ(ν)mγ(ā), where cγ(ν) 6=

0 for at least one γ, 1 ≤ γ ≤ l. Among the derivatives of ā effectively present in the
monomials of the right-hand side, let θā be such that θua has the highest rank. Let q̄0

be an irreducible factor of q̄ which contains θā.
We are now in a position to conclude thanks to the Leading coefficient theorem given in

Ritt (1950, III.30), Hillman (1943), Hillman and Mead (1962) or Kolchin (1973, IV.10):
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r0r1 . . . rκ ∈ {p} ⇒ r̄0r̄1 . . . r̄κ ∈ {p̄}, where r̄0 = r0(ν) ∈ F ′ and for i ≥ 1, r̄i is of
positive degree.

As c−1p ≡ q mod [a]ρ+1, c̄−1p̄ = q̄, where c̄−1 = c−1(ν) is a non-zero element of F ′.
Thus {p̄} = {q̄} ⊂ {q̄0}:sq̄0 .

Consequently, {q̄0}:sq̄0 being a prime differential ideal, there exists i, 1 ≤ i ≤ κ such
that ri ∈ {q̄0}:sq̄0 . Therefore, ri cannot be reduced w.r.t. q̄0: it must contain a derivative
of θua, and therefore a proper derivative of ua. That is what we looked for. {b}:sb is not
an essential prime component of {p}.

We have p ∈ {ã}:sã ∩ {â}:sâ and {â}:sâ is a redundant regular component of {p}.2

7. Minimal Regular Decomposition Algorithm

We present here a complete algorithm to compute a minimal regular decomposition of
the radical differential ideal generated by a single differential polynomial p ∈ F{Y }. We
will then illustrate it with a series of examples.

The Ritt and Levi’s method to determine the minimal prime decomposition of {p}
proceeds by eliminating the redundancy in a characteristic prime decomposition of {p}.
Determining if a prime component {a}:sa, a irreducible, of {p}, is essential or redundant
is achieved with a single application of the low power theorem.

Our algorithm proceeds by eliminating the redundancy in a reduced regular decompo-
sition (Proposition 4.10) of {p}. The crucial part of the algorithm lies in Algorithm 7.1
which splits a regular component {a}:sa, where a is regular differential polynomial, into
two regular components {b}:sb and {c}:sc such that a = bc and {b}:sb is an essential
regular component of {p} while {c}:sc is a redundant regular component of {p}.

A reduced regular decomposition is obviously easier to obtain than a characteristic
prime decomposition. Furthermore, we might be lucky and have several prime compo-
nents treated at the same time.

In our process, only the coefficients effectively involved in p will be relevant to the
determination of the minimal regular decomposition. Nonetheless, we can easily recover
the minimal prime decomposition from a minimal regular decomposition; it suffices to
factor the polynomials involved in it over the desired field of coefficients, as presented in
Proposition 4.12.

7.1. algorithm

We assume a differential polynomial p and a regular differential polynomial a given in
F{Y } such that p ∈ {a}:sa. We collect the results presented above in an algorithm that
extracts a divisor b of a such that {b}:sb is an essential regular component of {p} while
a
b defines a redundant regular component of {p}.

We call Low-powers a procedure that takes a preparation polynomial in F{Y }{z} and
returns the sum of the terms of lowest degree in z.

Algorithm 7.1. Essential-part
input: p and a, differential polynomials in F{Y }, a regular, such that p ∈ {a}:sa
output: b, the maximal divisor of a such that {b}:sb is an essential regular component

of {p}.

If a ∈ F then return 1; fi;
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p̃ := Low-powers ( Preparation-polynomial (p, a) ) ;

If p̃ = czρ then
â := gcd (c, a);

ã := a
â ;

# By Theorem 6.1, {ã}:sã is an essential regular component for p

b := ã . Essential-Part (p, â);

else # p̃ = c0z
ρ +

∑l
γ=1 cγmγ

â := gcd (c1, . . . , cl, a);

ã := a
â

# By Theorem 6.2, {ã}:sã is a redundant regular component for p

b := Essential-Part (p, â).

fi;

end;

At each step, because a does not divide any cγ , â is of strictly lower degree than a.
The process finishes in a finite time.

Example 7.2. In the ordinary differential ring Q{y}, consider the differential polyno-
mial p = (y′ − y)2(y′ + y) + 4(y′y′′ − 2y′y)2 and the regular differential polynomial
a = y′2 − y2 = (y′ − y)(y′ + y).

The preparation polynomial of p w.r.t. a computed by Algorithm 5.3 is p̃ = (y′−y)z+
z′2. We are in the first case of the algorithm. The greatest common divisor of a and
the coefficient c = y′ − y is actually â = y′ − y. Thus let ã = y′ + y. By Theorem 6.1,
{ã}:sã = {y′ − y} is an essential regular component of {p}.

Now the preparation polynomial of p w.r.t. â = y′ − y computed by Algorithm 5.3 is
p̃ = (4y′2 + y′+ y)z2 +8y′2zz′+4y′2z′2. We are in the second case of the algorithm. The
greatest common divisor of â, 8y′2 and 4y′2 is actually 1. By Theorem 6.2, {â}:sâ is a
redundant component of p.

We now proceed to give the complete algorithm to determine a minimal regular de-
composition of any differential polynomial p in F{Y }.

Let cp and p̂ be, respectively, the content and primitive part of p: p = cpp̂. Let sp̂
be the separant of p̂ and p̄ = p̂

gcd(p̂,sp̂) . p̄ has no multiple factor and, like p̂, p̄ has no
factor independent of up: p̄ is regular (in fact we also have p̄ = p

gcd(p,sp) ). Furthermore,
{p} = {cpp̂} = {cpp̄}. The essential components of p are therefore the essential com-
ponents of cpp̄. In the case p has multiple factors, cpp̄ has a lower degree than p and
thus simplifies the computations of the preparation equations involved in determining
the minimal decomposition of p.

Note that there is one regular component that is obviously essential. With the nota-
tions introduced above, let sp̄ be the separant of p̄. Then {p̄}:sp̄ is an essential regular
component of p. We indeed have {p} = {cpp̄} = {p̄}∩{cp} = {p̄}:sp̄∩{p̄, sp̄}∩{cp}. Any
component of {p̄, sp̄} and {cp} contains an element reduced with respect to up and there-
fore cannot be contained in any essential prime component of {p̄}:sp̄ (Proposition 4.3,
Theorem 4.7).



20 E. Hubert

We call Regular-decomposition an algorithm which compute a regular decomposition
as in Proposition 3.3 and Reduce an algorithm that applies a reduction of a regular
decomposition as presented in Proposition 4.10 and returns the regular differential poly-
nomials involved in this reduced regular decomposition. A complete algorithm to compute
a minimal regular decomposition of {p} can thus be written:

Algorithm 7.3. Minimal Regular Decomposition
input: p a differential polynomial in F{Y }.
output:M = a1, . . . , ar a sequence of regular differential polynomials defining a mini-

mal regular decomposition of {p}.

cp := content (p, up);

p̂ := primitive-part (p, up);

p̄ := p̂
gcd(p̂,sp̂) ;

D := Reduce (Regular-decomposition ({p̄, sp̄},F{Y })),
Reduce ( Regular-decomposition ({cp},F{Y }));

For 1 < i < j ≤nops(D) do # we first make the Di relatively prime
if leader (Di,F{Y }) = leader (Dj ,F{Y }) then
Dj := Dj

gcd(Di,Dj)

fi;

od;

M := p̄;

For each differential polynomial a in D do
b := Essential-Part (cpp̄, a);

If b <> 1 then M :=M, b; fi;

od;

end;

7.2. examples

Example 7.4. Consider the partial differential ring Q{y} with two derivations, ∆ =
{δs, δt}, and the differential polynomial p = q + δsqδtq where q = (ys − y)(ys − yt).

According to an order where yss > yst > ytt > ys > yt > y, a regular decomposition
is {p} = [p]:sp∞ ∩ [q]:s∞q ∩ [ys − y, yt − y]. By Theorem 4.9, we know that [ys − y, yt − y]
is a redundant component. We have D = p, q. A preparation polynomial of p w.r.t. q is
p̃ = z+ zszt. The differential monomial in z of lowest degree does not involve any proper
derivative of z and its coefficient is 1. By Theorem 6.1, {q}:sq = [q]:s∞q is an essential
regular component of p. Therefore, M = p, q and {p} = {p}:sp ∩ {q}:sq is a minimal
regular decomposition according to the chosen ranking.

A minimal prime decomposition of p in Q{y} is obtained by simply factoring the
differential polynomials involved in this decomposition over Q. Since q1 = ys−y and q2 =
ys−yt are the two irreducible factors of q over Q and p is irreducible over Q, we conclude
that the minimal prime decomposition of {p} in Q{y} is {p} = {p}:sp∩{ys−y}∩{ys−yt}.

Assume we choose a ranking where ytt > yts > yss > yt > ys > y. The regular
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decomposition of {p} is {p} = {p}:sp ∩ [ys − y] ∩ [ys − yt]. Thus D = p, ys − y, ys − yt.
A preparation congruence of p w.r.t. q1 = (ys − y) is p ≡ (ys − yt)q1 mod [q1]2. Since
ys−yt and q1 have no common factor, by Theorem 6.1, {ys−y} = [ys−y] is an essential
regular component of {p}. It is furthermore an essential prime component of p in Q{y}
since ys−y is irreducible over Q. Similarly, we determine that q2 = ys−yt is an essential
regular component of p, which turns out to be an essential prime component in Q{y},
since q2 is irreducible over Q.

What we have illustrated in this example is the fact that a minimal regular decompo-
sition, as well as a regular decomposition, can depend on the ranking. Nonetheless, the
underlying prime minimal decomposition, obtained from any minimal regular decompo-
sition by simple factorization, is unique.

Example 7.5. Consider the differential equation (y′)2− 4y3 + g2y+ g3 = 0 where g2, g3

are constants inQ. This is the reduced equation of the solitary wave u(x, t) = 2y(x−ct)− c
6

of the Korteg de Vries equation ut − 6uux + uxxx = 0 (Ablowitz and Clarkson, 1991).
We are mostly interested in its real solutions.

When g3
2 6= 27g2

3 , i.e. when 4y3−g2y−g3 has only simple roots, the equation admits the
Weierstrass elliptic function, and its translations, as non-singular solutions (Whittaker
and Watson, 1927). We will see that the transition through g3

2 = 27g2
3 reflects a change

of property of the singular solutions, from essential to non-essential.
Consider p = (y′)2− 4y3 + g2y+ g3 in Q{y} with derivation δ. Let a = 4y3− g2y− g3.

(i) For g3
2 6= 27g2

3 a regular decomposition of {p} is given by {p} = {p}:sp ∩ {a}. A
preparation polynomial of p w.r.t. a is p̃ = (12y2 − g2)2z + (δz)2 so that (12y2 −
g2)2p = p̃(a). Since the resultant of a and 12y2− g2 w.r.t. y is 64(g3

2 − 27g2
3), {a} is

an essential regular component in the case considered here. By Hamburger (1893)
the zeros of a are envelopes of the non-singular zeros of p.
If g3

2 > 27g2
3 , a(r) = 4r3 − g2r − g3 = 0 has only real roots, say r1 < r2 < r3.

The singular solutions are given by y = ri. Furthermore, there are real non-singular
solutions for r1 ≤ y ≤ r2 and r3 ≤ y, that is when a(y) ≥ 0. The fact that singular
zeros are envelopes of the non-singular zeros can then be seen on the graph of these
real solutions in Figure 2.

(ii) Choose now g2 = 3g2, g3 = g3, g 6= 0. Then p = (y′)2 − 4y3 + 3g2y + g3. Note that
a = (y − g)(2y + g)2 is no longer a regular differential polynomial. Let b = (y −
g)(2y+ g) = 2y2− gy− g2. A regular decomposition of {p} is {p} = {p}:sp∩{b}:sb.
A preparation polynomial of p w.r.t. b is p̃ = (4y − g)2(g + 2y)z + (δz)2, so that
(4y − g)2p = p̃(b).
Let b̃ = gcd((4y − g)2(g + 2y), b) = (2y + g) when g 6= 0 and b̄ = b/b̃ = y − g. By
Theorem 6.1, {b̄}:sb̄ is an essential regular component.
A preparation polynomial of p w.r.t. b̃ is p̃ = 6gz2 + (δz)2 − 2z3. By Theorem 6.2,
{b̃}:sb̃ is a redundant regular component. Thus a minimal regular decomposition,
which turns out to be the minimal prime decomposition since p and b̄ are irreducible,
is {p} = {p}:sp ∩ {y − g}. The analytic interpretation is that y = g is an envelope
of non-singular solutions while y = g/2 is adherent to the non-singular solutions.
This can be seen with the graph of the real solutions that exist for y > −g/2 when
g > 0 (see Figure 2).

(iii) When g2 = g3 = 0, p = (y′)2 − 4y3 which is similar to the example shown in the
introduction of this paper.
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Figure 2. Solutions of (y′)2 − 4y3 + g2y + g3 = 0.

Example 7.6. The universal equation (Rubel, 1981).
Consider the following differential polynomial in the ordinary differential ring Q{y}:

p = 3y′4y′′y′′′′2 − 4y′4y′′′2y′′′′ + 6y′3y′′2y′′′y′′′′ + 24y′2y′′4y′′′′

−12y′3y′′y′′′3 − 29y′2y′′3y′′′2 + 12y′′7.

The regular decomposition of {p} is {p} = {p}:sp ∩ {q}:sq ∩ {y′′} where q = y′2y′′′2 +
3y′′4. The differential polynomial p has thus two singular regular components. D =
p, q, y′′.

A preparation polynomial of p w.r.t q is p̃ = 96(y′′7+y′y′′′y′′5)z−32(y′′y′′′y′+y′′3)z2−
8y′2y′′′z′z + 3y′′y′2z′2. The lowest degree monomial in z is free of any proper derivative
of z. Its coefficient, 96(y′′7 + y′y′′′y′′5), has no common factor with q. By Theorem 6.1,
{q}:sq is an essential regular component of {p}.

According to the extension of Hamburger (1893) of his own results, we know that the
non-singular zeros of q are envelopes of the zero of p since their respective orders differ
only by 1 and {q}:sq is essential for {p}—see also Ritt (1950, III.36).

Note that {q}:sq = {q} ⊂ {y′′}. Indeed, the regular decomposition of {q} is {q} =
{q}:sq∩{y′′}. This is in fact a prime decomposition in Q{y} since q and y′′ are irreducible
over Q. A preparation polynomial of q w.r.t. y′′ is q̃ = y′2z′2 +3z4. By Theorem 6.2, {y′′}
is a redundant component of {q}. Therefore it must contain {q}:sq. As a consequence, we
know that the zeros of y′′, which are lines ỹ(t) = c1t+ c2, where c1 and c2 are arbitrary
constants, are adherent (Ritt, 1950, VI.2) to the non-singular zeros of q.

This remark also tells us that {y′′} is a redundant component of {p}, though we can
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check that directly by computing the preparation polynomial of p w.r.t. y′′. We have
M = p, q.

Nonetheless, to determine if the lines, zeros of y′′, are also adherent to the non-singular
zeros of p, we need to determine if {p}:sp ⊂ {y′′}. This is in general an open problem,
the Ritt problem. Nonetheless here, we can apply a criterion issued from the leading
coefficient theorem.

A preparation congruence of p w.r.t a = y′′ is p ≡ 3y′4a(δ2a)2 − 4y′4δa2δ2a mod [a]4.
It involves δ2a. By Kolchin (1973, IV.15, Theorem 7.a), we conclude that {p}:sp ⊂ {y′′}.
Consequently, the zeros of y′′ are also adherent to the non-singular zeros of p.

As q is irreducible over Q, {p} = {p}:sp ∩ {q}:sq is a prime minimal decomposition in
Q{y}. If we work in Q(α){y}, where α is a root of the polynomial x2+3, we know, without
extra heavy computations, that the minimal prime decomposition of {p} in Q(α){y} is
{p} = {p}:sp ∩ {q1}:sq1 ∩ {q2}:sq2 , where q1 = y′y′′′ − αy′′2 and q2 = y′y′′′ + αy′′2 are
the irreducible factors of q over Q(α).

8. Conclusion

We have extended the definition of the general solution, the preparation process, the
component theorem and the low power theorem to regular differential polynomials. These
extensions allowed us to present a new algorithm to compute a minimal decomposition of
the radical differential ideal generated by a single differential polynomial. The algorithm,
contrary to its predecessor, involves no factorization, is efficient and is implemented in
Maple V. We are thus in a position to determine automatically the essential singular
solutions of any algebraic differential equation, ordinary or partial.

For first-order differential equations, the essential singular solutions are envelopes of the
non-singular solutions. We can determine the contact order and analyse the singularities
of the non-singular solutions by computing a differential basis of the general component
(Hubert, 1996).

Similar investigations should be made for higher order ordinary differential equations.
To this aim, attempts to compute the differential basis of the general component were
started in Hubert (1997) and will be pursued. We speculate that this basis is useful to
determine further properties of the general solution.
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