Elliptic section
from P. Olver, Pick invariant, in preparation.
fr > | Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[1,1]=0,u[2,0]=1,u[0,2]=1,u[0,3]=0,u[2,1]=0, u[1,2]=-u[3,0]]:stair(Section); |
fr > | C, Invariantizations :=dmf(LieAlg,Section, fr, [op(1..10,Section), u[3,0]=Pk,u[4,0]=e,u[3,1]=d,u[2,2]=c,u[1,3]=12*Pk*S1+3*d,u[0,4]=12*Pk*S2+3*c], 'COM'): |
"Section :"
"Transversality condition :" u[3 0]
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"
Can we express [c,d,e], the invariantization of in terms of
the invariantizations of
fr > | R := differential_ring(ranking=[[y0,y1],[c,d,e],[S2,S1,Pk]], derivations=[x,y],
commutations=COM,notation=vjet); CC := Rosenfeld_Groebner(equations(C[1]), [Pk[0,0]], R); for g in rewrite_rules(CC[1]) do print(g); od; |