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ABSTRACT
This paper presents a new algorithm to compute the power
series solutions of a significant class of nonlinear systems of
partial differential equations. The algorithm is very different
from previous algorithms to perform this task. Those relie
on differentiating iteratively the differential equations to get
coefficients of the power series, one at a time. The algorithm
presented here relies on using the linearisation of the system
and the associated recurrences. At each step the order up
to which the power series solution is known is doubled. The
algorithm can be seen as belonging to the family of Newton
iteration methods.

Categories and Subject Descriptors
I.1.2H.4 [Symbolic and Algebraic Manipulation]: Com-
puting Methodologies—Algorithms

General Terms
Algorithms

Keywords
nonlinear partial differential systems, formal integrability,
power series solutions, differential algebra, Newton iteration.

1. INTRODUCTION
A Newton method for computing the power series solution

of a nonlinear system of ordinary differential equations of
first order was introduced in [5, 8]. This paper offers a
generalization to a significant class of nonlinear systems of
partial differential equations.

After the work of Kowalevskaya, Riquier [21] proved the
existence and uniqueness of analytic solutions to a wider
class of systems of partial differential equations, the passive
orthonomic systems. Riquier provided furthermore an algo-
rithm that would bring any linear system, as well as some
lucky nonlinear ones, to a system of that form. The proof
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of existence and uniqueness of Riquier consists in proving
first the existence and uniqueness of a formal power series
solution. At a second stage the series is proved to converge.
Riquier’s approach was completed for polynomially nonlin-
ear differential equations by Ritt [22] by use of characteristic
set method. See also [30].

This paper first presents a general framework for power se-
ries solution of polynomially nonlinear differential systems.
Though borrowing heavily from [24, 3, 15] our presenta-
tion is more complete and compact. Proofs of existence and
uniqueness of formal power series solutions indeed appear in
[24] for rif ’ form systems and in [3, 15] for regular differen-
tial systems. Uniqueness is understood for a given regular
initial condition. Rif’ form systems and regular differential
system are concepts which are in fact not far apart. They
generalize and in some sense simplify the concept of pas-
sivity. Their significance owes to the fact that there are
algorithms that will bring any polynomially nonlinear dif-
ferential system into an equivalent finite set of such systems
[14, 20, 2, 3, 10, 4]. We shall review a proof of existence and
uniqueness of power series solutions of a regular differential
system.

The definitions of rif’ form systems and regular differential
systems depend on the choice of a ranking of the derivatives.
The existence of formal power series solutions is independent
of the ranking chosen. On the contrary, the convergence
property of the found power series does. The rankings of
analycity defined in [16] are shown, in that same paper, to
be the only rankings for which any analytic initial condition
leads to a converging power series solution.

This paper addresses the computation of the formal power
series solution of a regular differential system. The proofs of
existence and uniqueness of the power series solutions of [24,
3] are constructive. The underlying algorithms are based on
differential reductions, so basically on differentiation of the
equations, and evaluation. We propose a new algorithm of a
completely different nature for the computation of the power
series solution of a regular differential system. This paper
is a first report on a longer research project on the efficient
computation of power series solutions. We concentrate here
on showing the quadratic character of our algorithm: each
step nearly doubles the order up to which the power series
solution is known.

The basic step of the algorithm consists in using the lin-
earized equations at an approximation of the solution to
compute an approximation of the solution at a higher or-
der. The extra terms of the new approximation are ob-
tained through linear recurrence equations. If one knows an
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approximation of the solution at order ρ > r, where r is the
order of the system, the linearized system will allow us to
compute an approximation of the solution at order 2ρ − r,

or 2ρ− r + 1 if the system is of degree one in the rth order
derivatives. The algorithm is thus quadratic in the case of
first order quasi-linear differential systems. The algorithm is
described for orderly rankings. It can certainly be adapted
to more general rankings, like rankings defined by weights.
The algorithm can also be adapted in a straightforward way
for rif’ form systems.

We shall report on a first implementation of our algorithm
in maple. The implementation is faced with the difficulty
of arithmetic operations with power series. The complexity
study and a more subtle implementation is subject of future
research.

The paper is divided in four sections. Some preliminar-
ies in differential algebra are presented in Section 2. The
aim of the section is to recall briefly the definition of regu-
lar differential systems and settle some notations. Evolving
from [24, 3, 15] we give in Section 3 a general and compact
treatment of the formal integrability of regular differential
systems. Section 4 gives the heart of our method and details
the new algorithm to compute the power series solution of a
regular differential system. Finally in Section 5 we compare
a first implementation of our algorithm to the implementa-
tions of the libraries rif [29] and diffalg [1] of maple that
implement the algorithms of [24] and [3].

2. NONLINEAR DIFFERENTIAL SYSTEMS
FROM AN ALGEBRAIC VIEWPOINT

In this section we review notations for constructive differ-
ential algebra. We shall aim at giving the definition of regu-
lar differential systems, as introduced in [2]. These systems
have the excellent property of making the bridge between
differential algebra and polynomial algebra. That is the key
to effective algorithms that is expressed by the Rosenfeld
lemma. A corollary of that lemma allows us to show, in
next section, the existence and uniqueness of power series
solutions for regular differential systems. Regular differen-
tial systems are all the more important that we have algo-
rithms to decompose any differential systems into regular
differential systems.

We refer the reader to [12] for an expanded tutorial pre-
sentation of this material that is fully consistent with the
present notations and definitions. In particular we shall de-
note �Σ� the radical differential ideal generated by Σ. The
classical notation {Σ} leads to too many confusions in an
algorithmic context. Classical references are the books by
Ritt and Kolchin [14, 22], recent research literature include
[6, 30, 17, 18, 2, 20, 3, 24, 10, 4] while reviews and tutorials
are to be found in [13, 9].

We consider differential rings with commuting derivations
{δ1, . . . , δm}. We note Θ the free commutative monoid gen-
erated by that set of derivations. An element θ of Θ can
be written θ = δα1

1 . . . δαm
m for some (α1, . . . , αm) ∈ �m

and we shall write θ = δα for short. Its order is then
|α| = α1 + . . . + αm. For r ∈ � we note Θr the set of
derivation operators of order r or lower. Θ+ denotes the set
of derivation operators of positive order.

Given a differential ring R and a set of differential in-
determinates Y = {y1, . . . , yn}, R �Y � denotes the ring of
differential polynomials with coefficient in R. It is the poly-

nomial ring in the infinitely many variables ΘY = {θy, y ∈
Y, θ ∈ Θ}, called the derivatives. Let Σ be a subset of
R �Y �. We denote respectively (Σ), [Σ] and �Σ� the ideal,
the differential ideal and the radical differential ideal gener-
ated by Σ.

R �Y � is understood to be endowed with a differential
ranking, or simply ranking as no confusion shall arise. For
u ∈ ΘY, we note ΘY<u the set of derivatives that rank
lower than u. A ranking is orderly if it satisfies φy < ψx,
for x, y ∈ Y and φ, ψ ∈ Θ, as soon as |φ| < |ψ|. In that
case, the sets ΘY<u are finite for any u ∈ ΘY.

Let p be a differential polynomial of R �Y � that is not
in R. The leader and separant of p shall be denoted by
lead(p) and sep(p). A subset A of R �Y � is a differential
triangular set, if no element of A belongs to R and any
element of A is partially reduced w.r.t. the other ones and
any two distinct elements of A have distinct leaders. We
denote �(A) = lead(A) and SA = sep(A) the sets of leaders
and separants of the elements of A. ΘA<u, for u ∈ ΘY
denotes the set consisting of all elements of A together with
all their derivatives the leaders of which are of lower rank
than u. In other words ΘA<u = ΘA ∩R[ΘY<u].

Given an element q ∈ R �Y � there exist processes of par-
tial reduction that compute an element r partially reduced
w.r.t. A such that s q ≡ r mod [A] for some s ∈ S∞

A .
For a, b ∈ R �Y � s.t. lead(a) and lead(b) have a common

derivative, while they are not derivative of one another, we
define ∆(a, b) = sep(b)ψ(a)−sep(a)φ(b), where φ, ψ ∈ Θ are
s.t. ψ(lead(a)) = φ(lead(b)) is the lowest common derivative
of lead(a) and lead(b).

Definition 2.1 A pair (A,H) of finite subsets of R �Y � is
a regular differential system if
- A is a d-triangular set

- H is a set of nonzero differential polynomials partially
reduced w.r.t. A

- SA ⊂ H∞

- for all a, b ∈ A, ∆(a, b) ∈ (ΘA<v) :H∞ where v is the
lowest common derivative of lead(a) and lead(b), if such a
v exists.

Regular differential systems occur as outputs of triangu-
lation decomposition algorithms. The key of the algorithms
relies on the following theorem that is an adaptation of a
result of Rosenfeld [23, 3].

Theorem 2.2 (Rosenfeld’s lemma) Let (A,H) be a regular
differential system in R �Y �. A differential polynomial that
is partially reduced w.r.t. A belongs to [A] :H∞ if and only
if it belongs to (A) :H∞.

Let R be an integral ring for which we can perform arith-
metic operations and derivations as well as testing if an ele-
ment is zero. Then, there are algorithms [2, 3, 10, 4, 27, 12]
that computes for any pair (Σ, H) of finite sets of differen-
tial polynomials in R �Y � a finite set of regular differential
systems (A1,H1), . . . (Ar,Hr) such that the equality

�Σ� :H∞ = [A1] :H
∞
1 ∩ . . . ∩ [Ar] :H

∞
r

holds in �(R) �Y �, where �(R) is the field of fractions of R.
A power series is a solution of the original system Σ =

0, H �= 0 if and only if it is a solution of an output system
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Ai = 0,Hi �= 0. Given this equivalence it is no loss of gener-
ality to inspect power series solutions of regular differential
systems.

3. FORMAL INTEGRABILITY
We define and characterize here power series solution of a

differential system. We then proceed to define regular ini-
tial conditions for a regular differential system in the way of
[15]. We will then give the proof of existence and uniqueness
of a power series solution to a regular differential system for
a given regular initial condition. That proof goes in the
sense of [3]. Another proof of existence and uniqueness of
power series solution for a rif ’ form system1 appears in [24].
Though borrowing from [3, 24, 15], as well as taking inspi-
ration from [26], we feel our presentation is more complete
and compact than those.

3.1 Power series
In this section we shall establish the notations concerning

power series that will be used in the rest of the paper.
We first note S = K[[t1, . . . , tm]] the power series ring in

m variables with coefficients in a field K that is an extension
of �, the field of rational numbers. We make it a differential
ring for the derivations δ1, . . . , δm in the usual way: δitj is
equal to 1 or 0 according to whether i = j or not.

We shall note � the partial product order on �m . The
quadrant θ + �m , θ ∈ �m , is the set of elements β ∈ �m

s.t. θ � β. For α = (α1, . . . , αm) ∈ �m we shall note tα

the term tα1
1 . . . tαm

m and likewise δα the derivation operator
δα1
1 . . . δαm

m . For α, β ∈ �m we note α! = α1! . . . αm! and if

α � β
�

β
α

�
= β!

α!(β−α)!
.

For s ∈ S we shall note Φα (s) the evaluation at t = 0 of

δαs so that one can write s =
�

β∈�m Φβ (s) tβ

β!
. Φ0 : S → K

is a ring morphism. Note that for α, β ∈ �m , Φβ (δαs) =
Φα+β (s) so that Φβ = Φ0 ◦ δβ . For s, s′ ∈ S

Φβ

�
s s′
�

=
�
α�β

�
β
α

�
Φβ−α (s) Φα

�
s′
�
.

3.2 Power series solution
In this section we inspect the meaning of power series

solutions for a differential system. Usually a zero of a dif-
ferential system (Σ,H) in some differential polynomial ring
F �y1, . . . , yn�, where F is a differential field, is defined by
a pair (F ′,Ψ) where F ′ is a differential field extension of F
and Ψ : F �y1, . . . , yn� → F ′ is a differential ring morphism
s.t. Ψ(p) = 0 for all p ∈ Σ and Ψ(h) �= 0 for all h ∈ H . We
adapt that definition for power series solutions.

The differential systems we shall deal with may have their
coefficients in a ring of power series K0[[t1, . . . , tm]] but more
usually have them in a polynomial ring K0[t1, . . . , tm]. In
both cases we can consider them as differential systems with
coefficients in S = K[[t1, . . . , tm]] where K is a field extension
of K0. In practice we take K to contain the coefficients of
the initial conditions. We can indeed embed K0[[t1, . . . , tm]]
and K0[t1, . . . , tm] in S . In the case of K0[[t1, . . . , tm]] the ti
are left invariant through the embedding while in the case of
K0[t1, . . . , tm], the image of (t1, . . . , tm) by the embedding
is (a1 + t1, . . . , am + tm) for some (a1, . . . , am) ∈ Km that
is the point at which we look for the power series solution.

1It is not too hard to bring a regular differential system to
a rif’ form.

That construction allows us to only consider formal power
series solutions around the origin with no further extension
of the base field.

Definition 3.1 A power series solution of the differential
system (Σ, H) of S �y1, . . . , yn� is defined by a morphism
of differential S-algebra Ψ : S �y1, . . . , yn� → S such that
Ψ(p) = 0 for all p ∈ Σ while Ψ(h) �= 0 for all h ∈ H .

Consider a differential ring morphism Ψ : S �y1, . . . , yn� →
S . It induces the ring morphism Ψ̄ = Φ0◦Ψ from S �y1, . . . , yn�
to K s.t. Ψ̄(δθyi) = Φθ (ỹi), where ỹi = Ψ(yi). If I is a dif-
ferential ideal of S �y1, . . . , yn� s.t. I ⊂ ker Ψ then I ⊂ ker Ψ̄.

Conversely, consider a ring morphism Ψ̄ : S �y1, . . . , yn� →
K and define the application Ψ : S �y1, . . . , yn� → S by

Ψ(p) =
�

β∈�m

Ψ̄(δβp)
tβ

β
for all p ∈ S �y1, . . . , yn� .

One easily checks that Ψ is a differential morphism leaving S
invariant. It is thus the differential morphism over S defined

by Ψ(yi) =
�

β∈�m Ψ̄
�
δβyi

�
tβ

β!
. Furthermore Ψ(p) = 0 iff

[p] ⊂ ker Ψ̄. If I is a differential ideal of S �y1, . . . , yn� s.t.
I ⊂ ker Ψ̄ then I ⊂ ker Ψ.

We summarize the previous discussion in a property. That
shall allow us to define initial conditions and prove the ex-
istence and uniqueness of power series solutions to regular
differential systems.

Proposition 3.2 In S �y1, . . . , yn� consider the differential
system (Σ,H). Let Ψ̄ : S �y1, . . . , yn� → K be a ring mor-
phism s.t. [Σ] ⊂ ker Ψ̄ but [h] �⊂ ker Ψ̄, for all h ∈ H .
Then the differential ring morphism Ψ : S �y1, . . . , yn� → S
defined by

Ψ(yi) =
�

β∈�m

Ψ̄
�
δβyi

� tβ
β!

is a power series solution of (Σ, H).

By extension, we shall say in this section that Ψ̄ is a power
series solution of (Σ,H).

3.3 Initial conditions and associated power se-
ries solution.

In this section we reproduce the definition of initial con-
dition of regular differential system by [15] and obtain a
formal integrability statement as a corollary of Rosenfeld
lemma. Basically an initial condition for a d-triangular set
A is defined by a set of values given to the derivatives that
are not proper derivatives of the leaders of A.

Definition 3.3 Let (A,H) be a regular differential system
of S �y1, . . . , yn�. A regular initial condition for (A,H) is a
K-morphism Ψ0 : S [ΘY \ Θ+

�(A)] → K, such that (A) ⊂
kerΨ0 while Ψ0(h) �= 0, for any h ∈ H .

An initial condition is thus defined by attributing values
to the derivatives that are not proper derivative of the lead-
ers. Checking that an initial condition is regular consists
in checking that the values make the elements of A van-
ish while making no element of H vanish. This is a test
on a finite number of values, the ones corresponding to the
derivatives present in the elements of A and H . Note that
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any element of Ψ0(�(A)) is thus (separably) algebraic over
Ψ0(ΘY \ Θ�(A)).

To an initial condition Ψ0 we can thus associate the power
series ω ∈ Sn such that

ωi =
�

δβyi /∈Θ+�(A)

Ψ0

�
δβyi

� tβ
β!
.

Proposition 3.4 Let (A,H) be a regular differential sys-
tem of S �y1, . . . , yn� and Ψ0 : S [ΘY \ Θ+

�(A)] → K a reg-
ular initial condition for it. There exists a unique power
series solution Ψ : S �y1, . . . , yn� → K of (A,H) extending
Ψ0. That power series solution is s.t. Ψ(h) �= 0 for any
h ∈ H .

Proof. We define, for any p ∈ S �y1, . . . , yn�, Ψ(p) to

be Ψ0(r)
Ψ0(h)

for any r ∈ S [ΘY \ Θ+
�(A)] and h ∈ H∞ such

that h p ≡ r mod [A]. Such a pair (h, r) exists and can be
found by partial reduction. Furthermore, the definition does
not depend on the pair (h, r). Indeed if (h′, r′) satisfies the
same congruence then h′r − hr′ ∈ [A] ∩ S [ΘY \ Θ+

�(A)].
By Theorem 2.2, h′r − hr′ ∈ (A) :H∞ where (A) :H∞ is
viewed as an ideal in S [ΘY \ Θ+

�(A)]. There thus exists
k ∈ H∞ s.t. k(h′r − hr′) ∈ (A) so that Ψ0(h

′r − hr′) = 0.
Indeed Ψ0(k) �= 0 while Ψ0(k(h

′r − hr′)) = 0 by definition

of regular initial condition. Consequently Ψ0(r′)
Ψ0(h′) = Ψ0(r)

Ψ0(h)
.

We show that the defined application Ψ is a ring mor-
phism. For f, g ∈ S �y1, . . . , yn�, let h, h′ ∈ H∞, r, r′ ∈
S [ΘY\Θ+

�(A)] be such that h f ≡ r mod [A] and h′ g ≡ r′

mod [A]. As hh′(f + g) ≡ h′r + hr′ mod [A] and hh′fg ≡
rr′ mod [A] we have Ψ(f + g) = Ψ0(h′r+hr′)

Ψ0(hh′) = Ψ0(r)
Ψ0(h)

+
Ψ0(r′)
Ψ0(h′) = Ψ(f)+Ψ(g) and Ψ(fg) = Ψ0(rr′)

Ψ0(hh′) = Ψ0(r)
Ψ0(h)

Ψ0(r′)
Ψ0(h′) =

Ψ(f) Ψ(g) since Ψ0 is a ring morphism.
The morphism Ψ clearly extends Ψ0. In particular for

any element h ∈ H we have Ψ(h) = Ψ0(h) �= 0. Now, for
p ∈ [A] ⊂ [A] :H∞ we have Ψ(p) = 0. Indeed, if (h, r) is the
pair used to define Ψ(p) then by Theorem 2.2 r ∈ (A) :H∞.
There thus exists k ∈ H∞ s.t. kr ∈ (A) so that hk p ≡ 0
mod [A]. Existence is thus secured.

Assume now Ψ : S �y1, . . . , yn� → K is any power series
solution of (A,H) extending Ψ0. For any p ∈ S �y1, . . . , yn�
there exists h ∈ H∞ and r ∈ S [ΘY \ Θ+

�(A)] such that
h p ≡ r mod [A]. As [A] ⊂ ker Ψ , Ψ(h)Ψ(p) = Ψ(r) so

that Ψ(p) = Ψ0(r)
Ψ0(h)

since Ψ0(h) �= 0. Uniqueness is thus

secured too.

Note that the condition Ψ(h) �= 0 satisfied by the power
series solution we exhibited is more constraining than the
general requirement [h] �⊂ kerΨ. With this process we do
not obtain all the power series solution of (A,H). That
is an undecidable problem already in the case of ordinary
differential equations [7, 19].

The above proof is constructive and discloses an algo-
rithm, based on differentiating the equations, to compute
the power series solution up to a certain order. Variants of
it are implemented within the maple libraries diffalg [1] and
rif [29]. In next section we present a very different way of
proceeding for the computation.

4. COMPUTING POWER SERIES SOLUTIONS
Now that we secured the existence and uniqueness of a

power series of a regular differential system we proceed to

present a new algorithm to compute the power series so-
lution of a regular differential system for a given regular
initial condition. The coefficients are computed inductively
through recurrence relationships associated to the linearized
system.

We show first that we can associate linear recurrence equa-
tions to linear differential systems in a way that the coeffi-
cients of the power series solutions of the differential systems
satisfy the recurrence equations. As a result, the coefficients
of the power series solutions of a linear differential system
can be computed inductively.

For nonlinear differential systems the basic step of the al-
gorithm is as follows. Assume we know the power series
solution up to a certain order ρ. Linearize the differential
system around that approximated solution. Use the associ-
ated recurrence equations to compute up to as big an order
as possible the power series solution of the non-linear sys-
tem. The algorithm thus belongs to a family of Newton
methods.

In the case of system of ordinary differential equations (of
first order) there are explicit formula for power series solu-
tions of linear systems and those can be used to compute
new coefficients of the power series solution of the non lin-
ear system [5, 8]. No such explicit formula exists for systems
of partial differential equations. More awkwardly the exis-
tence of a power series solution of the linearized systems we
consider is not secured.

Let R be an S-algebra. A morphism of differential S-
algebra Ψ : S �y1, . . . , yn� → R is completely determined by
the image (ỹ1, . . . , ỹn) of (y1, . . . , yn). For p ∈ S �y1, . . . , yn�
we shall write p(ỹ) for Ψ(p). If Ψ : S �y1, . . . , yn� → S is in
fact a power series solution of a differential system (Σ, H) of
S �y1, . . . , yn� we shall say in this section and the next that
ỹ = (ỹ1, . . . , ỹn) ∈ Sn is a power series solution of (Σ,H) or
simply that ỹ ∈ Sn is a zero of (Σ, H). Another case of in-
terest will be the translation morphism τȳ : S �y1, . . . , yn� →
S �y1, . . . , yn�, where ȳ = (ȳ1, . . . , ȳm) ∈ Sn, that is defined
by τȳ(yi) = ȳi + yi. For p ∈ S �y1, . . . , yn� we shall write
p(ȳ + y) instead of τȳ(p).

4.1 Linear differential equations
We show that the coefficients of the power series solution

of a linear differential equation can be computed inductively
through a linear recurrence relationship. The order under-
lying the induction is dictated by the ranking ≤ on the dif-
ferential polynomial ring.

Proposition 4.1 Assume l is a linear differential polyno-
mial of S �y1, . . . , yn� with leader δθyκ, for some θ ∈ �m

and κ ∈ {1, . . . , n}. Write it as

l =
�

δβyi≤δθyκ

aiβ δ
βyi − b where b, aiβ ∈ S .

Assume ỹ ∈ Sn is a zero of l s.t. Φ0 (aκθ) �= 0. For any
α ∈ �m , Φθ+α (ỹκ) depends linearly on a finite subset of
{Φγ (ỹi) | δγyi < δθ+αyκ}, the lower ranking coefficients.
The explicit relationship is

Φα (b) =
�

δβyi≤δθyκ

γ�α

�
α
γ

�
Φα−γ (aiβ) Φγ+β (ȳi)

where the coefficient of Φθ+α (ỹκ) is Φ0 (aκθ).
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Proof. For any ȳ ∈ Sn we have

Φα (l(ȳ)) =
�

δβyi<δθyκ

�
γ�α

�
α
γ

�
Φα−γ (aiβ) Φγ

�
δβ ȳi

�
−Φα (b) .

As Φγ

�
δβ ȳi

�
= Φβ+γ (ȳi) and Φα (l(ỹ)) = 0 we obtain the

desired relationship.

Conversely, any element ỹ ∈ Sn satisfying Φ0 (aκβ(ỹ)) �= 0
and the previous relationship for any α ∈ �m is a series so-
lution of l. As a consequence, for a regular initial condition
there is a unique power series solution ỹ to l and its missing
coefficients can be computed inductively through the previ-
ous recurrence relationships. The generalization to regular
differential system that are linear is not difficult (but not
used in this paper).

4.2 Linearisation
We chose now ≤ to be an orderly ranking on S �y1, . . . , yn�.

We shall show that we can use the linearisation of a differ-
ential polynomial to compute extra coefficient of a power
series solution of that differential polynomial.

Let p be a differential polynomial of S �y1, . . . , yn� with
leader δθyκ, θ ∈ �m , κ ∈ {1, . . . , n}. That implies p ∈
(ΘrY ) for any r greater or equal to |θ|.

Let ȳ = (ȳ1, . . . , ȳm) be an element of Sn. According
to Taylor formula at order one, we can write p(ȳ + y) ∈
S �y1, . . . , yn� as

p(ȳ + y) ≡ p(ȳ) +
�

δβyi≤δθyκ

∂p

∂δβyi
(ȳ) δβyi mod (Θ|θ|Y )2.

Let Lp|ȳ denote that linear differential polynomial in the
right handside. We define a linearisation of p at ȳ and order
ρ to be a linear differential polynomial

L(ρ)

p|ỹ =
�

δβyi≤δθyκ

aiβ δ
βyi + b ∈ S �y1, . . . , yn�

where aiβ ≡ ∂p

∂ δβyi
(ȳ) and b ≡ p(ȳ) mod (t1, . . . , tm)ρ.

For short we shall write (t)ρ instead of (t1, . . . , tm)ρ. If z̄ ∈
Sn is such that z̄ ≡ 0 mod (t)ρ, then δαz̄ ≡ 0 mod (t)ρ−|α|.
For any q ∈ (ΘrY )2, with r ≤ ρ, q(z̄) ∈ (t)2ρ−2r. Thus, if
z̄ ≡ 0 mod (t)ρ and ρ ≥ r ≥ |θ| then

p(ȳ + z̄) ≡ L(2ρ−2r)
p|ȳ (z̄) mod (t)2ρ−2r.

Proposition 4.2 Consider p in S �y1, . . . , yn� with leader
δθyκ and separant s. Let ỹ ∈ Sn be a zero of p s.t. Φ0 (s(ỹ)) �=
0. Let ȳ ∈ Sn be s.t. ȳ ≡ ỹ mod (t)ρ where ρ ≥ |θ|. If
|θ| ≤ r ≤ ρ then for any α ∈ θ + �m s.t. |α| < 2ρ − r,
Φα (ỹ) depends linearly on {Φγ (ỹi) | δγyi < δαyκ}, the
lower ranking coefficients.

If L(2ρ−2r)

p|ȳ =
�

δβyi<δθyκ
aiβ δ

βyi − b is a linearisation of

p at ȳ and order 2ρ− 2r then the explicit relationship is

Φα−θ (b) =
�

δβyi≤δθyκ

γ�α−θ

�
α−θ

γ

�
Φα−θ−γ (aiβ) Φγ+β (ỹi)

where the coefficient of Φα (ỹκ) in the right hand side is
Φ0 (aκθ) = Φ0 (s(ȳ)) �= 0.

Proof. As ỹ− ȳ ≡ 0 mod (t)ρ and |α− θ| < 2ρ− 2r we
have

Φα−θ

�
L(2ρ−2r)

p|ȳ (ỹ − ȳ)
�

= Φα−θ (p(ỹ)) = 0.

Note that aκθ = s(ȳ) and therefore Φ0 (aκθ) = Φ0 (s(ȳ)).
Since ρ ≥ |θ| and ȳ ≡ ỹ mod (t)ρ we have Φ0 (s(ȳ)) =
Φ0 (s(ỹ)) �= 0.

Making explicit the coefficient Φα−θ

�
L(2ρ−2r)

p|ȳ (ỹ − ȳ)
�

as

we did in the proof of Proposition 4.1 we obtain the desired
relationship.

We could enunciate as an immediate corollary that if z̃ is

a series solution of the linearisation L(2ρ−2r)

p|ȳ such that

Φβ (z̃i) =

�
0 if |β| < ρ
Φβ (ỹi − ȳi) if |β| ≥ ρ and δβyi /∈ Θ{δθyκ}

then ȳ+ z̃ ≡ ỹ mod (t)2ρ−r. Indeed, the inductive relation-
ships of Proposition 4.1 proves the existence and uniqueness
of such a solution z̃. This wording is adequate for a single
equation or for a system of ordinary differential equations.
The benefit of such a wording is that it leaves the choice on
how to compute the coefficients of the series solution of the
linear equation. In [5, 8] the power series solution is com-
puted from an explicit formula and its Taylor series expan-
sion is itself evaluated by a Newton operator. The maple

package associated to [25] implements that approach. On
the other hand the command dsolve/series of maple imple-
ments the computation through the recurrences associated
to the linearized differential system. For systems of partial
differential equations we have to be more specific on how to
compute the additional coefficients. A reason for that is that
the linearized differential systems to be considered need not
to admit power series solution for themselves. An example
of such a situation is given below

Let A be a d-triangular set of S �y1, . . . , yn� s.t. r is the
maximal order of the leaders of the elements of A. For ȳ ∈
Sn we define the linearisation L(ρ)

A|ȳ of A at ȳ and order ρ to

be the set of the linearisations of the elements of A at ȳ and

order ρ. If s(ȳ) �≡ 0 mod (t)ρ for any s ∈ SA then L(ρ)

A|ȳ is a

linear d-triangular set with the same set of leaders as A.

Example 4.3 Let S = �[[s, t]] and consider the regular dif-
ferential system (A, ∅) of S �y, z� where A = {ys − zy2, yt −
y, zt + z, zs}. By Proposition 3.4, the regular initial condi-
tion defined by ȳ = 1 + s + t and z̄ = 1 − t extends in a
unique way to a power series solution (ỹ, z̃) ∈ S2. We have
(ȳ, z̄) ≡ (ỹ, z̃) mod (s, t)2. To compute (ỹ, z̃) at order 3 we

shall use the linearisation L(2)
A|(ȳ,z̄) of A at order 2 which is

{ys−2(1+s)y−(1+2s+2t)z−2s−t, yt−y−s−t, zt+z−t, zs}.
L(2)

A|(ȳ,z̄)
is a differential triangular set but it is not coher-

ent. In fact 1 ∈ [L(2)
A|(ȳ,z̄)] so that it admits no zero of any

sorts. Informally speaking though, the incoherence in the
linearized system appears only at order bigger than 2.

We can improve Proposition 4.2 if the differential polyno-
mial has some linearity in it. If the differential polynomial
p is of degree one in all its |θ|th order derivatives then

p(ȳ+ y) ≡ Lp|ȳ(y) mod
�
Θ|θ|−1Y

�2
+
�
Θ|θ|−1Y

� �
Θ|θ|Y

�
.

so that for z̄ ∈ Sn s.t. z ≡ 0 mod (t)ρ with ρ ≥ |θ|
p(ȳ + z̄) ≡ L(2ρ−2r+1)

p|ȳ (z̄) mod (t)2ρ−2r+1.
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If furthermore the differential polynomial p is linear in |θ|th
order derivatives then

p(ȳ + y) ≡ Lp|ȳ(y) mod (Θ|θ|−1Y )2.

so that p(ȳ + z̄) ≡ L(2ρ−2r+2)
p|ȳ (z̄) mod (t)2ρ−2r+2. We thus

obtain the following improved result in those cases.

Proposition 4.4 Additionally to the hypotheses of Propo-
sition 4.2 assume that p is of degree one in its derivatives of
order |θ|. Then for any α ∈ θ + �m s.t. |α| < 2ρ − |θ| + 1,
Φα (ỹ) depends linearly on {Φγ (ỹi) | δγyi < δαyκ}, the
lower ranking coefficients.

If L(2ρ−2|θ|+1)
p|ȳ =

�
δβyi<δθyκ

aiβ − b is the linearisation of

p at ȳ and order 2ρ− 2|θ| + 1 then the explicit relationship
is

Φα−θ (b) =
�

δβyi≤δθyκ

γ�α−θ

�
α−θ

γ

�
Φα−θ−γ (aiβ) Φγ+β (ỹi)

where the coefficient of Φα (ỹκ) in the right hand side is
Φ0 (aκθ) = Φ0 (s(ȳ)) �= 0.

If p is furthermore linear in its derivative of order |θ|, we

can take |α| ≤ 2ρ−|θ|+2 provided we consider L(2ρ−2|θ|+2)

p|ȳ .

4.3 Algorithm
We consider here again an orderly ranking ≤ on S �y1, . . . , yn�.

Let (A,H) be a regular differential system in S �y1, . . . , yn�
and Ψ0 : S [ΘY \Θ+

�(A)] → K be a regular initial condition
to which we associate ω ∈ Sn such that for any i ∈ {1, . . . , n}

ωi =
�

δβyi /∈Θ+�(A)

Ψ0(δ
βyi)

tβ

β!
.

According to Proposition 3.4 Ψ0 extends in a unique way to
Ψ : S �y1, . . . , yn� → K that is associated to the power series

solution ỹ =
�

β∈�m Ψ(δβy) tβ

β!
.

We have ω ≡ ỹ mod (t)r0 where r0 is the minimal order
of the leaders of A. We want to compute, up to a certain
order,

ȳi = ỹi−ωi =
�

δβyi∈Θ+�(A)

Ψ(δβyi)
tβ

β!
, for all i ∈ {1, . . . , n}.

Let r be the maximal order of the leaders of A. If we
have ȳ ∈ Sn s.t. ω + ȳ ≡ ỹ mod (t)ρ for ρ > r, we can
compute z̄ ∈ Sn such that z̄ ≡ 0 mod (t)ρ and ω+ ȳ+ z̄ ≡ ỹ
mod (t)2ρ−2r. That consists in computing the coefficients
Φα (ỹi) s.t. δαyi ∈ Θ+

�(A) and ρ ≤ |α| < 2ρ − r. The
whole process relies on Proposition 4.2.

Let a be an element of A with leader δθyκ ∈ �(A). Ev-
idently ỹ is a zero of a and |θ| is equal to r or lower. Ac-
cording to Proposition 4.2, for any α ∈ θ + �m with |α| <
2ρ − r we can express Φα (z̄κ) as a linear combination of
{Φβ (ωi) ,Φβ (ȳi) ,Φβ (z̄i) | δβyi < δθyκ}. The coefficients of

this linear combination arise from the coefficients of L(2ρ−2r)

a|ω+ȳ
.

We shall in fact refer to this relationship as Φα−θ

�
L(2ρ−2r)

a|ȳ (z)
�

since it arises by inspecting of the coefficient of tα−θ in

L(2ρ−2r)
a|ω+ȳ (z̄).

Take δαyκ to be the lowest derivative of order ρ in Θ+
�(A).

It is the proper derivative of the leader δθyκ of an element a

of A. We can determine Φα (z̄κ) thanks to the relationship

Φα−θ

�
L(2ρ−2r)

a|ȳ (z)
�
. The relationship expresses Φα (z̄κ) lin-

early in terms of the coefficients of ȳ and ω. It is therefore
completely determined. Taking then the derivatives δαyκ of
Θ+
�(A) increasingly from there we can compute the cor-

responding coefficients Φα (z̄κ) in terms of the coefficients
of ȳ, ω and the previously computed coefficients of z̄. As a
result we can compute all the Φα (z̄κ) that correspond to
derivative δαyκ ∈ Θ+

�(A) with ρ ≤ |α| < 2ρ− r.
Let us point out that at each step there might be distinct

possible pairs (β, κ) ∈ �m × {1, . . . , n} corresponding to
distinct elements a of A. As we are ensured of the existence
and uniqueness of the power series solution of (A,H) we are
computing, any will do.

In the precise algorithm, there is an extra technical point
around the fact that not all the elements of A have the
same order. We need to incorporate the element of A order
by order. An element a in A of order r is taken in account
when we have an approximation at order r+1 of the solution.
That approximation is previously obtained thanks to the
lower order equations.

Also it is possible to take ω ∈ Sn without imposing that
Φβ (ωi) = 0 for δβyi ∈ Θ+

�(A). The only requirement is
that Φ0 (a(ωi)) = 0 for all a ∈ A and Φ0 (h(ωi)) �= 0 for all
h ∈ H .

Algorithm 4.5 Newton-Power-Series-Solution
Input:
- S �y1, . . . , yn� endowed with an orderly ranking ≤
- (A,H) a regular differential system in S �y1, . . . , yn�.

- ω ∈ Sn a regular initial condition for (A,H)

- R a positive integer

Output: ȳ ∈ Sn s.t. ȳ ≡ ỹ mod (t)R where ỹ is the power
series solution of (A,H) with initial condition ω.

r := the minimal order of the elements of �(A);

ρ := r + 1;

ȳ := 0;

while ρ ≤ R do
B := A ∩ S [ΘrY ];

r1 :=

�
R if A \B = ∅
min{ord (u)|u ∈ �(A \ B)} otherwise

if each element of B is linear in the rth order deriva-
tives then

ρ1 := min{2ρ − r + 2, r1 + 1, R};
elif each element of B is of degree one or less in the

rth order derivatives then
ρ1 := min{2ρ − r + 1, r1 + 1, R};

else
ρ1 := min{2ρ − r, r1 + 1, R};

fi;

ω̄ := ω mod (t)ρ1 ;

L := L(ρ1−r)

B|ω̄+ȳ ;

U := {u ∈ Θ+
�(B) s.t. ρ ≤ ord (u) < ρ1};

for δαyκ ∈ U by increasing rank do
l := an element of L with leader δθyκ s.t. θ ≺ α;
zα := the solution of Φα−θ (l(z)) = 0;

od;
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ȳ := ȳ +
�

δαyκ∈U

zα
tα

α!
;

r :=

�
r if A \B = ∅ or ρ1 < r1 + 1
r1 otherwise

ρ := ρ1;

od;

return (ω̄ + ȳ);

B is the subset of A consisting of the elements of A of
order r or less and r1 is the minimal order of the leaders
of A not in B. At some point B = A and then r1 become
irrelevant. The piece of power series solution we compute,
ȳ ∈ Sn, is such that Φα (ȳi) = 0 for δαyi /∈ Θ+

�(A).
The invariant of the while loop is

I0 : ω + ȳ ≡ ỹ mod (t)ρ.

The invariant is true before the while loop as ω ≡ ỹ mod (t)r+1

for r the minimal order of the leaders of A. L is the lineari-
sation at ω̄ + ȳ and at order ρ1 − r of B. It is a linear
d-triangular set s.t. �(L) = �(B). Its coefficients are used
to compute the Φα (ȳ) for ρ ≤ |α| < ρ1 within the for loop.
Proposition 4.2 and Proposition 4.4 ensure the exactness of
the computation.

5. EXPERIMENTAL COMPARISONS
We made a first implementation of our algorithm in maple

and made an experimental comparison with the libraries rif
[24, 29] and diffalg [3, 1]. As of in maple 8 those codes deal
only with initial conditions where the coefficients are inde-
terminates. Our code works without distinction for both nu-
merical (with specified values) and generic (with indetermi-
nates) initial condition. At our request A. Witkopf adapted
rif ’ to handle numerical initial conditions. We shall report
here on comparisons with generic initial conditions.

We present a selection of examples where our implemen-
tation performs better than rif and diffalg. On the first
example, our algorithm performs clearly better. The results
are nonetheless not clear cut in general. One has to point
out that this first example is linear so that basically the
power series solution is computed through the associated
recurrences that are of finite length. In the other cases the
arithmetic operations on power series lessens the impact of
the quadratic character of the algorithm. Series computa-
tions were indeed made in the zealous way [28] that is in
their polynomial form and we only used the standard al-
gebraic operations on polynomials in maple. The use of
more appropriate coding of the differential polynomials (as
straight line programs for instance) and of arithmetic oper-
ations and derivations on power series solution is underway.
We expect to report on a more overall success soon.

We present the selected examples as systems of differen-
tial equations. One will easily recover the regular differen-
tial systems underlying those. The leaders of the differential
polynomials together, together with coefficients, are in the
left handsides of the equations. Initial conditions are given
in Riquier’s style. The library rif has a tool to produce
them. We present the timings by plotting the logarithm of
the computation time as function of the logarithm of the
order up to which the power series solution is computed.
Computation times were obtained on the machine Jules of
medicis (http://medicis.polytechnique.fr).

Example 1 We consider the differential system�
(1 + y)uxx = (x2 + xy + y2)vy

vx = (y2 + y + 1)u

A regular initial condition at (x, y) = (0, 0) is provided by
the assignment of values to u, uy, uyy, . . . and to u, uxy, uxyy, . . .
and to v, vy , vyy, . . .. It thus amount to have three arbitrary
power series in y. The initial condition can be given in
Riquier’s style:

(ū, v̄) = (f(y) + g(y)x, h(y) + f(0)x)

where f, g, h are power series in y. We assume they have
indeterminates as coefficients.

rif

newton

diffalg

–6

–4

–2

0

2

4

6

8

lo
g(

t)
1 1.5 2 2.5 3

log(n)

Example 2 We consider the spread disease system�
vt = −r v u

buxx = ut − r v u+ au

with initial condition

(ū, v̄) = (f(x), g(t) + h(t)x),

where f, g, h are power series, in x or t as specified within
parentheses, with indeterminate coefficients.

rif newton

diffalg
–4

–2

0

2

4

6

8

lo
g(

t)

1 1.5 2 2.5
log(n)

Example 3 We consider the differential equation

uxuxx = (αuux − βut)(1 − tux)3

with initial condition ū = f(t)+g(t)x+
(α f(0)g(0)−β f ′(0))

2 g(0)
x2,

where f and g are power series in t with indeterminate co-
efficients.

154



rif
newton

diffalg

–6

–4

–2

0

2

4

6

8
lo

g(
t)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
log(n)
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différentielle. PhD thesis, Université des Sciences et
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assurant l’analycité des solutions des systèmes
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