Hyperbolic section
from P. Olver, Pick invariant, in preparation.
fr > | Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[1,1]=0,u[2,0]=1,u[0,2]=-1,u[0,3]=0,u[2,1]=0, u[1,2]=u[3,0]]:stair(Section); |
fr > | C, Invariantizations :=dmf(LieAlg,Section, fr, [op(1..10,Section), u[3,0]=Pk,u[4,0]=e-3*c,u[3,1]=d,u[2,2]=c,u[1,3]=-12*Pk*S1-3*d,u[0,4]=12*Pk*S2-3*c],'COM'): |
"Section :"
"Transversality condition :" -u[3 0]
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"
fr > | COM; |
We can express [c,d,e], the invariantization of in terms of
the invariantizations of
> | R := differential_ring(ranking=[[y0,y1],[c,d,e],[S2,S1,Pk]], derivations=[x,y],
commutations=COM,notation=vjet); CC := Rosenfeld_Groebner(equations(C[1]), [Pk[0,0]], R); for g in rewrite_rules(CC[1]) do print(g); od; |
We can use an alternative choice of 4th order differential invariants
fr > | [u[3,0]=Pk, R1=u[4,0]+3*u[2,2],R2=u[3,1]+3*u[1,3], Pk*S1=3*u[3,1]+u[1,3], Pk*S2=3*u[2,2]+u[0,4], u[4,0]=Q0];
|
fr > | C, Morphism :=dmf(LieAlg,Section, fr, [op(1..10,Section), u[3,0]=Pk, u[4, 0] = Q0, u[1, 3] = -1/8*Pk*S1+3/8*R2, u[2, 2] = 1/3*R1-1/3*Q0, u[3, 1] = -1/8*R2+3/8*Pk*S1, u[0, 4] = Pk*S2-R1+Q0], 'COM'): |
"Section :"
"Transversality condition :" -u[3 0]
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"
and obtain the following rewriting:
fr > | COM; |
fr > | R := differential_ring(ranking=[[y0,y1],[Q0,R1,R2],[S1,S2,Pk]], derivations=[x,y],
commutations=COM,notation=vjet); CC := Rosenfeld_Groebner(equations(C[1]), [Pk[0,0]], R); for g in rewrite_rules(CC[1]) do print(g); od; |