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Abstract

We consider in this paper an implicit non-linear ordinary

differential equation P(Z, y, y’) = O. There are several types

of solutions. The singular solutions are characterized by the
fact they make & vanish. No such characterization of the

so called general solution can be found in classical treatises.
We propose here an algorithmic method to compute a

similar characterisation of the general solution. We apply
the result to give some insight on the local behaviour of the
solutions in the neighbourhood of a singular solution.

Key words : General Solution, Singular Solutions, Dif-

ferential algebra, Formal Power Series Solution.

1 Introduction

This paper is mainly concerned with ordinary differential

equations of first order

p(z, y,y’) = o (1)

where p is a polynomial.
When the equation is linear, the set of its solutions has

the structure of an affine vector space. Algorithms have been
developed (see [14]) to compute formal power series solutions

of these equations in the neighbourhood of singular points,
where numerical analysis proves to be inefficient.

In the non-linear case, the structure of the solutions is

not as clear. There might be several types of solution. We
may first distinguish the singular solutions, which are the
common solutions of (1) and

&Y,y’) =o (2)

As for the general solution, it has not really gained a
rigourous definition in classical treatises.

In section 2 we will briefly give the basic definitions and

properties of the theory of differential algebra. It gives some
insight on the structure of the solutions: each type of solu-

tion is defined by a prime d$flerential ideal. In this context
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we can give a rigourous definition of the general solution

which is due to Ritt. This is to be found in section 3.
In section 4 we propose an algorithmic method to com-

pute a differential basis of the prime differential ideal defin-
ing the general solution. In other words, we will compute

equations which, if satisfied by a solution of (1), will ensure

that this solution is in the general solution.
Two applications of this result are then tackled. The first

one, in section 5, called the Ritt problem, is to determine if

a singular solution is a particular solution (of the general

solution).
The second one, in section 6, is a study of when we ci~n

develop the general solution into formal power series. This is
mainly interesting along the singular solution where numer-

ical analysis can get into trouble: the existence of a singular

solution results in the existence of infinitely many differen-
tiable solutions through a point.

Basically, for a nice enough initial condition (G, Y., g:),

we mean

we are in a case which is tantamount to a Cauchy problem.
Developing the (general) solution at this point into formal

power series may be achieved, for instance, by successively

differentiating p in order to obtain the higher derivatives of
the solution at that point.

This process can obviously not be applied if (xO, yo) lies

on the graph of a singular solution even if the general solu-
tion at that point generically have no singularity. The equa-

tions of the general solution we compute will enable us lx)

determine the maximal set of initial conditions for which the

general solution can be expanded into formal power series.

We will then be able to compute this power series solution
up to any order.

2 Differential algebra preliminaries

Differential algebra was introduced by Ritt in the 1930s t,cj

extend the theory of commutative polynomial algebra to dif-
ferential equations. In the following we give the definitions
and properties we need to speak about the general solution
of an ordkary differential equation. For an exhaustive pre-

sentation of differential algebra, the reader is referee to [12]
and [10]. An introduction to the subject may be found in
[9].
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2.1 Different ial rings

We consider a differential ring (A,+, ., d). (A, +,.) is a com-
mutative integral domain. J is a derivation on A: it is an

additive morphism such that 6 (ah) = a~b + b6a for all ele-
ments a, b in A.

A differential ideal I of (A, J) is an ideal of A that is

stable under derivation : a c I * da 6 I. As in a
commutative ring, a differential ideal 1 is radical if for a ~ A
such that 3cr 6 N*, a“ E 1 then a E 1. It is przme if

ab61*aorb~I.

EXAMPLE 2.1 Any commutative ring A can be considered

as a differential ring with a trivial derivation mapping any
element of A to zero. On A[x], the ring of polynomials with
coefficients in A, we can define a derivation J that extends
the derivation on A and satisfies 6X = 1. Then I-$(a~xn +

a%–lz ‘–l+. ..+aO)= nanxl+( n(l)afif]x nx2+2+al. +al.
0

We will use the following notations. Let u be a subset of

the differential ring A. We define @ = {a 6 A such that
3 a 6 N* aa c u}. Besides we will note respectively (a),

[u] and {a} the (non-differential) ideal, the differential ideal

and the radical differential ideal generated by a.
The radical (non-differential) ideal generated bv a is

~. [a] is actually the ideal generated;y the elements of
u together with their derivatives up to any order. Besides

{a} = fi provided A contains a field isomorphic to ~.

We shali assume from now on that A contains Q.

PROPERTY 2.1 Let u be a subset of a differential ring A.
For a,b c A , {a, ab} = {u, a} n{a, b}.

(A{y}, $) denotes the ring of differential polynomials
with coefficients in (A, 6) in one differential indeterminate. 1
A{y} is the polynomial ring in infinitely many indetermi-
nate A[yo, yl, ~z, . .]. 6 is a derivation Og A{Y} which ex-

tend S2 the derivation 6 of A and ratifies by, = Yi+l.

EXAMPLE 2.2 We can associate to the ordinary differential

equation

the differential polynomial p = y2 + zyogI + X2, with coeffi-
cients in A = Q[z]. o

2.2 Essential components

In this section we shall show that each type of solution of
a system of differential equations is defined by a prime dif-
ferential ideal. We first make clear the connection between

a solution and a prime differential ideal. Then we turn our
attention to any system of differential polynomials.

Let (B,;) be a differential over-rigg of (A, 6). The set

of differential polynomials of (A{y}, 6) thatvanish for an
element ~ c B is a prime differential ideal provided B is an
integral domain.

Conversely, consider a prime differential ideal in
(A{y}, b) that has no element in A, O excepted: PnA* =0.
A{y}/P is an integral differential overing of A. The class of

lThis can of course be extended to several differential
indeterminate-s

‘For this reason, we shall shorten ~ in 6

yin A{y}/P is a zero of P, called the generic zero of P. (For

a detailed treatment of this the reader is invited to refer to
[15, chapter I] or [7, section I].)

If we consider any set o of differential polynomials in

A{y}, its set of zeroes is equal to the set of zeroes of (a) and

{u}. These ideals are generically not prime.
To be able to handle the ideals in a differential polyno-

mials ring, we would like to know about its nmtherianity.

We introduce a weaker notion that can be lifted from the
ring of coefficients.

EXAMPLE 2.3 ~ is a field and is thus nmtherian. Nonethe-

less [yz, (y’)2, (y”)2,. . ] G ~{y} is not finitely generated.
But {y2, (y’)2, (y’’)z, ~ } = {y} is. 0

A differential ring (A, 6 ) is radically ncetherian, if any

radical differential ideal in it is finitely generated. In a
radically ncetherian differential ring, any radical differen-

tial ideal R is the intersection of a finite number of prime
differential ideals.

,

k=l

where the pk are prime differential ideals. Furthermore,
when we get rid of the pk containing other ones, we get a
minimal decomposition of R that is unique. The remaining
pk are the essential components of R.

The differential Hilbert basis the~rem states that if (A, 6)

is radically nmt herian, so is (A{y }, d). We assume from now
on that it is t~e case. Therefore, any radical differential

ideal in (A{y }, 6) has a unique minimal decomposition into
essential components.

Consider a set a of differential polynomials in A{y}. If a
differential polynomial vanish on all the zeroes of a, then it

belongs to {u} (theorem of zeroes). Therefore the essential
components of {u} describe completely the set of zeroes of
u. Each component defines a type of solution of CTas we
have seen at the beginning of this section.

In section 3 we shall focus on one of the essential com-

ponents when a is made of a single polynomial : the com-

ponent of the so called general solution. Let us look at an

easy example (given in [12] and [9]) :

EXAMPLE 2.4 Consider the differential polynomial p = y? –
4yo ~ ~{y} associated to the differential equation y’2 – 4Y =

o.
Thanks to property 2.1 we can write :

{P} = {P$P} = {Y? - 4Y0, 2Y1 (Y2 - 2)}

= {Y1 –4Y0, Yz –2}n{Y: –4Y0, Y1}.

The decomposition in essential components of {p} is actually

{P} = {Y? – 4%, VZ – 2} n {YO } The differential equation has
thus two types of solution. The first is given by ~(z) = O,
the second is the solution of the system

{

Y:;+=o

Y –4y=o

and thus can be given by j(z) = (x + a)2, where a is an
arbitrary constant. Not e that j can not be obtained from ~

by specializing a.
As seen in the introduction ~ is a singular solution. The

component {y! – 4yo, yz – 2} is the component of the general
solution. o
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The way we may compute the generators of the compo-

nent defining the general solution is not always as trivial

as in this example. It has been obtained by factorizing the
m from the elements of {p}. The generalisationseparant, ~Vl ,

lies in the notion of quotient ideals we introduce in the next

sect ion.

2.3 Quotient ideals

The definition and properties given in what follows are of

course suitable to commutative algebra. The reader is re-
ferred for instance to [7] for proofs and further details.

For a differential ideal 1 in A and an element s 6 A we

define the saturation of I with respect to s

I:sm={a cA13crc Ns”ac I}

which is a differential ideal containing 1. For a radical dif-

ferential ideal R in A and an element s c A we can define

the quotient of R by s

R:s={ac A[sa6R}

which is a radical differential ideal containing R. Note that

-= fi:s.

A generalisation of the property of decomposition 2.1 will
be at the heart of the definition of the general solution :

PROPERTY 2.2 Let u be a non-empty subset of A and s an

element of A. Then {u} = {u}:s n {o, s}.

Consider now a ring of differential polynomials A{y}.

Let p be an element of A{y} , d its order. The separant

s of p is s = ~. p can be considered as a polynomial in

A[yo,... , g,i]. Note that in this ring (p): Sw is a radical ideal.
Likewise, for a ~ P?, 6ap can be considered as a polynomial
in A[yo, . . . , y~+~].

LEMMA 2.3 Let q be an element of ~]:s~. If its order does
not exceed d+ a, for some CY6 l?J, then q 6 (p, Jp, ~. . . Jap):

sm.

This lemma, which is given in [10, I. 11], entitles us to

lift the algebraic properties of (p) : Sw to the differential
ideal ~] : Sw. For instance, as (p) : Sm is a radical ideal in

A[yo,. . . , g~], ~]: Sw is a radical differential ideal in A{y}
and is therefore equal to {p]:s. What we shall need in the

next section is:

COROLLARY 2.4 If (p): Sm is a prime ideal of A[yo,. . ~, y~],

~]: Sm is a prime differential ideal of A{y}.

The simplest c~e appears when p, considered as a poly-
nomial in A[yo, . . . , y~], is algebraically irreducible.

3 The general solution of a scalar differential equa-

t ion

Following Rltt ([12], ch II) and Kolchin ([10], ch IV), we
consider a differential polynomial p of A{y}. Let d be its

order and s its separant. From property 2.2 we know that:

{P} = {p}:sn {P) S}.
If we assume that p, considered as a polynomial of A[yo,

. , y~], is irreducible, {p}:s = ~]: Sm is a prime differential
ideal (corollary 2.4). It is thus the only essential component
of {p} thatdoes not cent ain s.

DEFINITION 3.1 Let p be an irreducible differential polyno-

mial of A{y}, s its separant. The general solution of p is the

solution defined by the only essential component of {p} that

does not contain s : ~P = {p} : s. ~P is called the general

component.

The other components of {p} are to be taken among the

components of {p, s} which correspond to singular solutions.
Assume the decomposition into essential components of this
radical differential ideal is as follow:

n ‘k
{p, s}= “1

k=]

Then {p} = (& rl SI fl... fl S,$. But ~P might be included
in some of the S,. This means that some of the S’i are

not essential components of {p}. This corresponds to the

notion of particular solutions in classical treatises (see [8]

for instance). We will illustrate this in the example of the

next section.
Determining whether a singular solution is in the gen-

eral solution was called the Ritt problem by Kolchin. It was
indeed first investigated by Ritt in [11]. The method pro-

posed there has its foundation in the low power theorem iind

the preparation process. In section 5 we shall give another

way to tackle this problem in the first order case. Actually,
the following sections are devoted to first order differential

polynomials.

4 Computing a basis of the general solution

p is a characteristic set of G=. This means in particular that

we can test the membership to GP with a Ritt reduction.
But this does not give a complete description of ~P. For

instance, p does not generate GP. As a consequence, the

singular points of GP are contained in those of p but the
inclusion can be strict.

What we undertake in this section is to compute a ba-
sis of the general component ~P. We will achieve that by

taking the problem to polynomial algebra. This is the-
oret ically always possible. The decomposition into prime

differential ideals of the radical differential ideal generated
by a finite number of differential polynomials amounts to

a similar problem in (non differential) polynomial algebra
provided you consider enough derivatives of the given differ-

ential polynomials (see[12, chV.28]).
In the special case of a first order differential polyno-

mial, a bound for the number of derivations to be made was

brought by Ritt [12, ch VI.9] in the analytical case. Owing

to the differential Lefschetz principle, due to Seidenberg [13],
this result remains in abstract differential algebra. Cohn has
nonetheless proved it directly in [4].

THEOREM 4.1 Let p be a first order irreducible differen-

tial polynomial of A{y} , where A is a field. Let s be its

separant and m its degree in yl. Now, in the polynomial
ring A[yO, . . . . ym], let PO be the unique essential component

of the ideal &p, bp, ..,6 ‘– lp) which does not cent ain s.
Then

G. = {Po}.

This means that if the set gl, . . . . g, is a basis of the
polynomial ideal Po, gl, . . . , g~ is also a differential basis of
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Gp : for any q c G, there exists an a E N* such that qm is a

linear combination of the g, and their derivatives.
Thus, finding a basis of the general component amounts

to computing the decomposition into prime ideals in poly-

nomial algebra. This has been studied in [6]. But we claim
that we know what PO is and that we can compute it directly.

For a given k > 1, we shall look more carefully at the

ideal &p, 6P. ..,6 ‘-lP) in A[~o,. . . . ~k]. We first note that,

according to property 2.2,

/lP).. ,bk-’P) = fiP,... ,Jk-lP):~ n /@,... ,6k-’p, s).

Besides lemma 2.3 implies that

g#=(p,6p, . . ..61p) .sm=gpnA[y[,.,. ... yk]

since GP = (p] : sm. This ensures that (p, . . . . dk–lp) : Sm is

prime and therefore equal to {@, Jp,. , Jk-lp):s.

COROLLARY 4.2 P. = (p, alp,.. ,d~-lp) :s@.

For computational purpose we shall consider from now

on the field of coefficients to be A = ~(x). We will actually
lead our calculations in Q[x] but we shall be careful with

the validity of our results over its fraction field.

We thus assume p is a first order irreducible differential
polynomial p with coefficients in Q[z]3: p can be viewed
as an irreducible polynomial in Q[z] [Ye, Yl] = ~[~, YO,Y1].

According to the Gaussian lemma, p remains irreducible in

Q(z)[yo, jl].
Now. comrmtin~ a basis of the saturation ideal Po =

(P, Jp, ~~, P:’p) :-sin in Q[z, y.,..., y~] can be achieved

using Grbner bases properties (see for instance [1]). First
(J), c$p, ., c$m-’~_l P):s w is the elimination ideal of (s.z – 1,

p, bp, ... c$ P), living in Q[z, YO, ..., Y~, :Illaccordiw
to the dummy indetermmate z: (p, Jp, . . . . 6 p):sm=

(Sz–l, p,ap, ..., Jm-lp) n QIZ, YO,... ,Ym].

On Q[z, yo . . . , y~, Z] a term order > where z prevails
satisfies the property: Va, ~ c ii?” such that a > ~, for any

monomials r and t of Q[z, yo, . . ~,y~], Zar > zet. On the

contrary z will be said to be reverse prevailing for < if for
any monomials r and t in Q[yo, . . . . Ym, z], xar > xpt iff

r>tor(r=tanda>fl).
IfG’ = {gl,. ... }isaGrbnerba sisof(szsl, p,6p,p, .,

Jm - lP) according to a term order where .z prevails, then G =

G’f@[z, YO,. . . . y~] is a Grbner basis of the elimination ideal
(S,z-l, p,ap,.., Jm-lp) (IQ[z, ye,. ... y~], which exactly is

the saturation ideal (p, 6P, ~~~, C$m-lp): Sm, according to the
term order induced by < on ~[z, yo, . . . . y~].

Moreover if we chose the order < so that x is reverse
prevailing, G is a Grbner basis of (p, 6P,. . ~, Jm - lP) : SW in

Q(z)[vo, . . . . Y-] with respect to the restriction of < to the
the terms in the y,.

EXAMPLE 4.1 Consider the differential polynomial p = yj –
4zyI)yI + 8y; C Q(X){ y}.

The singular solutions are the zeros of

{p, s}= {p, 3y~ - 4zyo} = {27y0 - 4X3} n {yo}.

There are thus two of them: ~1 (z) = O and ~2(z) = &X3.

3Had p coefficients in ~(z), we could equivalently consider the
principal part of the polynomial obtained by multiplying p by the
least common multiple of the denominators of its coefficients.

To obtain a differential basis of the general solution, we

first compute (with the help of Maple) in ~[z, YO,.. ., Y3, Z]

a Grbner basis of (p, 6P, 62P, s.z – 1) with a lexicographical
order x < yO < yl < ys < z. Eliminating from this Grbner
basis the polynomials where z appears, we obtain a Grb-
ner basis of L7;, which lives in ~(z) [ye, . . . . Y3]. This is a

differential basis of L7P.

q = {!43, Y; – 2~Y2 + %Jl, Y1Y2 – 2~Yl + 4Y0,
2yoy2 – y12, y13 – 4xyoyl + 8y;}.

AS y3 c G’p, the zero of G’Pis a polynomial of second order.
We make its coefficients fulfill the other equations and we
can write it as ~(x) = U(Z + a)2 where a is an arbitrary
constant.

Each basis differential polynomial of GP is in {yo}, thus

& c {yo}. Therefore {YO} can not be an essential compo-
nent. Meanwhile, O is a special case of a(z + a)2 when a = O.
~1 is a particular solution.

Conversely, we can not find any a such that &X3 equals

a(z + a)2. Meanwhile we can easily check that ys is not in

{27y0 - 4X3}, which therefore does not contain G,. {27Yo -
4Z3} is an essential component of {p}.

{P} = ~, n {27Y0 - 4X3}.

0

5 The Ritt problem

How to handle the Ritt problem in the first order case has

been introduced in the previous example. On the one hand,

we need to compute the singular components, by this we
mean the essential components of {p, s}. As they are of order
zero, this amounts to an algebraic problem. We can proceed

as follow: Compute the decomposition into prime ideals in

Q(z)[yo, yl] of the radical ideal flp, s, ~ +YI ~) using, for

instance, the package presented in [6]. For each component

obtained, the Rosenfeld-Grbner algorithm of Boulier (see
[2] or [3]) can test if it defines a solution. If it does, the

algorithm provides a membership test.

On the other hand, we have shown in the previous section
how to obtain a differential basis of the general solution GP.
Testing if ~= is included into a singular component amounts
to testing that each differential polynomial in the basis be-
longs to the singular component.

6 Developing the general solution into power series

This section shows how the basis of the general solution

can help in giving some insight on the local behaviour of the
general solution in the neighborhood of a singular solution.

We consider a first order irreducible differential polyno-
mial p in ~[z]{y}. Let s be its separant. Both s and p can
be seen as polynomials in Q[z, yO, yl]. Likewise we will come

across the rings of polynomials ~[z, YO, yl, . . . , yr] for some
r ~ 1. Forsome polynomials pi,. . . ,p[ ● Q[~, Yo, Yl, . . . 1,yT,

we will denote their affine variety in C1+l by V@I, . . . . pl).

Suppose we are given the initial condition (z”, y:) 6 C2,
Provided (z”, y;) is not a singular point, that is (z”, y:) is
not a root of the resultant of s and p in yl 4, we can develop

4The resultant determines the points where p and .shave a common
root in VI, that is tbe points where p bas a multiple root in yl,
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the general solution of p at this point into a formal power

series :

where g! is a simple root of p(x”, y:, yl ) and the y: for i > I

are obtained by successively differentiating p. Indeed 6P =

SYZ+tl, 62P = SY3 + tz, ””., where S, tl involve only X, YO, YI
and tz involves only x, yO, yl, YZ. Therefore

o tl(zo, y:,y; ), y: = tz(x’=,yg,yy,y ;),.. .

‘2 = S(z”, y:, y;) S(xo, y;, y;)

At singular points, we should not expect to find such

formal power series solutions. First we shall distinguish reg-

ular singular points, when ~ + yl ~ does not vanish, from

contact singular points. On the regular singular points, the
underlying differential equation is generically equivalent to

Y
,2

= x. Solutions generically have a cusp at such points.

EXAMPLE 6.1 Consider the equation y’z – 2zy’ – y = O as-
sociated to the differential polynomial p = y: – 2zyl – go.

Then s = & = 2yl –2z. Thus ~(,s) = (Y1 –Z, YO– Z2).

The locus of singular points is the parabola y. = X2 If we

sketch the graphs of the solutions in the [x, uo ) plane we

indeed see t~a~ they have a cusp on this p&a’b-ola.-

Note that the origin is a contact singular point.

continuously differentiable solutions cross it.
Two

o

When the locus of singular points turns into a singular
solution, it is made of contact singular points. The general
solution does not, generically, have singularities then.

EXAMPLE 6.2 Recall example 2.4. If we sketch the graph of

the solutions it looks like

The general solutions j(x) = (z+ a)z have no singularit-

ies along the singular solution j(z) = O. 0

We can thus expect to develop the general solution into

formal power series along the singular solution. Note that
we intrinsically look for infinitely differentiable solutions. In

the example above, infinitely many differentiable solutions

go through a point. More generally, when there is a singular

solution, there may be infinitely many r-times differentiable

solutions through a point. This r is bounded by the m --1

in theorem 4.1.
Assume we have a formal power series that is a zero of

(Z–zo)iy:. Then(x”, yf, yf’) is a zero Of p.Gp:?7=xi>o -

Likewise (z”, ~~,. . . . y;) is a zero of the g;.
Conversely, we seek conditions under which (x”, y:) ex-

tends to a formal power series solution, that is, conditions
under which we may find y;, y;, y;, . . .. Part of the answer
is given by the following extension theorem (see for instance

[5]).

THEOREM 6.1 Let 1 be the ideal generated by some

91,...,91 GQZ1,””””” ,.zm,z]. Let J be the elimination ideal of
I according to z: J = InQ[~l,. ~. ,.z~]. For each 1< i s: 1

write g, in the form :

g; = qi(.zl, . . . . z~)z~’ + terms of degree < lV, in z,

where N~ >0 and g, is non-zero.

Suppose (al ,..., am) CCmisazero of J(wecall ita
partial solution). If at least one of the g~ does not van-

ish for (al, ..., am) then there exists a c ~ such that

(al,..., a~, a)isazeroof1.

This theorem can be proved with resultants.
Note that we only have a sufficiency condition for the

extension step to work : the partial solution must not be
on the affine variety of the leading coefficients, V(ql, . . . . q~).

Moreover the q, depend on the given basis gl, . . . . gl of 1.

But ifgl, . . . , g~ is a Grbner basis of 1 according to an
order where z prevails the z-homogenisation of the g; will

give a basis of the z-homogenisation Ih of 1. The projective
h is the projective closure of the afine vwietYvariety of 1

of 1. Therefore if a partial solution (a 1, ..., am ) makes all
the leading coefficient q, vanish, there is at least one way to
extend this solution with an infinite value for z.

To put it in other words, if gl, . . . . gl is a Grbner basis of

1 according to an order where z prevail V(ql, . . . . ql ) will be
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the smallest set where we cannot make an extension step in
c.

Before giving the general algorithm, let us look at an

example of how we can apply this theorem to decide when
an initial condition extends to a formal power series solution.

EXAMPLE 6.3 Let p be the differential polynomial of

Q[z]{y} given byp= X2y~+2ZyOy, +y~–4Z2YO. Thus
s = 2Z(ZYI + yo) and the resultant of p and s is r = 16z6yo.

Therefore, for the initial conditions (x”, y:) ~ ~z where
y: # O and x # O, we can develop the general solution into

formal power series by successively deriving p. We are going
to show that the initial condition (z”, y:) can be extended
into a formal power series solution under the less restrictive

assumption that & # O.
Note that the affine variety of (p,s) has two components

{(7S) = (X, YO) n (YO, Y1)

x, yO = O is a cent act singular point while yo, yl = O corre-

sponds to a singular solution V(Z) = O.
A differential basis of the general solution ~P is given by

a basis of @ = (p, Jp): Sm. To be able to do the extension
steps for a maximal set of initial condition we compute a

Grbner basis of G; according to the lexicographical order
yZ > yl > yO > x (with the help of Maple) :

g; = (p, Jp) : sm = (&Y2 + 3XY1 – yo – 4X2,

2xyoyz + Zyf + 5yoyl – 8xy0,

(5xy, + yo)y2 + 8y~ – 10ZYI – 4y0,

2yjyz – 5zy; – 9yoy; + 20zyoy1 – 8y; ,

dY? + 2XYOY1 + y; – 4z2yo).

The underlined terms correspond to the leading coefficients

(the q, of the extension theorem).
In virtue of theorem 6.1, given the initial condition

(z”, y:), we may find Y7 c C a root of P(x”, y:, y,) provided
x“ # O. Now,

WPI 2Y:, 5~Yl + Yo, 2XY0, 2X2) = (x, ~l)).

that corresponds to the contact singular point. According to
the same theorem, for a given zero of p, (x”, y:, y?) such that

(d’, y:) # (O, O) we may find Y; 6 C such that (z”, g:, y;, Y;)
is a zero of ~~. Furthermore yZ appears, when it actually

does, linearly in the polynomials of the basis of g;. Con-

sidering them as differential polynomials, this implies that
their separant is equal to their leading coefficient: ys will
have the same coefficient in the derivated polynomials. We
will thus be able to find y:. Similarly, we will successively

get gj, y~, . . . .
Let us take an initial condition on the singulm solution:

y: = O. We must chose x“ # O and y~ = O. With such an
initial condition there is only one polynomial in yZ which

does not vanish: q = 2x2y2 + 3xyI – yO – 4X2. Thus y$ = 2.
Differentiating q we will get y: : dq = 2x2ys+7zyj+2yl –8x.
and consequently y: = —&.

Carrying on that way we find the formal power series
solution around the point (x”, O):

(x - x“)’ + 23(z – z“)’
j(z) = (z – Z“)2 –

Xo 48(zo)2

15(X – x0)5 + 533(x – X“)”—
22(Z”)3 1152(xo)4 +

The first step of a general algorithm is thus to compute
a Grbner basis of L7~ according to a lexicographical order
x < yO < yl < < y~. We can read out of it the successive

basis of the ~$ for all 1< k < m. This has the form :

1:
[ 9P = 9p(~>Yo, . . .. Yl)Y.Y: +.. .

where g; = p.

We give the following notations: for some 1 s r s m,
g’ will be the set of polynomials {g; }1, and qr the set of
leading coefficients of the extension theorem:

qT = ()u g’ u {q; }l.

1=1,?’-1

We are going to look under which minimal conditions an
initial condition (z”, y:) can be extended to a formal power

series. The key point is that these conditions will be on z“,

and the m first derivatives of y, y:, y~, . . . . y%, only.

The first step is to find under which conditions (x”, y~)
can be extended to a zero (x”, y:, y;, . . . , y&) of ~~. This is

done by extending with one derivative at a time and apply-
ing at each step the extension theorem: provided (x”, y:) is
not a root of ql, y: can be found in ~ such that (z”, y:, y:)

is a zero of p, that is a zero of G;. (x”, yj, y;) extends to a

zero (x”, y;, y~, yj) of @ if (x”, y;, y:) @ V(q2). Taking sim-

ilar successive steps we will find the conditions under which
(x”, y:) can be extended to a zero (x”, u:, y:,..., g%) of Gy.

Secondly, to extend this zero to higher orders, that is
to determine when we can find y~+l, y~+2, . . . . a general

process5 would be to compute successively the ~~+1, ~~+z,

. . . . But in the case of a first order differential polynomial
p we are considering here, we know that the {g’ }l<r$~ is

a differential basis of G=. Moreover, for j < m, bg~ E ~~+1.
Therefore, adding the dg~ to the basis of L7T will give a

basis of L77+1. Similarly, adding all the derivatives up to
order r of the polynomials in the set g~ to the basis of ~~

will give a basis ~~+r.

Let q~+l denote the set of separants of the polynomi-
als in g~. This is the set of the leading coefficients in the

derivatives of the polynomials in g~.

If the zero (z, y:,..., y:) of Gr we obtained earlier is not

in the affine variety of qm+ 1, then it satisfies the condition
of the extension theorem, and we can find a formal power

series solution (up to any order).
We shall point out that if a partial solution (x, y~,. . . . y;)

is in V(q~+’), it does not mean that there is no power eerie

0
5We mean a process that could be applied for a higher order dif-

ferential polynomial.
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solution extending it. It just means there is another type of

solution (corresponding to a infinite y~+l ) which extends it.

EXAMPLE 6.4 In the last example, we have shown that
when X“ = O the general solution could not be expanded
into formal power series. But you can check that j(z) = ~Z2
is a solution in the neighbourhood of X* = O. The point is
that in the neighbourhood of Z“ = O there are other so-
lutions. Indeed the general solution is given by ~~(x) =

~x2 + & ~ + b@, where b is an arbitrary constant. o

To put it in a nutshell, provided we can find a zero

(x, Y8,. . . . y:) of Gy, by successive extension steps, which
is not in the union of the afline varieties of the leading co-

efficient u~=~ V(qr) = V (n~=~l (q’)), we know we can de-

velop the general solution into formal power series up to any
order.

For higher order differential equation, we may find the
formal power series of the general solution up to a given

order k by similarly computing the G’;. Nonetheless, we do
not know whether it will extend any further.

7 Prospects

Points on the algebraic variety of the leading coefficients,

which are the points where the general solution can not
be developed into formal power series, require another ap-

proach. We shall certainly think about a more general class
of formal series if we w-e tempted to develop the solution at

these points.
It would be nice to extend the results to higher orders.

As for a scalar differential equation of order higher than

one, we have defined the general solution and computing
its basis and developing it into formal power series can be

done in quite the same way. What is left to determine is the

bound for the number of derivations to be made.

When considering a system of differential equations, the
first step is to find the right definition of the general solution.

The keystone lies on a generalisation of the separant.
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